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Editorial 
Arnold Baca 

Department of Biomechanics, Kinesiology and Applied Computer Science, 
ZSU, University of Vienna 

 
 

Dear readers: 
 

Welcome to the summer 2012 issue of the International Journal of Computer Science in 
Sport (IJCSS). 
 
Two research papers, two scientific reports and one project report have been included within 
this issue. 
 
Nicole Bandow, Kerstin Witte and Steffen Masik present a virtual test environment for 
performing reaction tasks sports. The evaluation of the developed procedure is accomplished 
on the basis of a comparative test. 
 
The study by Tade Souaiaia and Jonas Mureika demonstrates a five-parameter model 
approximating the environmental effects on long jump performance of world class athletes. 
 
Peter O’Donoghue compares two sets of two predictive models for the Rugby World Cup 
2011 integrating multiple linear regression techniques. 
 
Chueh-Wei Chang, Yi-Po Wu and Hua-Wei Lin discuss the design and implementation of 
an animation assisted sport simulation system for general baseball “cover, relay and cutoff 
play” training. 
 
Jürgen Perl and Stefan Endler report on their current results regarding the PerPot 
simulation model, allowing the determination of the individual anaerobe threshold (IAT). 
 
If you have any questions, comments, suggestions and points of criticism, please send them 
to me. 
 
Enjoy the summer! 

 
Arnold Baca, Editor in Chief 
University of Vienna, arnold.baca@univie.ac.at  

mailto:arnold.baca@univie.ac.at�
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 Development and Evaluation of a Virtual Test 
Environment for Performing Reaction Tasks 

Nicole Bandow1, Kerstin Witte1& Steffen Masik2 
1Department of Sport Science, Otto-von-Guericke University Magdeburg 
2Fraunhofer Institute for Factory Operation and Automation Magdeburg 

 

Abstract 
Virtual reality offers many advantages for standardized experimental setups as 
well as for manipulating selected parameters. This study describes the 
development of a three dimensional virtual environment for sports as well as the 
evaluation of its effectiveness by means of a comparative test. The test consists of 
measuring the participants’ (n=33) mean simple reaction times (𝑅𝑇����) of an 
appearing ball in a real, a two dimensional and the developed virtual 
environment. To assess the participant’s sensation of reality in the two 
dimensional and virtual environment, a short-questionnaire was used. Simple 
reaction times were measured by accelerometers fixed onto the participant’s 
wrist. The results of the ANOVA and post-hoc analysis (Bonferroni) showed a 
significant difference (p<0.001) of 𝑅𝑇���� between each environment. 𝑅𝑇���� between 
real environment (188ms (±37ms)) and virtual environment (286 ms (±69 ms)) 
was 53% lower than between real and two dimensional environment (373 ms 
(±68 ms)). Results of the questionnaire showed that the majority of participants 
had a higher sensation of reality in the virtual environment than in the two 
dimensional environment. This leads to the conclusion that the virtual 
environment evokes a more realistic behavior than the two dimensional 
environment which is important for research and training in sports. 

KEYWORDS: VIRTUAL ENVIRONMENT, CAVE, SPORTS, REACTION TIME 

Introduction 

This paper describes the development of a three dimensional virtual environment for research 
and training in sports. Although there is growing interest in using virtual reality in sports, only 
few studies use virtual reality technology for research and training of anticipation and 
perception (Tanaka, Hasegawa, Kataoka & Katz, 2010).  

Virtual reality (VR) technology offers many advantages especially for research in sports. The 
main advantages of computer simulated environments are standardized conditions with high 
ecological validity, experimental controlling, feasibility of manipulation and repeatability 
(Armbrüster, 2007; Tanaka et al., 2010). The most important and differentiating advantage of 
VR is stereovision providing spatial information. Spatial information in sports is a necessary 
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requirement to successfully assess game or combat situations (Panchuk & Vickers, 2009). 
Furthermore it is possible to create presence (the feeling of being in the virtual environment) 
by providing stereoscopic view jointly with a high level graphics VR. A high presence evokes 
the feeling of being able to act in a real environment. Moreover, this feeling elicits behavioral 
realism which is an important aspect for research in sports (Vignais, Bideau, Craig, Brault, 
Multon, Delamarche & Kulpa, 2009). Main advantages of VR for training are not being 
dependent on other athletes or on required spaces and environments (i.e. training 
establishment, soccer field) (Göbel, Geiger, Heinze & Marinos, 2010). 

There have been very few studies with the aim of developing VR based training facilities for 
improving sports skills such as in archery, baseball, basketball, karate and table tennis (Göbel 
et al., 2010; Komura, Kuroda & Shingawa, 2002; Rusdorf, Brunnett, Lorenz & Winkler, 2007; 
Tanaka, 2009; Zhang & Wang, 2011). 

The following studies show that the use of VR in research has only increased over the past 
decade. Dessing and Craig (2010) use VR to study the behavior of soccer goalkeepers. They 
examined whether goalkeepers misjudged the landing position of the ball when spin was added 
to it by using reproducible ball trajectories. They argue that presenting the same reproducible 
ball trajectories across several trials would not have been possible through video presentation 
or in reality (Craig, Berton, Rao, Fernandez & Bootsma, 2006). Bideau et al. (2010) and 
Vignais et al. (2009) use VR to analyze sport performance in handball. They examine whether 
the goalkeeper’s choices, i. e. how to react to an approaching ball, are influenced by 
perception. The results show that good realistic virtual environments evoke good perception 
and realistic behaviors. 

Up to now, most studies or training methods still use two dimensional presentations. Mori 
(2002) uses video presentations to examine relevant cues for anticipating karate attacks. Others 
use similar methods such as computer screens or video projections to analyze anticipation and 
perception in soccer, tennis, basketball, field hockey and squash. Interestingly, a few studies 
acknowledge the limitation of two dimensional presentations in regards to the lack of spatial 
information and propose using three dimensional presentations (Abernethy, 1990; Aglioti, 
Cesari, Romani & Urgesi, 2008; Clatworthy, Holder & Graydon, 1991; Hagemann, Schorer, 
Canal-Bruland, Lotz & Strauss, 2010; van der Savelsbergh, 2002; Williams, Kamp & Ward, 
2002; Williams, Ward, Knowles & Smeeton, 2002).  

The aim of the study at hand is twofold: (a) Developing a three dimensional virtual 
environment for research in sports. (b) Verifying it in terms of the degree of realism it evokes. 
In order to develop a VR environment for sports high demands need to be fulfilled. On the one 
hand, these are sports specific demands such as mobility, naturalness of the presented objects 
and characters, individual adjustable information (i. e. joint angles) as well as freedom of 
feedback. On the other hand, technological demands have to be taken into account which 
includes creating animated virtual characters based on natural motions (no latencies), adapting 
the virtual character to the environment and finally providing a good graphical quality of all 
visual components. Providing a good graphical quality depends on the graphical level of detail 
of the displayed virtual environment. It is important to note that a higher level of detail always 
leads to an increase in CPU run time. If all these demands are met, it is possible to evoke a 
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high level of presence in the participant which is important for research in sport as mentioned 
before (Pronost, Multon, Li, Geng, Kulpa & Dumont, 2008).  

The effectiveness of the developed virtual environment is tested by a comparative study 
measuring the athlete’s reactions to a special event in different environments (Katz, Parker, 
Tyreman & Levy, 2008). In this study, the participant’s simple reaction time (RT) to the 
appearance of an approaching ball is measured in a real, a two dimensional and the developed 
three dimensional virtual environment. Based on the fact that virtual environments cause a 
high level of presence and therefore evoke realistic behavior, it is assumed that the simple RTs 
in the three dimensional virtual environment are more similar to those in the real environment 
than the simple RTs in the two dimensional environment (Vignais, et al., 2009). To assess the 
participant’s subjective impression of the degree of realism of the two dimensional and virtual 
environment, a short-questionnaire was used. 

Methods 

Development of a Three Dimensional Virtual Environment 
To create the three dimensional virtual environment the following steps had to be 
accomplished: Selection of an appropriate VR technology, development of a virtual model and 
a three dimensional virtual environment, recording of motion capture data to animate the 
virtual model, merging of the motion capture data with the virtual model, and embedding the 
animated model in the three dimensional virtual environment (Figure 1). The following 
describes the procedure more precisely. 

 
Figure 1. Schematic model of the development of the three dimensional virtual environment: creation of a 

virtual model and a three dimensional virtual environment, recording of motion capture data, 
merging of the motion capture data with the virtual model in the VRAuthor, and embedding 
the animated model in the three dimensional virtual environment for presentation in the 
CAVE. 

The CAVE (Cave Automatic Virtual Environment) was selected as the most appropriate VR 
technology for our demands. Its four projection screens (left, right, front, floor), each 2.30m x 
2.30m of size, offer a high level of immersion while giving sufficient space to move. Eight 
synchronized video projectors (JVC D-ILA - DLA-SX21S, 1400x1050px) driven by a PC-
cluster of ten computers (two master PCs driving eight PCs controlling eight video projectors) 
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were used to provide a stereoscopic view on all four projection screens. Polarization glasses 
were worn to provide stereovision. To adjust the virtual environment according to the viewer, 
an integrated optical tracking system with four cameras (ART, Weilheim, Germany) was used. 
Markers were fixed onto the polarization glasses to track the participant. 

The three dimensional virtual environment and the virtual model, both based on computer 
graphics models, were created with the modeling software 3ds Max (Autodesk Inc., San 
Rafael, USA). To increase realism, the virtual ball was mapped with the texture of an official 
soccer ball. The virtual environment showed a black wall in front, bright walls on both left and 
right sides and a bright floor (Figure 2a).  

In order to provide ball flights which were similar to the real and two dimensional 
environment, the virtual soccer ball was animated by real motion data. Motion data was 
collected by capturing the ball’s flight trajectory by the optical motion capture system VICON 
(Oxford Metrics, Oxford, UK) with twelve MX13 cameras. To capture the ball six markers 
were fixed onto it, in a dice-like style.  

 
Figure 2. a) Schematic illustration of the virtual environment showing the virtual ball and its flight path. b) A 

participant in the CAVE reacting to an approaching ball. 

The virtual environment and the animated virtual soccer ball were then transformed into the 
VRAuthor which is an author software based on the 3D graphics language OpenGL, and on 
OpenSceneGraph, an open source high performance 3D graphics toolkit that displays and 
simulates visual contents in virtual worlds. The VRAuthor offers the possibility to extent 
functions individually, and to present the visual contents through different VR technologies 
(Figure 2b). 

Testing the Three Dimensional Virtual Environment 

Research Designs 

To assess the effectiveness of the developed virtual environment a comparative study was 
conducted. The study involved measuring participant’s simple RT during a ball flight test in a 
real, a two and in a three dimensional virtual environment. At last the participants had to 
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complete a short-questionnaire assessing their sensation of reality in the two and three 
dimensional virtual environment.  

In the real test environment, participants had to react as fast as possible to a soccer ball flying 
towards them appearing out of a black wall 4 m in front of them. It was the same person 
throwing the ball throughout all tests in the real environment as well as for the video footage of 
the two dimensional environment, and the motion data for the three dimensional environment. 
The participants’ movements as well as their right wrists were recorded by a high-speed 
camera (Basler Pilot 640-GC210; 640x412 px; 200Hz) positioned 1.15m to the right and 3m 
behind them (Figure 3a). 

In the two dimensional environment participants had to react as fast as possible to approaching 
soccer balls that were projected onto a 2.25 m x 2.20 m screen. The video footage was back-
projected (SAMSUNG SP-D400; 1024x768 px) from 6.50 m distance while the participants 
stood on the other side of the projection screen (Figure 3b). The video footage was created by 
filming ball throws in the real environment. The participants’ movements as well as their right 
wrist were filmed by two high-speed cameras. The cameras were positioned 2.50 m behind the 
participants, one 1.15 m to the right and one 1.15 m to the left of them. 

 

 
Figure 3. a) Real environment (1: ball; 2: black canvas (2.20 m x 2.25 m); 3: participant; 4: high-speed camera). 

b) Two dimensional environment (2: projection screen (2.20 m x 2.25 m); 3: participant; 4: 
high-speed cameras; 5: projector).  

To conduct the test in the three dimensional virtual environment (i. e. CAVE), the tracking 
system had to be adjusted to each participant in the first place. The test procedure was the same 
as in the real and two dimensional environment. The participant had to react as fast as possible 
to approaching virtual soccer balls. Two high-speed cameras recorded the participants’ 
movements and their right wrists. One camera was positioned 2.50 m behind the participants 
and 1.15 m to the left and the other camera 1,15 m in front of the participants in 2.55 m height 
(above the front projection screen) (Figure 4). 
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Figure 4. Three dimensional virtual environment (1: CAVE (2.30 m x 2.30 m); 2 participant; 3 high-speed 

cameras). 

Thirty-three males were selected for the study. Participants were sports students, right handed 
and in average 24 (±3) years of age. All participants had to accomplish ten trials consecutively 
in each environment. Each execution was followed by a 5 second break. The first ten trials in 
each environment were conducted to familiarize the participants with the environment. The 
participants were instructed to react as fast as possible to the approaching ball. Since catching 
the ball was only possible in the real environment, but not in the two and three dimensional 
environment, it was not part of the analysis. 

To assess the participants’ subjective impression regarding their sensation of reality in the two 
dimensional and three dimensional virtual environment, they had to answer two questions in a 
short-questionnaire after the tests: ‘How similar is the 2D environment compared to the real 
environment’ and ‘How similar is the 3D ‘virtual environment compared to the real 
environment’. All participants were aware that the meaning of similarity here was related to the 
level of reality of each environment. A 6-point Likert scale was chosen as response mode. 
(Kirchhoff, Kuhnt, Lipp, & Schlawin, 2010) The answering options were: not at all, hardly 
similar, little similar, quite similar, very similar, and identical. 

Determination and Analysis of Mean Reaction Times (𝑹𝑻����) 
The reactions, defined as the simple RT (ms) from first visibility of the ball until the first 
physical reaction, were measured by an accelerometer (Myon; three dimensional; 1000Hz). 
The accelerometer was fixed one cm above the processus styloideus ulnae, onto the M. flexor 
digitorium superficialis of the right arm. Only the acceleration of the radial-ulna-plane was 
analyzed presenting the main movement direction of the reaction. 

Acceleration and video data were collected synchronously for each test environment by means 
of the Nexus 1.3 software (VICON, Oxford Metrics, Oxford, UK). Acceleration data were 
smoothed by a moving average (20 samples) to minimize the noise before analysis. 
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To determine the simple RT, specifically the time differences between the ball becoming 
visible and the participants’ first physical reactions, an analysis of the video footage and the 
acceleration data were necessary: Firstly, the ball’s appearance time was determined by the 
bias of video footage. Secondly, the beginning of the participant’s physical reaction was 
determined as the point when the acceleration exceeded the threshold of 20% of the 
amplitude’s maximum of each deflection. The threshold was defined in a pre-analysis where 
the acceleration data was compared with the video footage. It was found that the beginning of 
the physical reaction based on the acceleration data was in average one or two frames (5-10 
ms) before the visible reaction. The threshold was then set to 20% to ensure that smaller 
movements did not affect the identification of the beginning of the physical reaction (Figure 5).  

 

Figure 5. Generic acceleration waveform of a single reaction showing the 20% threshold of the amplitude’s 
maximum. 

For statistical analysis the RT���� (ms) and standard deviations for each participant in each 
environment (3x10 trials) as well as the RT���� over all participants for each environment (3x33 
trials) were calculated. A one-way analysis of variance (ANOVA), with environment as the 
between-factor, was used to study the effects of the environment on the participants’ reactions.  

Results 

Mean Simple Reaction Times 
The findings of the ANOVA (F(2,96)=79.9; p<0.001) showed significant differences in mean 
reaction time for each environment. RT���� for in the real environment were 188 ms (±37 ms), for 
the two dimensional environment 373 ms (±68 ms), and for the three dimensional virtual 
environment 286 ms (±69 ms) (Figure 6). A post-hoc analysis (Bonferroni) revealed significant 
differences between (1) real environment vs. 3D virtual environment (p<0.001), (2) real 
environment vs. 2D environment (p<0.001), and (3) 3D virtual environment vs. 2D 
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environment (p<0.001). Remarkably, the difference between real and two dimensional 
environment (185 ms) was almost twice as high as between real and three dimensional 
environment (98 ms). 

 
Figure 6. RT���� (n=33) for each environment: (1) real environment vs. 3D virtual environment (p<0.001), (2) real 

environment vs. 2D environment (p<0.001), and (3) 3D virtual environment vs. 2D 
environment (p<0.001). 

Sensation of Reality 
The findings of the short-questionnaire showed that most participants had the impression that 
the three dimensional virtual environment rather than the two dimensional environment was 
more similar to the real environment in terms of sensation of reality.  

Table 1. Frequency and percent of answers (n=33) to the question ‘How similar is the 2D environment 
compared to the real environment?’ 

question  How similar is the 2D environment compared to the real environment?  

answers  frequency %  
not at all  2 6,1  
hardly similar  19 57,6  
little similar  6 18,2  
quite similar  4 12,1  
very similar  2 6,1  
identical  - -  

 

Most participants (81%) responded to ‘How similar is the 2D environment compared to the 
real environment?’ with choosing the answers representing the lowest sensation of reality (‘not 
at all’, ‘hardly similar’, ‘little similar’). Only 21% answered with ‘fairly similar’ and ‘very 
similar’ (representing a higher sensation of reality). Nobody responded with ‘identical’ (Table 
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1).  

Table 2. Frequency and percentage of answers (n=33) in regards to the question ‘How similar is the 3D virtual 
environment compared to the real environment?’ 

question  How similar is the 3D virtual environment compared to the real environment? 

answers  frequency % 
not at all  - - 
hardly similar  - - 
little similar  5 15,2 
quite similar  16 48,5 
very similar  12 36,4 
identical  - - 

 

In contrast, only 15.2% of the participants answered the question ‘How similar is the 3D 
environment compared to the real environment?’ with ‘little similar’ and none with ‘not at all’ 
or ‘hardly similar’. Therefore 85% of the participants chose the answers representing a higher 
sensation of reality (Table 2). 

Discussion 

The results of the comparative test show significant differences in RT���� for each environment. 
The RT���� in real environment (188 ms) confirms the general statement from Wollny (2010) that 
visual simple RTs range between 100-350 ms depending on the participants’ level of expertise. 
These findings can therefore be seen as a validated benchmark for further discussions. The 
results of the ANOVA prove a significant difference of RT���� between each environment. 
Remarkably is the difference of RT���� (98 ms) between real and three dimensional virtual 
environment compared to the difference between real and two dimensional environment (185 
ms) which is 53% lower. This finding confirms the hypothesis that the simple RTs in the three 
dimensional virtual environment are more similar to those in the real environment than the 
simple RTs in the two dimensional environment. Since the similarity of reaction in the three 
dimensional virtual environment is closer to reality than in the two dimensional environment, it 
can be assumed that the presentation in the three dimensional environment is also more similar 
to reality. These findings strengthen the successful development of a three dimensional virtual 
environment that is able to evoke realistic behavior within the participants (Katz et al., 2008). 
Additionally, the findings of the short-questionnaire prove that the sensation of reality is higher 
in the three dimensional virtual environment than in the two dimensional environment. 
Moreover, these results show that the three dimensional environment can provoke more 
realistic reactions caused by more realistic presentations than the common two dimensional 
presentations. This finding is important for the application of three dimensional environments 
in research and training. Only if athletes react and behave authentically this technology can be 
used as research and training method in sports (Vignais et al., 2009). 
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Nonetheless, there is a lack of statistical proof of similarity between the real and three 
dimensional environment. The reasons therefore are considered consecutively. Firstly, the 
visual presentation of the virtual environment and models need improvement in regards to 
visual detail. Secondly, the adjustment of the distance between moving objects, i. e. the virtual 
ball, and the participants has to be enhanced. Some participants had the impression that the ball 
was flying to close towards them. Thirdly, the participant’s individual perception has to be 
examined prior to the test. Studies have revealed that some people are incapable of seeing three 
dimensional virtual environments based on physical issues. Fourthly, the amount of trials to 
familiarize to stereovision was too small. A test to verify the participant’s capability of 
stereovision as well as eye vision was not conducted but should be implemented in future 
examinations.  

Conclusion 

This study offers a first attempt at using VR technology for examining reactions. The findings 
show that the three dimensional virtual environment evokes a more realistic behavior within 
the participants than the two dimensional environment. It can be assumed that the reason 
therefore is due to spatial information and the feeling of presence arising thereby. Furthermore 
VR technology offers the possibility to create a reproducible and individually manipulative test 
environment. The developed three dimensional virtual environment can be seen as a start 
providing good opportunities for further research in anticipation and perception as well as for 
training in sports.  
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Abstract 
A model is presented that combines experimental data on the relationship 
between approach velocity and takeoff angle with a five-parameter model to 
approximate environmental effects on approach velocity and in-flight travel. 
Results indicate that wind speed provides the greatest influence on jump distance, 
followed by air density which itself is a product of altitude, temperature, air 
pressure, and humidity. Local fluctuations in the Earth’s surface gravitational 
field strength are shown to have a slight effect on performance. Previously, 
analysis attributed the majority of performance increase to faster approach speed 
and takeoff velocity. These new results suggest a diminishing return to 
performance from an increase in approach speed.  

KEYWORDS: DRAG REDUCTION, WIND AND ALTITUDE ASSISTANCE, DENSITY 
ALTITUDE, MATHEMATICAL MODELING OF ATHLETIC PERFORMANCES   

Introduction 

Athletic performances in track and field can be manipulated both physiologically and  
environmentally.  The testing for performance enhancing drugs is an attempt to normalize 
performances that were manipulated with drugs.   Environmental factors are normalized by 
declaring performances with an excessive tailwind “illegal.”  The standard in sprints and long 
jump is to classify performances which benefit from a tailwind of greater than 2.0 m/s as 
ineligible for recognition as world records.  The crude nature of this standard has led to studies 
that focus on instead adjusting performances with consideration to the effects of atmospheric 
drag. (see Ward-Smith (1984, 1986), Linthorne (1994b), Mureika (2001, 2003, 2006), Frolich 
(1984)) Most models examine sprint performances where the longer time interval allows 
atmospheric drag to provide greater influence than in jumps.  However, historic data indicates 
that both the jumps and sprints may be measurably affected by atmospheric conditions.  The 
1968 Olympics – which took play in the high altitude of Mexico City -- saw records in both 
sprints and jumps broken by large margins. The most remarkable performance was recorded in 
the long jump.   Bob Beamon of the United States jumped 8.90 meters, breaking the previous 
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record by more than 0.5 meters.  This jump was analyzed by Ward-Smith (1986), who 
examined primarily the effect of wind and altitude on the speed of the approach before the the 
jump rather than the flight through the air.  Modeling the approach as a sprint provides 
inaccuracies because instead of approaching at maximum pace, long jumpers use a slower 
sprint to mitigate biomechanical difficulties of taking off at maximum pace (Seyfarth et al., 
2000).   

We provide an accurate model for both the in-flight phase and slow sprint approach to the long 
jump.  Analysis concerns differences in performance with respect to relative gravity, physical 
altitude, density altitude, and tailwind speed.  This model can be used to normalize 
performance to an environmentally neutral locations and to provide information concerning 
takeoff velocity and the in-flight path of a jumper.  The model is split into an aerial phase and 
an approach phase which provides an approximation for the effect of the environment on 
takeoff speed and angle. 

The Aerial Phase 

To accurately simulate atmospheric effects on the long jump, a model should incorporate and 
allow variation of all parameters of interest.  The greatest environmental effect on the long 
jump is wind speed, which can decrease or increase the force of drag on an athlete.  In the 
aerial portion of the model we will approximate the body of the long jumper as a rigid 
projectile, as shown in Figure 1. 

 
Figure 1. The free body diagram depicts the in-flight forces on the athlete. Specifically, the force of drag 

parameter (which is resistive in the horizontal direction but contributive in the vertical 
direction after the peak altitude has been reached) and the force of gravity which always acts 
in the negative vertical direction. 

It is an accurate approximation to assume drag forces are proportional to the squared velocity 
of the jumper.  Analyzing the forces present on the athlete provide the most accurate model, 
because they can be decomposed into a horizontal and vertical components.  It is understood 
from mechanics that for low wind speed, that only forces that act an in-flight athlete are 
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gravitational acceleration (g) that acts only in the negative vertical direction, and the drag 
force, which acts in the direction opposing movement.  We assume that wind (w) is present in 
only in the horizontal direction.  These assumptions are consistent with the fact that modern 
athletic stadiums are relatively enclosed, which prevents both extreme horizontal wind and 
measurable wind in the vertical direction.  We can write these equations as a system of force 
equations for each direction:    
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where g = 9.8 m/s2, w is the wind speed in the horizontal direction (vertical winds are ignored), 
and k represents the drag parameters in each direction as follows: 
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where m is the average mass of a long jumper (75 kg), ρ is air density, and Cd is the 
dimensionless experimentally-determined drag coefficient of 0.6 (Brownlie et al. 2004),  
which is further described in Figure 2.  Total drag is greatest when the air flow is neither 
laminar nor completely turbulent and both forms of drag are present.  Material science in sport 
has provided different methods to reduce the time spent in this partially turbulent state. This 
can be accomplished by either quickly transitioning to turbulent flow (e.g. dimples on a golf 
ball) or by remaining in laminar flow (e.g. the smooth material of a speed skaters suit). 
Calculations on the material used by elite sprinters resulted in an effective result to the non-
dimensional drag coefficient (C) of 0.40%, from 1.0 to 0.6. 

 

 
Figure 2. At low velocities (a) friction drag reduces an athletes ability to move throw the atmosphere. As 

velocity increases the point at which the boundary fluid layer separated farther from the front 
of the object resulting in a pressure differential which causes form drag.  During turbulent flow 
(b) friction drag is reduced and form drag dominates.  

To describe the cross sectional area of an athlete Ax, we first remember that the cross sectional 



International Journal of Computer Science in Sport – Volume 11/2012/Edition 2 www.iacss.org 

   

 
 

 

19 

 

 

area of a long jumper is time dependent in the horizontal direction.  The jumper starts out in an 
outstretched position but finishes the jump in a crouch.  This shrinking of cross sectional area 
will be approximated with the function A = (t+2)-1, where the time (t) varies from zero to 
about one second, as A varies from 0.5 m2 to 0.33 m2.  Ay is the horizontal cross sectional area 
of the athletes body and is approximated as 0.1 square meters. 

The parameter most often studied in physical models is wind speed.  Mathematically, the effect 
of the wind speed on the model is the simplest, but also makes the most difference in jump 
performance.  In fact, the wind speed is the only aerodynamically-influential quantity 
measured at the Olympic Games.  An analysis of the effect of wind speed will allow us to 
understand just how great a difference wind speed can have on an athlete’s performance. 

Positive wind speeds are tailwinds that decrease the ambient drag force acting on the sprinter.  
Conversely, negative wind speeds are headwinds into which the athlete runs, increasing the 
aerodynamic drag.  It is important to remember that moderate wind speeds do not aid an athlete 
by providing a force to “push” the athlete through the air, but acts to counteract drag. 

The parameter that is closest to being constant is the value of gravitational acceleration.  The 
value of gravitational acceleration varies due to the distance between the earth’s center and the 
athlete’s center of mass.  This distance varies with respect to physical altitude and latitude 
(because of the oblate shape of the earth).  Differences in gravitational acceleration are not 
considered in most models because variation between most track and field venues is negligible.  
However, that the because the most famous long jump was performed at high altitude and 
close to the equator in Mexico City justifies the scrutiny of gravity.  An approximation for 
measured gravity can be built up by combining the law of universal gravitation and the 
international gravity formula (Ceasure, 1987).  When both are combined, the following 
approximation for measured gravity is obtained: 

 

g =

9.7803 (1+ 0.001913)sin2 λ
(1− 0.006694)sin2 λ

 

 
  

 

 
  

1+
h2

R2

                                (3) 

where h is the physical elevation in meters, R is the Earth’s average radius, and λ is the 
latitude.  This equation should allow us to approximate the variation in measured gravity with 
respect to latitude λ and altitude h. To observe whether stadium conditions vary enough to 
affect the value of g, the measured gravity was calculated with accurate latitude and altitude 
for different stadiums.  When six different major cities are used from around the world the data 
showed a maximum change in the gravitational acceleration of about .03 ms-2, which is 
significant enough to affect an athlete’s performance (at the centimetre scale).   

The differences in measured gravity at six different track stadiums around can be observed in 
Table 1.   The variations in g at different stadiums is significant enough to effect long jump 
performance, albeit to a small degree.  However, to examine long jump performances 
differences while only varying the gravity is not necessary or realistic, because the factors that 
effect measured gravity, physical altitude and geographic location also cause variation air 
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density which significantly effect the drag parameter k . 

Table 1. Approximate value of the local gravitational acceleration [ms-2] in different world class stadium 
locations (from Equation 3). 

Venue g [ ms-2 ] 

Mexico City, Mexico 9.782 

Colorado Springs, USA 9.790 

Sydney, Australia 9.795 

Los Angeles, USA 9.795 

Oslo, Norway 9.801 

Hammerfest, Norway 9.811 

 

In past models air density (ρ) is often approximated as only a function of physical altitude.  
Physical altitude however does not provide as accurate a description of the air density as 
density altitude (Hρ) that represents the effective altitude when considerations are made to 
barometric pressure, temperature and humidity.  Mureika (2006c) has shown the following 
equation to be an accurate representation of density altitude, 
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where the parameters are defined as  

 

Λ = 6.5 ×10−3K ⋅ m−1,    R = 8.314 J ⋅ K ⋅ mol−1

 

To = 288.15 K,Po =101.325 kPa,    g = 9.80 m ⋅ s−2,    µ = 2.89x10−2kg ⋅ mol−1 

Although long jump performance could be effectively modeled by using density altitude as a 
parameter, the derivation of the drag parameter requires the air density (ρ) itself to be 
examined.   Assuming ideal gases, air density can be described as 

                                          TR
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−

=ρ  ,     (5) 

where P is the total air pressure, the gas constants are Ra = 287.05, and Rv = 461.50, and the 
pressure of water vapor Pv is described by the Magnus-Teton equation (Murray, 1967)  
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≈  ,    (6) 

where Hr is the relative humidity and T is the temperature in degrees Celsius. 

This equation for the air density is crucial to our analysis, as it includes three of the parameters 
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often overlooked in environmental analysis of athletic performance, barometric pressure, 
temperature and humidity.  It is important to remember that the barometric pressure that is 
usually reported in weather forecasts is the corrected sea level pressure, similar to the altitude 
corrected for air density formula just derived.  However, this sea level corrected barometric 
pressure (usually between 100-102 kPa) is not what we are examining for in the model.  Thus, 
for forecast values, the correction for sea level barometric pressure is necessary, (Lawrence 
Livermore National Laboratory Meteorological Website, 1997) 

 

Pcorrected = PSL
288 − 0.0065h

288
 
 
 

 
 
 

5.2561

 .   (7) 

This correction is used in the model to allow inputs to be sea level corrected barometric 
pressure.  This correction allows reported values to be used for the inputs to the third and final 
parameter in the model air density.  As is expected, differences in air density provide a greater 
effect on performance than gravity but less of an effect than wind speed.  

The Approach Phase 

The approximation of athletes as rigid bodies in motion during the aerial phase is a 
predictively-accurate but an incomplete way to model the environmental effects of the long 
jump.  Although, aerial phase mechanics and the environment both affect athlete performance, 
the biggest influence on jump distance is the takeoff velocity and angle.  

The environmental effect on take off velocity requires the approach sprint to be modeled with 
respect to wind speed and air density.  Although sprint models are ubiquitous, modeling this 
phase in the same manner as a sprint model is inaccurate, because long jumpers do not take off 
at maximal sprint velocities.  By modifying a model originally designed to simulate the 100 m 
sprint, the long jump preparatory phase can be obtained.  Mureika (2001) discusses a quasi-
physical model for the 100 m sprint using the following system of differential equations 

                      

 

Ý x = v(t) 
                  dvms ffffv −−+=                  (8) 

Here, (fs) is the drive term, (fm) is the maintenance term, (fv) is the velocity limiting term, and 
(fd) is the force of drag.  Each term is defined as follows: 

fs =  f0 exp(-σt2), This term describes the drive force of the runner.  It falls off very quickly with 
time to mimic the explosive start of a sprinter out of the blocks.  This term is left out of the 
long jump model because long jumpers do not start from blocks, but rather from a “standing” 
position. 

 

fm = f1 exp(−c t) .  This term describes the maintenance of force for the runner.  The 
exponential being raised to a negative time coefficient means that this term will fall off as time 
passes (modeling fatigue). 
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 )(tvf v α=  This term serves to limit top speed or leg turnover rate.  

 

fd =
1
2

ρCd
A
m

v(t) − w( )2 .  This term represents drag.  It is decreased by wind speed and lower 

air density.  

This model can be used to simulate the approach or preparatory phase of the long jump if the 
drive term fs removed (alternatively setting f0 = σ = 0).  It is assumed here that the main 
difference in the long jump run from the sprints is the lack of the driving out of the blocks.  If 
this system is integrated numerically over a 30 meter distance (preparatory phase) it will 
provide initial velocity which can then be used along with take off angle as the inputs for the 
aerial phase.  Following (Mureika 2001), the following values of the parameters are adopted: f1 
= 5.15, α = 0.323, c = 0.0385, m = 75 kg, Cd = 0.6, and A = 0.45 m2.   

In a purely physical model it would seem advantageous for an athlete to jump at a 45 degree 
angle while maximizing velocity, since this angle would allow the athlete to maximize the 
horizontal the velocity necessary to travel forward as well as the vertical velocity necessary to 
allow the athlete time in the air before landing.  However, an athlete approaching with a high 
velocity will be able to take off with a large horizontal take off velocity, but will not have 
enough ground contact time to create a large vertical force to allow hang-time.  Athletes 
attempt to provide an increase the vertical force by planting the foot ahead of the body to allow 
more time to create the force.  Unfortunately, the longer the athlete takes to create a vertical 
force the more horizontal breaking that that will take place.  Thus, biomechanical compromises 
between vertical force and horizontal breaking force elite athletes to favor a take off angle 
between 20 and 25 degrees.  Seyfarth et al. (2001) has experimentally determined the take off 
angle of elite long jumpers to be close to 21 degrees with a take off velocity of slightly less 
than 10 m/s.   

More recently, Bridgett and Linthorne (2006) have conducted experimental research to 
determine how elite long jumpers take off angle changes with respect to initial velocity.  Like 
Seyfarth et al. (2000), the authors found that elite long jumpers jump with take off angles close 
to 21 degrees, but that angle varies with respect to takeoff velocity. A linear fit experimental 
data that shows that as takeoff velocity increases takeoff angle decreases.  Incorporating this 
relationship into the approach phase will provide an experimentally verified relationship 
between the environmentally affected takeoff velocities and take off angle.  

Data and Analysis  

The described model can generate data that yields information about long jump performance 
increase in both the aerial and approach phases with respect to the variation of the following 
inputs: wind speed, altitude, latitude, humidity, temperature, and air pressure.   With the 
exception of wind speed all other inputs are heavily correlated to geographic location or in the 
case of elite athletes, specific stadiums during the summer and fall months.   For this reason 
analysis will concern the effect of the stadiums most often implicated in changing jump 
performance.  Three different locations with extremal realistic parameters [temperature (ºC), 
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station pressure (kPa), relative humidity (%)] will be considered: Los Angeles, CA [25 ºC, 
101.3 kPa, 10 %], Mexico City [35 ºC, 100.0 kPa, 60 %], and Hammerfest, Norway [15 ºC, 
102.0 kPa, 2 %]. The cold and dry conditions in the northern location of Hammerfest should 
produce the greatest performance decreases, while the hot, humid conditions in Mexico should 
produce the highest performance increases.   Los Angeles (a typical sea-level venue, similar to 
European arenas) will provide the baseline performance for different wind speeds, although it 
should be noted that aside from the lower relative humidity, these conditions are reflective of 
many sea level competition stadia. 

Table 2. Effect on Performance (cm) for different venues as compared to Los Angeles at the same wind speed 
(m/s) at 25°C, 101.5 kPa, and 10% humidity.  Values in parenthesis are temperature, 
barometric pressure, and relative humidity of indicated venues (°C, kPa, %). 

 

 Mexico City (35,100,60) Hammerfest (15,102,2) 

Wind 

(ms-1) 

Total 

(cm) 
Flight  
(cm) 

Approach 
(cm) 

Total 

(cm) 

Flight 

(cm) 

Approach 

(cm) 

-4 17 4.3 12.7 -2 -0.4 -1.6 

-2 15 5.6 9.4 -2 -0.5 -1.5 

0 9.1 2.4 6.7 -1.9 -0.8 -1.1 

2 6 1.6 4.4 -0.01 0.79 -0.8 

4 6 3.2 2.8 -0.07 0.63 -0.7 

  

The data generated by this model serves to illustrate two important characteristics of the 
environmental effects on long jump performance.  The first effect to note is the actual 
performance increase without wind.  Comparing performances without wind is important 
because all modern events have wind gauge readings reported, but rarely consider the air 
pressure or humidity during the event.  The model suggests that without wind an athlete in 
Mexico City can expect about 9 cm increase in performance while the same athlete jumping in 
Norway should only see a performance loss of 2 cm.  This suggests that while the performance 
increase in Mexico is real, the drop in performance often attributed to cold conditions may be 
the result of physiological difficultly rather than the environment.    
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Figure 3. Altitude-based performance correction curves for various wind speeds, as compared to sea-level (Los 
Angeles) standard. 

When the maximum legal wind in Mexico is considered (2 m/s) an elite athlete is expected to 
benefit from a performance increase of about 18 cm, far less than the value of 31 cm calculated 
by Ward-Smith (1986b) who attributed the majority of the performance increase to be an effect 
of the increased sprinting speed at altitude but did not take into account the different jumping 
angle the sprinting speed would create.  Effectively, this model agrees with or is slightly higher 
than most aerial predictions (Ward Smith, 1986 and Frolich, 1985) but predicts significantly 
lower values for total performance increase because of the effect of sprint speed on take off 
angle.  It is important to note that without the correction for take-off angle this model actually 
predicts a total performance of greater than 35 cm on a hot humid day in Mexico, 4 cm more 
than the difference found by Ward Smith.  This difference is due to the effect of humidity, 
temperature, pressure and the locally-measured value of gravitational acceleration, all of which 
were not considered in the 1986 paper. It is only because of the confluence of speed and take 
off angle that the model’s total performance increase is far less than what has been previously 
predicted.   
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Table 3. Total Performance corrections (cm) compared to performances in Los Angeles without wind.  

 Mexico City  Hammerfest  Los Angeles 

Wind  
(ms-1) 

Total Increase 
(cm) 

Total Increase 
(cm) 

Total Increase 
(cm) 

-4 -14.9 -33.9 -31.9 

-2 -1 -17.9 -15.9 

0 9.1 -1.9 0 

2 18.1 11.1 12.1 

4 26.1 13.1 20.1 

 

It is important that while this model suggests unfavorable conditions should not cause 
performance to decrease drastically, there is a very real (if overestimated) effect on long jump 
performance in favorable conditions that aided but did not invalidate the 8.90 meter jump of 
Bob Beamon.  The model suggests that Beamon’s advantage of 18 cm (2 m/s of wind, 
compared to sea level without wind in Los Angeles) were responsible for less than a third of 
the margin between Beamon’s jump and the previous record.   Even if one examines the 
possibility of a faulty wind reading and provides Beamon with what would have been a very 
unusual tailwind (4 m/s) the physical effects of drag would only have produced 26 centimeters 
of aid compared to jumping at sea level Los Angeles.  

The second notable feature of the data generated by the model is the non-linear relationship 
between wind speed and increased performance.  Two reasons serve to create this effect.  First, 
the drag force depends on the square of the relative velocity of the athlete and the air which 
causes the performance decrease in running into a tailwind much larger than the increase in 
running in front of a headwind.  Second, using Linthorne’s linear relationship between take-off 
speed and angle causes the positive effect of a tailwind to be lessened the faster the athlete is 
able to move.  Although the relationship between speed and angle is approximated to be linear 
the trigonometric functions used to decompose the speed into separate vectors are non-linear.   
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Table 4. Top personal men’s long jump performances per athlete and corrections (cm) with legal wind aid (w ≤ 
2 m/s). and illegal wind (w > 2.0 m/s). I = illegal wind, A = legal wind, U = unaided or 
negligible assitance (w < 0.5 m/s). 

Rank Name Top Dist 
(m) 

Wind 
(ms-1) 

Legal 
(m) 

Wind 
(ms-1) 

Unaided 
(m) 

Wind 
(ms-1) 

Total Aid 
(m)  

1 (I) M Powell 8.99 4.4 8.95 0.3 8.95 0.3 4 

2 (U) M Powell 8.95 0.3 8.95 0.3 8.95 0.3 0 

3 (A) Lewis 8.91 3 8.79 1.9 8.72 -0.3 19 

4 (A) Beamon 8.9 2 8.9 2 8.3 0 50 

5 (I) M Powell 8.9 3.7 8.95 0.3 8.95 0.3 -5 

6 (A) Emmiyan 8.86 1.9 8.86 1.9 8.61 -0.3 25 

7 (A) Lewis 8.79 1.9 8.79 1.9 8.72 -0.2 7 

8 (I) Pedroso 8.79 3 8.7 1.6 8.66 0.3 13 

9 (I) Lewis 8.77 3.4 8.79 1.9 8.72 -0.3 5 

10 (A) Lewis 8.76 1 8.79 1.9 8.72 -0.3 4 

 

Although this model predicts less performance increase than previous models, the 
experimental data generated by Linthorne is bounded by the data generated by the model.  
Experimentally, Linthorne found 2 m/s and 4 m/s tailwind to produce about 8 and 14 cm of 
aid, respectively while the model predicts 12 and 20 cm of aid.  The computer model (Figure 
3) also agrees with the effect of diminishing gains between take off speed and jump 
performance that Linthorne also observed.  

The model can also be examined parameter by parameter to examine the predictive difference 
between past models.  This model examined variations in gravitational acceleration rather than 
assuming a constant value, as well as the effect of temperature, humidity and pressure on air 
density.  These considerations proved to slightly improve the environmental aid on a long 
jumper.   However, this model also used a modified sprint model (drive term removed), 
parameterized the jumpers cross sectional area and used Linthorne’s experimental data with 
respect to takeoff speed and angle.  These considerations proved to drastically decrease the 
expected aid that the environment has on long jump distance.  Perhaps most importantly in the 
world of track and field is the fact that such considerations show that less than half of the 
distance that Beamon broke the world record jump by can be attributed to Mexico City.  

Finally, this model is anecdotally supported through historical data.  Although the approach 
phase of the model was created using a pre-existing sprint model, the correction for speed and 
angle caused the model to predict significantly less performance aid for the long jump than the 
100-meter sprint.   If the top 10 performances (including those declared illegal for wind 
assistance) in the 100-meter sprint and the long jump are examined it is not surprising that 
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every sprinter and eight of ten of the jumpers enjoyed greater than 1 m/s wind assistance.  The 
top ten sprint times were bolstered by an average wind speed of 3.82 m/s which allowed the 
sprinters an to improve on their top performances with negligible wind speed (less than 0.5 
m/s) by an average of 0.22 seconds, the same margin between the top legal 100m sprint and 
the 258th fastest recorded 100m sprint.  In contrast, the long jump performances were achieved 
with an average tailwind of only 2.46 m/s which supplied the jumpers with an average boost of 
12.2 cm (The model predicts 15 cm), which is approximately equivalent to the difference 
between the top legal long jump and the 4th farthest recorded long jump.  Additionally, 
historical data suggests a generous tailwind provides a greater advantage in the sprints than the 
jumps.  Five of the ten fastest men in any conditions joined the group with wind-assistance, 
while only one of the top ten longer jumpers of all time achieved his mark with wind 
assistance. 

In closing, we comment on potential future applications of this research. Beyond normalization 
of performance, the model may be useful for training and technique implementation for 
different environments. For example, if the environment is very unfavorable to the aerial phase 
(i.e. High relative gravity, large headwind), the athlete may be better served to use a faster 
takeoff speed and a lower takeoff angle, which would reduce the length of time spent in the 
aerial phase but provide a faster initial horizontal velocity.  
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Abstract 
Four studies out of a series of 6 previous studies have found that predictive 
models are more accurate at predicting actual match outcomes when the 
modelling assumptions are violated than when data are transformed to satisfy the 
assumptions.  The current investigation produced two sets of two predictive 
models of the 2011 Rugby World Cup; one set of models used raw independent 
variables that violated the assumptions of the modelling techniques used and the 
other set used data that satisfied those assumptions.  Each set of models contained 
a multiple linear regression based model where independent variables were 
included using the “Enter” method and a multiple linear regression based model 
where independent variables were included using the “Stepwise” method.  The 
models created using data that satisfied the assumptions of linear regression were 
found to be more accurate at predicting actual match outcomes than when the data 
violated those assumptions.  The assumptions strike back! 

KEYWORDS: MULTIPLE LINEAR REGRESSION, FORECASTING 

Introduction 

Sports performance is difficult to predict as is evidenced by the fact that betting agencies take 
bets on the results of sports contests (Stefani, 1998).  There are a variety of prediction 
techniques that have been investigated in sports performance including linear regression, 
discriminant function analysis, logistic regression, artificial neural networks, simulation and 
qualitative techniques (O’Donoghue et al., 2004).  The data used in prediction techniques 
include factors that have an influence on game outcomes.  The main measurable factors that 
have been shown to influence sports performance are the relative quality of the performers 
(O’Donoghue et al., 2008) and home advantage (Courneya and Carron, 1992; Nevill et al., 
2002: Carron et al., 2005).   

Statistical techniques used in predictive modelling involve two stages.  Firstly the model of 
some dependent variable in terms of some independent variables is produced using previous 
case data.  The second stage is to use the model to predict new cases where the values of 
independent variables are known but the values of the dependent variable are not known.  
These statistical modelling techniques have assumptions that should be satisfied by the data 
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used to develop the models (Ntoumanis, 2001; Manly, 2005; Tabachnick and Fidell, 2007).  
However, a series of prediction studies in sport has shown that satisfying the assumptions of 
the modelling techniques does not always produce the most accurate forecasts of the actual 
outcomes of matches.  Four of the 6 studies in the series have found that models where the data 
used satisfied the necessary have been less accurate than corresponding models where data 
have violated the assumptions (O’Donoghue and Williams, 2004; O’Donoghue, 2005; 
O’Donoghue, 2006; O’Donoghue, 2010).  The one study in the series that found models where 
the assumptions were satisfied by the data to be more accurate was a study to predict the 
results of matches of the Euro 2008 soccer tournament (O’Donoghue, 2009).  However, the 
difference in predictive accuracy between those models where the data satisfied the 
assumptions and those where data did not satisfy the assumptions might not be sufficient to 
justify the effort in transforming data variables.  In each of the 6 studies, the independent 
variables used failed to satisfy the assumptions of the modelling techniques.  It was, therefore, 
necessary to transform the variables and / or remove outliers in the previous case data in order 
for the data to satisfy the necessary assumption.  The transformations could be logarithmic 
transformations, square root transformations or mapping functions that map variables onto a 
standard normal distribution.  In one of the 6 studies, on the 2007 Rugby World Cup, it was 
not actually possible to produce a model where data satisfied the necessary assumptions 
(O’Donoghue, 2009).  This was because as outliers were removed, cases that were not outliers 
originally became outliers as the variability in the data reduced.  Eventually, so many outliers 
had been removed that there were no previous cases in the data that were upsets.  This meant 
that the particular logistic regression model which was intended to predict matches to go to 
form or be upsets could not be produced.  With the balance of evidence currently opposing the 
transformation data to satisfy the assumptions of statistical tests, the purpose of the current 
investigation was to continue the programme of research with a seventh study which was on 
the 2011 Rugby World Cup.   

The specific modelling technique to be applied in the current investigation was multiple linear 
regression.  Four models would be tested in two different ways producing 8 sets of predictions.  
Linear regression would be done using the “Enter” method and the “Stepwise” method for 
including independent variables.  Each of these techniques would be applied to a set of raw 
untransformed independent variables and to a set of independent variables that had deliberately 
been transformed to ensure they satisfied the assumptions of multiple linear regression.  Each 
model would produce an expected outcome (points difference) for each match.  This expected 
points difference and the distribution of residual values would be used in 4 simulation models 
to predict the chances of matches being won, drawn and lost.  The different predictions were 
compared with the results of actual matches played in the 2011 Rugby World Cup to assess 
their accuracy. 

The Assumptions of Multiple Linear Regression 

The following assumptions should be satisfied by data used to produce predictive models using 
multiple linear regression: 

• There should be at least 20 cases for each independent variable. 
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• Linear regression assumes that the relationship between any independent variable and 
the dependent variable is linear (Newell et al., 2010: 140).  

• There must be no outliers in individual independent variables, the dependent variable 
or residuals. As well as considering outliers within individual variables, we also need to 
check multivariate outliers. Distance measures such as Mahalanobis distances can be 
used to identify outliers within the multivariate space (Ntoumanis, 2001: 124-5). 

• Multicollinearity should be avoided in the independent variables. This means that no 
pair of independent variables should be highly correlated (the absolute values of r 
should be less than 0.9).  

• Residuals should be independent, homoscedastic and normally distributed. Rather than 
testing the distribution of the residuals for different subranges of each independent 
variable, the predicted value for the dependent variable is used. Therefore we test that 
there is little correlation between the predicted value of the dependent variable and the 
absolute residual values to show homoscedasticity. Independence can be checked using 
the correlation between the residuals and a variable representing the order of 
measurement of the cases. Normality of the residuals can be tested using z-scores for 
skewness and kurtosis which should both be between -1.96 and +1.96.  

Methods 

Data Sources 
There are many factors that influence performance in sport; these factors have varying degrees 
of complexity and validity.  The computer-based predictions modelled the relationship 
between the result of a match and three relevant factors in the 232 matches of the previous 6 
Rugby World Cups (1987, 1991, 1995, 1999, 2003 and 2007).  The three factors used were 
World ranking points, distance travelled to the tournament and recovery days between 
matches.  These factors were chosen because reliable data was not available for physiological, 
technical and psychological aspects of squads. 

Unlike soccer, where FIFA have provided world rankings and ranking points since 1993, there 
were no official world rankings for international Rugby Union during the first 4 World Cups.  
It was, therefore, necessary to devise a method of synthesising world ranking points for the 
teams that participated in the previous 4 World Cups.  This was undertaken during a peer 
review exercise described by O’Donoghue and Williams (2003).  The data for the 2003 and 
2007 World Cups used actual World ranking points that were published by the International 
Rugby Board (IRB).  This world ranking is based on previous results like the FIFA World 
ranking and should not be considered like the elo-number in chess. 

The distance travelled to a tournament by a rugby team was deemed to be the giant circle 
distance between the country’s capital city and the capital city of the host nation.  This was 
obtained from an internet based distance calculator (Indonesia, 2006). 

The 2003, 2007 and 2011 Rugby World Cups commenced with 4 pools of 5 teams operating a 
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round robin competition involving 5 pairs of matches in each pool.  This meant that each team 
would not play in one of the pairs of matches.  This led to large differences in the recovery 
days from previous matches between the teams contesting some pool matches.  For this reason, 
recovery advantage was included as a factor.  Recovery advantage was the number of extra 
recovery days a team had since their previous match than the opponents had since their 
previous match.  Where a team did not participate in the first pair of matches, they were 
assumed to have a recovery advantage of 6 recovery days over their opponents in the second 
pair of pool matches.  This was justified by the 95th percentile for recovery differentials in the 
2003, 2007 and 2011 Rugby World Cups being 6 days.   

Models 

Independent Variables 
The models used 3 independent variables which were all determined with respect to the higher 
ranked of the two teams within matches according to the IRB World Rankings at the time 
matches were played: 

• The difference in World Ranking Points, Rankδ: higher ranked team’s value – 
lower’ranked team’s value. 

• The difference in distance travelled to the tournament, Distδ: higher ranked team’s 
value – lower’ranked team’s value. 

• Difference in recovery days from previous match, Recδ: higher ranked team’s value – 
lower’ranked team’s value. 

Dependent Variable 
The dependent variable was the points difference, Pδ, between the higher ranked team in a 
match and the lower ranked team.  If the higher ranked team won the match then this would be 
a positive value, if the match was an upset then this would be a negative value and if the match 
was a draw then the value would be 0. 

Model A: “Enter” Method with Assumptions Violated 
The first regression model was formed using all 232 previous Rugby World Cup matches with 
the three independent variables being entered in their raw form without any transformation or 
removal of outliers.  This produced the model for Pd shown in equation (1). 

 

Pδ = 0.619 + 2.285 Rankδ - 0.0000266 Distδ + 0.892 Recδ    (1) 

 

The assumption of at least 20 cases for each independent variable was satisfied and there were 
no high correlations between any pair of independent variables (|r| < 0.128).  There was no 
order effect on residual values with no correlation between date of match and residual values (r 
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= +0.045).  However, there were some assumptions that were violated by the data.  The 
residual values were positively skewed (zSkew = +5.75) and leptokurtic (zKurt = +6.58), Recδ 
contained outliers and the dependent value, Pδ, was positively skewed (zSkew = +7.49) and 
contained outliers.  There was also a worrying correlation between predicted values for Pδ and 
residual values (r = +0.255) meaning that the homoscedasticity of residuals could not be 
assumed.  The residuals had a mean+SD of 0.000+19.613; this information would be used in 
the simulation model. 

Model B: “Stepwise” Method with Assumptions Violated 
When the raw untransformed variables were included in the stepwise regression analysis, only 
one independent variable, Rankδ, was included in the model produced as shown in equation 
(2). 

 

Pδ = 0.650 + 2.315 Rankδ         (2) 

 

There was no association between date of match and residual value (r = +0.052).  However, 
other assumptions were violated by the data used to create this model.  The residuals were 
positively skewed (zSkew = +5.68) and leptokurtic (zKurt = +6.33).  The correlation between 
predicted values for Pδ and residual values (r = +0.268) meant that the homoscedasticity of 
residuals could not be assumed.  The residuals had a mean+SD of 0.000+19.685. 

Model C: “Enter” Method with Assumptions Satisfied 
A number of steps needed to be taken in order for the previous case data to satisfy the 
assumptions of linear regression.  The independent variable Recδ was excluded due to the high 
number of outliers; any Recδ value other than 0 was found to be a statistical outlier.  The first 
attempt to produce a regression model with the remaining 2 independent variables revealed 7 
outliers in the predicted values for Pδ.  Three more outliers were removed during the second 
attempt to produce a regression model and the third attempt provided a model based on 222 
previous cases with no outliers in the predicted values for Pδ.  The model is shown in equation 
(3). 

 

Pδ = 3.168 + 1.856 Rankδ – 0.00161 Distδ       (3) 

 

The residual values were sufficiently normal (zSkew = +1.73; zKurt = -1.67), homoscedastistic (r 
= +0.117) and independent of date of the match (r = +0.069).  The residuals had a mean+SD of 
0.000+16.302. 

Model D: “Stepwise” Method with Assumptions Satisfied 
Recδ was excluded from this model and the same 10 outlying cases were removed from the 
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previous case data.  The stepwise regression analysis only included on independent variable 
out of the remaining two, Rankδ, as shown in equation (4). 

 

Pδ = 3.159 + 1.856 Rankδ         (4) 

 

The residuals were sufficiently normal (zSkew = +1.73; zKurt = -1.67), homoscedastistic (r = 
+0.116) and independent of date of the match (r = +0.068).  The residuals had a mean+SD of 
0.000+16.302. 

Evaluation Process 
Each of the 4 predictive models was evaluated in 2 ways.  Firstly, the predicted values for the 
dependent variable Pδ were determined for all 48 matches including the 8 knockout stage 
matches.  These were compared with the actual points difference values in the matches of the 
2011 Rugby World Cup using 95% limits of agreement, mean absolute error and the 95th 
percentile for absolute error.  Including the 8 knockout matches avoid errors made in the pool 
stages propagating into the knockout stage predictions. 

The second way of evaluating the models was done using a simulation approach.  The residual 
values were assumed to be normally distributed with a mean of 0.000 and the standard 
deviations reported previously.  The NORMINV function in Excel allowed normally 
distributed random residuals to be generated with which to modify the expected Pδ value as 
shown in equation (5) where Expected Pδ is the value for points difference determined by the 
underlying regression model and SDResiduals is the standard deviation in the residuals used to 
create the underlying regression model. 

 

Pδ = NORMINV(RAND(), Expected Pδ, SDResiduals)     (5) 

 

The simulator played the 2011 Rugby World Cup on 1000 occasions storing predicted results, 
calculating pool tables, establishing teams involved in quarter-finals, semi-finals, third place 
play-off and the final as well as the winners of the third place play-off and the final.  For both 
pool and knockout matches, values of Pδ greater than +0.5 were deemed to be wins for the 
higher ranked team, values between -0.5 and +0.5 were deemed to be draws and values less 
than -0.5 were deemed to be wins for the lower ranked team.  For each of the 1000 simulations 
of a model, a point was awarded for each pool match where the correct outcome was predicted 
giving a maximum of 40 points for the prediction of pool matches.  No points were awarded 
for an incorrect outcome even if the prediction was a draw and one team won or vice versa.  
No points were awarded for quarter-finalists successfully predicted because this would have 
essentially given credit to the pool stage predictions twice.  A point was awarded for each of 
the 4 semi-finalists correctly predicted, each of the 2 finalists correctly predicted, a point was 
awarded if the team finishing 3rd was correctly predicted and a point was awarded if the 
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tournament winner was correctly predicted.  This gave an overall evaluation score out of 48 
points for each simulation of the Rugby World Cup.  The mean and standard deviation of 
evaluation scores for the 1000 simulated tournaments was determined for each of the four 
underlying regression models. 

Results 

Expected Points Difference 
Table 1 shows that all of the models under-estimated the points difference with respect to the 
higher ranked teams within matches.  The two models that violated the assumptions had lower 
errors than the two corresponding models where steps were taken to ensure the models used 
data that satisfied the assumptions of linear regression. 

Table 1. Errors between expected results from the predictive models and actual results of the 2011 Rugby World 
Cup. 

Reliability statistic Violating Assumptions Satisfying Assumptions 

Enter Stepwise Enter Stepwise 

Systematic Bias -0.36 -0.37 -2.36 -2.41 

Random Error 30.50 30.80 32.49 32.46 

Mean Absolute Error 11.62 11.97 12.49 12.48 

95th Percentile Abs Error 32.94 32.12 37.05 37.12 

Simulation Results 
Table 2 shows that the South Africa v Namibia, Australia v USA and Australia v Russia were 
the most accurately predicted matches while the drawn match between Japan and Canada was 
the least accurately predicted.  Table 3 shows that the differences between the different 
predictions are minimal.  The range of evaluation scores in the 1000 simulated tournaments 
was 29 to 42 for the “Enter” method where assumptions were violated, 28 to 42 for the 
“Stepwise” method where assumptions were violated and 28 to 43 for both methods where the 
assumptions were satisfied.  These are very similar ranges of prediction accuracies. 

Table 2. Correctness of predictions of pool matches during 1000 simulated tournaments (mean+SD). 

Match Violating Assumptions Satisfying Assumptions 

Enter Stepwise Enter Stepwise 

New Zealand 41-10 Tonga 0.99+0.12 0.99+0.12 0.99+0.10 0.98+0.13 

France 47-21 Japan 0.91+0.29 0.92+0.28 0.93+0.26 0.94+0.24 

Tonga 20-25 Canada 0.53+0.50 0.44+0.50 0.36+0.48 0.39+0.49 
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New Zealand 83-7 Japan 0.98+0.13 0.98+0.14 0.99+0.12 0.99+0.10 

France 46-19 Canada 0.90+0.31 0.92+0.27 0.94+0.23 0.94+0.24 

Tonga 31-18 Japan 0.59+0.49 0.51+0.50 0.57+0.50 0.59+0.49 

New Zealand 37-17 France 0.82+0.39 0.79+0.41 0.85+0.36 0.83+0.38 

Japan 23-23 Canada 0.01+0.12 0.02+0.15 0.02+0.15 0.02+0.15 

France 14-19 Tonga 0.12+0.33 0.09+0.28 0.06+0.24 0.06+0.24 

New Zealand 79-15 Canada 0.99+0.09 0.99+0.12 0.99+0.09 0.99+0.11 

Scotland 34-24 Romania 0.95+0.22 0.93+0.25 0.94+0.23 0.94+0.23 

England 13-9 Argentina 0.68+0.47 0.73+0.44 0.74+0.44 0.77+0.42 

Scotland 15-6 Georgia 0.77+0.42 0.84+0.36 0.87+0.34 0.85+0.35 

Argentina 43-8 Romania 0.94+0.24 0.93+0.26 0.95+0.22 0.96+0.21 

England 41-10 Georgia 0.96+0.20 0.92+0.27 0.96+0.20 0.95+0.23 

England 67-3 Romania 0.98+0.15 0.97+0.16 0.99+0.11 0.99+0.11 

Scotland 12-13 Argentina 0.41+0.49 0.46+0.50 0.39+0.49 0.41+0.49 

Georgia 25-7 Romania 0.78+0.42 0.71+0.45 0.73+0.45 0.73+0.44 

England 16-12 Scotland 0.67+0.47 0.71+0.45 0.75+0.44 0.73+0.44 

Argentina 25-7 Georgia 0.87+0.34 0.81+0.39 0.85+0.36 0.87+0.34 

Australia 32-6 Italy 0.97+0.17 0.96+0.21 0.97+0.16 0.97+0.17 

Ireland 22-10 USA 0.95+0.21 0.95+0.23 0.94+0.24 0.96+0.19 

USA 13-6 Russia 0.53+0.50 0.65+0.48 0.68+0.47 0.72+0.45 

Australia 6-15 Ireland 0.09+0.29 0.09+0.28 0.06+0.24 0.08+0.26 

Italy 53-17 Russia 0.93+0.25 0.92+0.28 0.95+0.22 0.94+0.24 

Australia 67-5 USA 1.00+0.05 1.00+0.04 1.00+0.03 1.00+0.03 

Ireland 62-12 Russia 0.98+0.15 0.98+0.14 0.99+0.12 0.99+0.11 

Italy 27-10 USA 0.88+0.32 0.86+0.35 0.88+0.32 0.88+0.33 

Australia 68-22 Russia 1.00+0.00 1.00+0.06 1.00+0.00 1.00+0.03 

Ireland 36-6 Italy 0.75+0.43 0.69+0.46 0.76+0.42 0.76+0.43 

Fiji 49-25 Namibia 0.86+0.34 0.88+0.33 0.90+0.30 0.90+0.30 

South Africa 17-16 Wales 0.71+0.45 0.72+0.45 0.78+0.42 0.76+0.42 

Samoa 49-12 Namibia 0.97+0.18 0.93+0.25 0.96+0.21 0.95+0.21 
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South Africa 49-3 Fiji 0.95+0.22 0.96+0.20 0.96+0.19 0.97+0.18 

Wales 17-10 Samoa 0.81+0.40 0.77+0.42 0.81+0.39 0.81+0.39 

South Africa 87-0 Namibia 1.00+0.03 1.00+0.06 1.00+0.00 1.00+0.03 

Samoa 27-7 Fiji 0.66+0.47 0.68+0.47 0.72+0.45 0.73+0.44 

Wales 81-7 Namibia 0.99+0.10 0.99+0.10 0.99+0.08 0.99+0.11 

South Africa 13-5 Samoa 0.92+0.27 0.92+0.27 0.93+0.25 0.92+0.28 

Wales 66-0 Fiji 0.88+0.33 0.87+0.34 0.89+0.32 0.88+0.33 

 

Table 3. Accuracy of prediction of different stages of the tournament based on 1000 simulations (mean+SD). 

Stage of 
tournament 

Violating Assumptions Satisfying Assumptions 

Enter Stepwise Enter Stepwise 

Pool stages / 40 31.67+2.07 31.43+2.05 32.03+1.93 32.10+1.93 

Semi-finalists / 4 2.55+0.71 2.56+0.68 2.68+0.65 2.61+0.67 

Finalists / 2 1.27+0.62 1.28+0.59 1.36+0.62 1.35+0.60 

3rd place / 1 0.15+0.35 0.17+0.38 0.17+0.37 0.16+0.36 

Winner / 1 0.46+0.50 0.50+0.50 0.52+0.50 0.50+0.50 

Total / 48 36.09+2.37 35.94+2.36 36.76+2.30 36.72+2.27 

Discussion 

The actual performances of higher ranked teams within matches the 2011 Rugby World Cup 
was better than expected according to the four models.  In particular, the models that were 
created using data that satisfied the assumptions of linear regression under-estimated points 
differences by 2.36 and 2.41 points.  The performances of higher ranked teams was generally 
better than expected despite some notable upsets such as Tonga defeating France in a pool 
match.  However, the 4 upsets that occurred in the 2011 World Cup was equal to the number 
that occurred in 1987, 1991 and 2003 and fewer than the 5 upsets that occurred in 1995, the 8 
that occurred in 1999 and the 8 that occurred in 2007.  The most likely explanation for the 
models under-estimating the performance of higher ranked teams is the removal of outliers 
from previous case data in order for the models to satisfy the assumptions of linear regression.  
There were two rounds of outlier removal which firstly removed 7 matches with points 
differences of 89 or greater and secondly removed 3 matches with points differences of 82 or 
greater.  Outliers are typically removed from data in sports science studies because they are 
deemed to have arisen due to measurement error.  Sports performance data is often 
nonparametric with skewed variables being common.  The 10 matches won by 82 points or 
more were real matches and not the result of measurement error.  Therefore, it may have been 
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better to transform variables to satisfy assumptions rather than removing outliers. 

There were 4000 simulated tournaments played altogether; 1000 for each of the 4 models.  The 
overall accuracy in predicting outcomes was 75.8% which is a greater level of accuracy than 
has been seen in the prediction of soccer matches (O’Donoghue et al., 2004; O’Donoghue, 
2005; O’Donoghue, 2006; O’Donoghue, 2009; O’Donoghue, 2010).  The greater accuracy in 
rugby union is explained by a lower strength in depth in rugby union than would be seen in 
soccer.  In the pool matches of the 2010 FIFA soccer World Cup there were 23 wins for the 
higher ranked teams, 11 draws and 14 upsets.  This means that fewer than 50% of matches are 
won by the higher ranked soccer teams.  In rugby union on the other hand, if the higher ranked 
team were predicted to win every match, an evaluation score of 40 out of 48 would have been 
achieved (35 pool matches, 3 semi-finalists, 1 finalist and the tournament winner being 
accurately predicted).  In rugby union there are also fewer draws than would be observed in 
soccer meaning that with the exception of 4 drawn matches in Rugby World Cup history, the 
prediction task becomes a choice of 1 of 2 outcomes rather than 1 of 3.   

Both of the models where the assumptions were violated predicted an average of 5.9 upsets 
within simulated tournaments and 0.4 draws while both models where the assumptions were 
satisfied predicted 4.8 upsets within tournaments and 0.4 draws.  This meant that the models 
where the assumptions were violated had a greater chance of successfully predicting upsets as 
can be seen in Table 2.  However, there were fewer upsets than matches won by higher ranked 
teams and although the number of upsets predicted was reasonably accurate, most simulated 
tournaments predicted the wrong matches to be upsets.  The methods where the assumptions 
were satisfied achieved higher accuracy scores based on the larger number of matches won by 
higher ranked teams that were successfully predicted.   

The slightly larger number of upsets predicted by the simulation models where assumptions 
were violated may be explained by outliers being retained within the data sets used to produce 
these models.  The standard deviation for the residual values for the dependent variable, Pδ, 
averaged around 19 points where the full data set was included.  The data sets that satisfied the 
assumptions of linear regression excluded 10 outliers which were very one-sided matches.  
This reduced the standard deviation of the residual values to around 16 points.  This meant that 
there was a greater variability of predicted results in the simulation models where the 
assumptions were violated with more upsets being predicted where the actual results were wins 
for the higher ranked teams.  A further issue which would have slightly reduced the accuracy 
of the two models where data failed to satisfy the assumptions was that the randomly generated 
points differences assumed a normal distribution which was not valid for these two models.  
The positive skew meant that there would be greater variance in outcomes favouring the higher 
ranked teams than the lower ranked teams.   

The expected points difference values can be used to examine the variability of team 
performance taking into account the quality of the opponents faced.  Table 4 shows the 
distribution points differences for the 4 teams who played 7 matches within the tournament.  It 
also shows the distribution of the difference between the observed points difference and the 
expected points difference computed using the “Enter” model and satisfying the assumptions 
of linear regression.  This shows that Wales performed much better than expected, with a 
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greater points difference than expected in 6 out of their 7 matches.  Australia’s winning 
margins were greater than those of France.  However, when the quality of opposition was taken 
into account, Australia’s points difference over opponents was 8.56 less than expected while 
France’s was 3.01 less than expected.  Many observing the 2011 Rugby World Cup may have 
been left with an impression that the French performance was highly variable with a loss to 
Tonga, a single point victory over Wales who had a player sent off and then a narrow 1 point 
defeat to the World’s highest ranked team New Zealand in the final.  Table 4 shows that when 
opposition quality was taken into account, France’s performance showed the lowest variability 
of the four teams who played 7 matches in the tournament.  An issue here is that perceptions of 
variability are often based on match outcomes with highly variable performances of the same 
outcome not being recognised as variable.  For example, Wales had some very high scoring 
wins which increased the variability of their performances.  Another issue responsible for the 
variability results found is that a 10 point difference is considered the same by the linear model 
when that difference is the difference between a 5 point defeat and a 5 point victory and when 
the 10 point difference is the difference between an 80 point win and a 90 point win.  Most 
rugby observers would not recognise the difference between an 80 point and 90 point win as 
being the same difference as the difference between an 80 point win and a 90 point win.  
Therefore, a logarithimic or square root transformation of the dependent variable might have 
resulted in a better reflection of variability for individual teams.  Unfortunately this could not 
be done in the current investigation because the residuals were negatively skewed when a 
square root transformation was attempted (zSkew = -3.24) and positively skewed when a 
logarithmic transformation was attempted (zSkew = +12.75). 

Table 4. Absolute points differences and relative points differences taking into account opposition quality and 
distance travelled (mean+SD) for the 4 teams who played 7 matches. 

Outcome New Zealand France Australia Wales 

Pδ +32.71+25.26 +5.00+15.61 +16.57+26.74 +22.00+30.82 

Pδ – Expected Pδ +7.35+17.16 -3.01+12.41 -8.56+12.66 +15.88+16.70 

Conclusions 

The results of the current investigation challenge those of previous predictive modelling 
studies in sports performance.  The balance of previous research has suggested more accurate 
predictions are achieved when the assumptions of statistical modelling techniques are violated.  
The current investigation has shown that where the data used to create models satisfy the 
assumptions of linear regression, the models are slightly more accurate than when the data 
violate these assumptions.  Further research will be done on the Euro 2012 soccer tournament 
and the 2014 FIFA World Cup.  
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Abstract 
In baseball, the concepts of “cutoff”, “relay”, “cover” and “backup” are very 
important to the defensive aspect of the game. In this paper, we design and 
implement an animation assisted sport simulation system for general baseball 
“cover, relay and cutoff play” training. We treat the baseball and each player in 
the ball field as independent “objects” in that each object has its own objective. 
Each object in the field of play is subject to change once the ball is put into play 
by the pitcher. We follow a standard paradigm commonly used by the Taiwan 
national baseball team, and transfer the “cover, relay and cutoff play” into several 
structured program rules that we refer to as the Decision Making Method. We 
also design two mechanisms, Fielding Zone Map and the Critical Time Points 
Interval, for our Decision Making Method. This simulation system allows users to 
choose what happens once the baseball is put into play, and provides four 
different scenarios. The system simulates the chosen play through the use of 
graphic animation while continuously tracking the batted ball, batter, runner(s) on 
base, number of outs, hit/out batting result. By using this simulation system, 
players, especially those at the amateur junior level, can improve greatly on all 
aspects of play in a short period of time. Also, by using this hierarchical design, 
our system can be easily adapted to many other sports by adjusting the variables. 

KEYWORDS: BASEBALL FIELDING TRAINING, ANIMATION PLATFORM, 
TACTICAL SIMULATION APPLICATION, IMAGERY PRACTICE 

Introduction 

A baseball game (Baseball Rules and Gameplay, 2011) relies on teamwork, and consists of 
two basic parts: offense and defense. Defense plays an integral role in the success of a team. 
The team that makes the fewest number of mistakes in fielding will likely be the team that 
wins the game. In defensive plays, every player has a specific task that needs to be completed. 
One of the most common reasons for failure in a defensive play is the fielders do not know 
how to work with teammates in a fielding sequence. Coaches need to instruct all the fielders 
involved in a play on defense strategies, i.e., how to properly execute a play quickly and 
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instinctively. Fielders must comprehend their proper roles and the most efficient responses to 
various situations that can occur. Among the most widely instructed defense strategies are the 
“cover, relay and cutoff” methods designed for stopping the base runners from advancing 
bases (Kindall, & Winkin, 2000). These strategies require a great deal of practice and 
teamwork in order to consistently result in successful outcomes. 

 
a) Bunt defense: runner at first base, second baseman charges. 

 
b) Fielding: a single to left field with no runner on bases and a single to center field with no runner on bases. 

Figure 1. Standard paradigm illustrations for cover and cutoff play. (a) Bunt fielding with different runners on 
bases (Johnson, Leggett, & McMahon, 2001) (b) Fielding of different ball hit locations with 
no runner on bases (Stallings & Bennett, 2003). The abbreviation P stands for the Pitcher, and 
also 1B-First Baseman or First Base, 2B-Second Baseman or Second Base, SS-Shortstop, 3B-
Third Baseman or Third Base, C-Catcher, LF-Left Fielder, CF-Center Fielder, RF-Right 
Fielder. These abbreviations will be used throughout. 

There are many standard paradigms in the baseball textbooks for the general defensive cover, 
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relay and cut-off play drills (Jiang, 2001; Johnson, Leggett, & McMahon, 2001; Stallings & 
Bennett, 2003). For example, Figure 1 describes and illustrates the most effective defensive 
strategies for specific game situations. Yet, these standard paradigms are planar and still 
images. One of the most commonly used baseball related software, Baseball Coach (All Stats 
Software, 2010), still uses static graph charts. These static graphs are unable to illustrate the 
movement and timing between fielders and runners. 

The use of visualization imagery can improve performance and enhance a player’s skills 
(Dalloway, 1992; Weinberg, 2008). With imagery training, players can learn to react to 
situations as efficiently and succinctly as possible. Mental practice can be just as important as 
physical practice for players to develop their defensive skills (Rushall, 1991; Morris, Spittle, & 
Watt, 2005). Dynamic moving illustrations are more effective in training than traditional 
material, such as book illustrations or verbal communication. By using a suitable visual 
simulation system, baseball players can quickly improve their “cover, relay and cutoff” play. 

In recent years, with the help of information technology and computer software, it has become 
easier to use animation simulation in athletic training (Chang, Lin, & Chang, 2005; Leser, 
Uhlig, & Uhlig 2009) and competition management (Kao, Wu, & Chen, 2009; Vincent, 
Stergiou, & Katz, 2009). By using Microsoft Kinect sensors, electronic gyroscope, and 
computer graphics animation, training software have been widely utilized in baseball. These 
technologies also can provide an excellent foundation for simulation based training. Yet, it’s 
still difficult to find a program that can accurately simulate “cover, relay and cutoff” play due 
to the complexity of the scenarios. 

Therefore, we designed an economic, portable, reusable and flexible training tool that can help 
train players, especially amateur junior student players, to understand and remember each 
aspect of defense “cover, relay and cutoff play” situations. This software system allows players 
to repeat the simulation through the imagery training and retain their skills (Hoffler, & 
Leutner, 2007). We followed a standard paradigm commonly used by the Taiwan national 
baseball team, and present a methodology to design and implement an animation based 
simulation system that can help the general training of the “cover, relay and cutoff” play. Our 
system provides more information than the static version and allows players to get a feel for 
the timing of a play. 

System Design Methods  

Class Object Design 
Before we started to design this simulation system, we needed to understand the actions that 
take place on a baseball field. Baseball is a team sport comprised of many actions such as 
throwing, catching, batting, and running. According to the baseball rules (Commissioner of 
Baseball, 2011), a pitcher throws a baseball toward home plate, a batter attempts to hit the ball 
with a bat into the field of play, a batter who hits the ball into the field must begin running 
toward 1B and beyond, a fielder tries to catch the ball cleanly and throw to the proper location 
in order to stop the runner from advancing on the bases, especially to home plate. There are 
nine defensive players on the field, and at minimum one, up to a maximum of four offensive 
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players on the field for a given play. Therefore, we treat the baseball and each player as an 
independent “object” and each object has its own objective, such as catching a ball within their 
assigned defensive area, moving to cover a particular base, throwing the ball to the correct 
place, running to the next base, or just moving to a designated location, etc. 

In order to design this system, we used a tree-structured scene description to define the spatial 
and temporal position of these objects and their movement in a given simulation. The system's 
compositor uses the scene description information, together with each objects data, to 
determine the final outcome. We use the 2.5 dimension (2.5D) view projection to create our 
view of the baseball field, and use Adobe Flash and Action Script language to create a 
Windows user interface, and generate a series of animations. The overall architecture of scene 
description is depicted in Figure 2. A full simulation consists of many animations of various 
objects which perform actions in adherence to the cutoff play and the base running strategy 
rules. For example, a fielder’s action is displayed by a fielder moving (running) animation, a 
fielder catching animation and a fielder throwing animation accompanied with ball movement 
animation. By using such a hierarchy design method, our animation platform can be easily 
adapted into other sports by only changing the background image, object animations and 
decision rules. 

Pitch 
Animation

Throw Ball 
Animation

Catch Ball 
Animation

Fielder Moving 
Animation

Bat Swing 
Animation

Base Running 
Animation

Ball Animation

PitchThrow Ball Catch Ball Fielder Moving Bat Swing Running

Pitcher Pitch 
Ball

Fielder Batter Runner

Pitching

Hit 
Ball

Throw 
Ball

Base Running 
Strategy

Cover and Cut-
Off Strategy

Full Simulation

 
Figure 2. System scene description hierarchy. 

System Operation Work Flow 
At the beginning of each play, the nine defensive players are in their normal field positions. 
Also, we put the runner(s) of the batting team on the base(s) according to the user’s selected 
parameters. Before we start the simulation, several factors must be clear: who will handle the 
ball first after the ball is hit, who will play the cutoff man and in which location, who will 
cover which base, how many bases the batter-runner and runner(s) can advance, and who will 
backup for an error and in which location. The system work flow we designed, is shown in 
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Figure 3, and consists of five steps. 

Setup and 
Initial  

Objects

Load Fielding 
Zone Map

Scenario 
Simulation

Ball Field 
Situation 
Setting

Message 
Output

Next Case

 
Figure 3. System operation block diagram. 

(1) Setup and Initial Objects – This step will put all objects, including the ball field 
background bitmap, defensive and offensive players, and the baseball, onto the simulation 
scene by using Action Script AddChild functions. Each object has its own associated 
animation (running, batting, pitching, etc.) and pre-defined starting location according to 
standard paradigms. 

(2) Load Fielding Zone Map – In order to define the area each of the nine fielders are 
responsible for, we designed a color fielding zone bitmap, as shown in Figure 4. The size of 
the fielding zone map is exactly the same as the ball field background image. We use the color 
of the ball landing location in the corresponding field zone map to assign which fielder will 
catch the ball without any ambiguity between fielders. 

 
Figure 4. Fielding zone assignment for each fielder. 

(3) Ball Field Situation Setting – Before we start to simulate a play, we need to set up four 
important factors: (a) the ball hit status, (b) the runner(s) on base(s), (c) the number of outs, (d) 
hit/out batting result. The ball hit status means the movement of the ball after it is hit. It could 
be a fly ball, line drive, or ground ball. The runner(s) on base(s) have eight different 
combinations from bases empty to bases loaded. The number of outs is from 0 to 2. There are 
five different options for the hit/out batting result we can simulate: single, double, triple, fly 
out, and bunt. Once these four parameters have been selected, the ball landing location also 
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needs to be specified. In order to simplify the case selection, we provide 18 commonly used 
training examples by using a push down list box in the bottom left corner of the system user 
interface. 

(4) Scenario Simulation – After the scenario situation has been selected, the system can, just 
like players in a game, make decisions as to their subsequent actions from the time the pitcher 
delivers the ball until the play is completed. This includes many complicated physical actions 
that need to be performed in synchronization among the fielders.  

 (5) Message Output – After completing the simulation, the system will display the fielders’ 
movement paths, ball hit and ball passed trajectories, and corresponding coaching advice that a 
fielder must know. These output messages provide sufficient information and details about 
what each player should do in such a situation. 

Decisions Making 
However, there are many diverse and complex scenarios in a baseball game. Our Decision 
Making Method only focuses on the most common cases and ensures there were no mistakes 
made by the fielders. Our Decision Making Method for each player is contingent upon where 
the ball lands and its movement. For example, on a single to left field with no one on base, the 
left fielder will move to field the ball and throw to the cutoff man (shortstop), the shortstop 
will move to align himself with the left fielder and second base to prepare for a potential cutoff 
throw, and the center fielder will move to back up the left fielder in case the ball eludes or 
deflects off his body. 

Once the players have taken their appropriate positions on the field, we can divide the time of 
the play into several intervals and use the Critical Time Point method to evaluate and adjust, if 
necessary in accordance with the national team standard paradigm. In each critical time point 
interval, we need to determine which fielder will catch the ball and where the fielder will throw 
to next. We also need to decide what kind of action the other players will do in the situation. 
Therefore, we combine and apply the standard paradigms into the systems structure.  

(1) Critical Time Points Selection – In each play, pitching, batting, catching and running all 
have their own particular actions and methods. We divide each play into four time intervals, as 
shown in Figure 5, for each time the ball changes direction. The time interval t0 to t1 represents 
the time it takes for the ball to travel from the pitcher to home plate. The time interval t1 to t2 
represents the time it takes once the ball is hit by the batter until it is fielded. The time interval 
t2 to t3 represents the action of the receiving fielder till he throws to the cutoff fielder. The time 
interval t3 to t4 represents the interval for passing the ball from the cutoff man to a specific 
baseman. 

Pitching Batting Hit Ball Catch Ball Throw Ball Catch Ball Throw Ball Catch Ball

Timet0 t1 t3t2 t4  
Figure 5. The critical time point and interval diagram. 



International Journal of Computer Science in Sport – Volume 11/2012/Edition 2 www.iacss.org 

   

 
 

 

47 

 

 

(2) Fielding Player Selection – After the pitcher delivers and the batter hits the ball, we must 
determine which fielder will handle the ball first. By using the color-coordinated fielding zone 
function the correct fielder is easily identified. Once identified this fielder needs to move to 
where the ball lands and field the ball. The remaining eight fielders move to their specified 
places to cover bases, cutoff and relay, or backup in the event the ball gets passed the 
determined fielder.  

(3) Cutoff Player Selection – Next, we need to decide who will be the cutoff man according to 
the standard paradigm. Sometimes, we need to select more than one cutoff man if there is more 
than one runner, or another complicating factor. The cutoff man needs to move into a proper 
position, which is most likely the midpoint between two fielders, the one fielding and throwing 
ball and the one covering the  base.  

(4) The Second Pass Ball Decision – If the ball is hit deep into the outfield, the fielders need to 
pass the ball twice to the proper destination. The system can simulate this situation if 
necessary. 

(5) Base Runner Moving Method – At most, there are four base runners running at the same 
time. For each runner, how many bases he can advance will heavily depend on where ball 
lands, the number of outs, and whether its’ a ground ball or a fly ball. For example, if the ball 
is hit deep into right field and a runner is on third base, regardless of whether the ball is caught 
the runner on third base has a chance to cross home plate and score.  

Our system’s animation will start from when the pitcher delivers the ball and continue until the 
play is completed and all the players are stable, with no more action required. We provide 
several bitmapped animation sequences for each player, including pitching, catching, running, 
throwing in order to make the simulation as realistic and easy to follow as possible. 

Implementation Results and Discussion 

We use an object-oriented programming language Action Script associated with Flash Player 
API to implement this animation based system. The Flash Player API is made up of classes 
that represent and provide access to object animation function. Figure 6 is our system user 
interface. The size of the working area is 1024×768, and the ball field area resolution is 
800×600. A user can simply start a simulation by selecting a location where the ball lands with 
his mouse in the ball field area and pushing the “Start Demo” button on the bottom right corner 
of the window. The functions in the Scenario area are the ball field situations we mentioned in 
the previous section. Those commonly used 18 typical training examples we provide, such as 
all bases are empty for single hit to left field, are put in the “Options” area. Several radio 
buttons are designed for toggling between showing or hiding the trajectory lines of the ball and 
the fielders. There is also a description for each player in the upper right “Description” area, 
such as, the shortstop lines up a throw to 2B and possibly cuts and relays that throw to 2B, the 
second baseman covers 2B, the right fielder moves to backup 2B in line with the throw, the 
third baseman covers 3B, the catcher trails the runner to 1B and backs up 1B, the first baseman 
makes sure the runner touches the base and then covers 1B. The user can easily repeat each 
scenario and learn where he should go, what he should do, and how to collaborate with his 
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teammates in each such situation. 

 
Figure 6. System user interface. 

We can see four other examples in Figure 7 of how our system works.  Figure 7a illustrates the 
bunt defense with a runner at first base and indicates that the pitcher, catcher and first baseman 
will cover the area in front of home plate at the same time, while the second baseman will 
cover 1B. Figure 7b illustrates a fly ball to deep right field with a runner on third base. The 
runner on third base has the opportunity to score, and depending on the number of outs, will 
likely do so. Figure 7c illustrates a single base hit to right field with runners on first and second 
base. The first baseman becomes the cutoff man, and the right fielder initiates a double relay, 
first throwing to the second basemen, who, in turn, throws to the first basemen who throws the 
ball to home plate to prevent the runner from scoring. Figure 7d illustrates a single base hit to 
left field with runners on first and second base. Due to the depth at which the ball is fielded, 
the runner on second base is able to cross home plate safely.  

We have already tested and provided this training software to many amateur baseball teams in 
Taiwan. A compressed Chinese version of this cutoff training system software can be 
downloaded and installed from the following web page: 
http://csie.ntut.edu.tw/~labmit/cwchang/CutOffTrainingSystem(Merge).rar   
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a) Bunt fielding with runner on first base.             b) Sacrifice fly with runner on third base and scores. 

  
c) Single base hit with runner on first and second bases.  d) Single base hit with runners on first and second bases        

and scores.             

Figure 7. System simulation examples. 

We realize that not every user will agree with the national team standard paradigms of fielding 
that we have used as reference, because every team has its own characteristics. However, 
coaches and players can discuss and change the ideas from the output of this system. We hope 
that this simulation software will not only provide a tool that can show the method most teams 
incorporate, but also establish a basis for communication between coaches and players.  

Conclusions 

Within this paper, we discuss the design and implementation of an animation assisted sport 
simulation system for “cover, relay and cutoff play” training. This simulation system is an 
economic, portable, reusable and flexible training tool that can help baseball players better 
understand and retain each aspect of various defensive situations, and apply them as efficiently 
as possible. We treat the baseball and each player on the ball field as an independent “object” 
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that has its own objective to complete. Each object in the ball field is activated once the ball is 
thrown by the pitcher. We follow and transfer the “cover, relay and cutoff play” standard 
paradigms and program them into the structure of the system. We also designed the Fielding 
Zone Map and the Critical Time Points Interval, to create our Decision Making Method. This 
simulation system allows users to arbitrarily choose where the ball lands in the ball field, 
simulates the play through a series of animations, and allows for the selection of four different 
scenario options: the ball hit status, the runner(s) on base, the number of outs, hit/out batting 
result. This system’s animation starts from the pitch ball and continues until the play is 
completed. By using this simulation system, baseball players can more easily study and 
understand the complexities of the “cover, relay and cutoff play” and easily adapt them to their 
play.  

We also know that by using such a hierarchy design method, our animation platform can be 
easily applied to other sports. This can be accomplished by changing the background image, 
object animations and associated domain parameters. We plan to design another two tactic 
simulation system for volleyball and basketball in the near future. Furthermore, we also plan to 
design an editable version with a database for coaches to create their own tactical paradigms. 
This editable version will be able to record and replay the movement of each object when the 
user changes an object’s position. 

We believe we can still improve many functions of the simulation system such as, providing 
more realistic scenes by using 3D animation, multiple view directions, more in-depth case 
studies and special cases in real games. 
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Abstract 
Today an optimization of workout units and the competitions is more important 
than ever. That applies especially for amateur athletes, who practice beside their 
normal work. An optimization with the modern lactate analysis is too expensive 
and not practical for this group of athletes. In this paper we will present a model 
based alternative, called PerPot. By means of simulation, workout units and 
competitions can be optimized using only the heart rate profile and the speed 
profile of the athletes. Furthermore, the individual anaerobic threshold (IAT) can 
be simulated. Our results show a high correspondence between the athletes' actual 
(half-) marathon finishing times and the PerPot-simulated results. 

KEYWORDS: ENDURANCE SPORTS, HEART RATE, PERFORMANCE, SIMULATION 

Introduction  

Originally, the antagonistic meta-model PerPot was thought to qualitatively analyze 
phenomena like delayed reaction on load, collapse effecting overload, or optimizing load 
profiles in order to approximate given performance profiles. Applying the model to data from 
practice it turned out, however, that PerPot was able to even provide quantitative results and to 
predict load-based performance development very precisely (see Perl & Endler (2006), Pfeiffer 
& Perl (2009), Perl (2010), Endler & Perl (2011)).  

Based on those results extensions of PerPot have been developed, which are now able to 
determine the individual anaerobe threshold (IAT) by simulation, giving heart rate-oriented 
load scheduling a new quality.  

The following contribution therefore focuses especially on running speed as load and heart rate 
as performance in order to demonstrate exemplarily how load scheduling in endurance sports 
by means of PerPot works. 

PerPot Basics  

In the following the dynamics of PerPot is described only briefly with a focus on overflow and 
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reserve, which leads to the question of predicting and avoiding overload as well as 
underperforming in endurance sports like marathon.  

Antagonistic Dynamics, Prediction and the Role of Reserve 
As is presented in Perl (2008-2), the meta-model PerPot describes physiological adaptation on 
an abstract level as an antagonistic process, as is shown in Figure 1: A load input flow is 
feeding identically a strain potential as well as a response potential. From the response 
potential the performance potential is increased by a positive flow, while the strain potential 
reduces it by a negative flow. All flows show specific delays modelling the time that 
components of the modelled system need to react. In particular in marathon or marathon-like 
running sports delays play an important role for the process of tiring and recovering.  
A typical situation in marathon is a temporary unobserved overload, which is much later 
followed by an unexpected break down. As can be simulated by the model (see Figure 1) the 
reason is a delayed reduction of the reserve (grey) of the fatigue potential, which then causes a 
sudden overflow of strain together with a significant loss of performance. Therefore reserve is 
the central aspect of predicting future performance development in order to optimize current 
load management to avoid overload and underperforming. Moreover, the reserve dynamics can 
be used to determine IAT by simulation, which is helpful not only for scheduling runs. 

 
Figure 1. Basic PerPot structure with the highlighted area of reserve and overflow: The red part of the fatigue 

potential represents the amount of accumulated fatigue, while the grey part means the still 
available reserve. If the reserve is reduced to zero an overflow of fatigue reduces the 
performance potential with small delay, possibly causing a sudden break down, which cannot 
compensate by the slow recovery flow. (The green pattern in the background just symbolizes 
the super compensation effect.) 
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Figure 2. Break down caused by a minimally increased speed. (Colours of the speed curves are explained in the 

text.) 

More details about additional components and effects like overflow, reserve and atrophy can 
be found in Perl (2005), (2008-1) and (2008-2). 

Figure 2 demonstrates how sensible the dependency between small overload and break down 
can be: Both graphics show the simulated results of a run with constant speed of 11.3 km/h 
(left) resp. 11.4 km/h (right). The corresponding heart rate curves have changing colours, 
symbolizing low (green), medium (yellow), and high (violet) rates. The red colour means 
'beyond IAT'. The simulation shows that even an only very little increase of speed can cause a 
reduction of reserve below zero and, correspondingly, crossing the IAT-line. 

This correspondence between reserve and IAT, together with some adjustments, can be used to 
calculate IAT by simulating, using speed and heart rate data of the athlete only, which simply 
can be taken from a standard step test like that in Figure 3.  

Simulative Determination of the Individual Anaerobe Threshold  
Figure 3 shows one of the interfaces of a special PerPot-derivation used for IAT calculation 
and marathon simulation. On the left hand side the result of a step test is presented, where 
speed and heart rate are measured using appropriate devices, while the reserve curve is 
simulated by PerPot. Together with the reserve PerPot calculates the IAT, which in this 
example has a value of 180, as well as some derived heart rate values as orientations for 
regeneration, base endurance 1 and base endurance 2. Finally, from the internal delays 
adaptation times can be derived, which in this example say that the athlete reacts in less than 4 
minutes on increasing speed, but needs more than 5 minutes to recover in case of decreasing 
speed. 
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Figure 3. Interface of a PerPot derivation used for IAT calculation and marathon simulation. 

Another interface of that tool can be used for segment-oriented simulation of the run itself, 
providing automatic optimization as well as stepwise manual modification. Figures 2 and 5 
show parts of that interface, where the vertical red lines mark the segments, in which the speed 
can be manipulated or optimized as a whole. 

Systematic tests were run exemplarily in cooperation with Mark Pfeiffer from the Institute of 
Sport Science, University of Bayreuth, Germany. In a double blind test data of 14 athletes were 
analysed. The athletes completed a step test on a treadmill (starting speed: 6km/h, step length: 
3 Min., step raise: 1 km/h, intermission: variable, until blood test). The calculated IAT-values 
were sent back and compared to the results of the common lactate-tests. Figure 4 presents the 
results of the 3 most common lactate procedures compared to the PerPot simulation. 
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Figure 4. Three IAT lactate tests of 14 athletes compared to PerPot tests. (Note that the connection of the 
discrete values was done only to clarify the range of variation.) 

It turns out that the PerPot results are perfectly in the range – despite athlete P5, where PerPot 
shows a quite different value. The reason is that P5 has a pathologic high level of heart rate, 
which could be recognized by PerPot simulation but could not by lactate-analysis.  

Marathon Scheduling and Controlling  
Using simulation and IAT features the marathon can easily be simulated and optimized under 
the aspect of avoiding overload and underperforming. Figure 5 shows a result where, 
depending on a short step test of about 20 minutes, a constant speed is calculated, which 
optimizes reserve and heart rate: The heart rate reaches the IAT exactly on the last 1000-meter-
segment, and exactly then the reserve drops into the overload area. 

Of course, individual optimization can be done as well with non-constant speed and depending 
on course profiles (see Endler & Perl (2006)). 
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Figure 5. Example of an optimized marathon speed with reaching IAT and overload in the last 1000-meter-
segment. 

The only problem is to transfer the results of analysis into run control. One very simple 
solution consists in taking the calculated heart rate profile as an indicator, as has been done in 
the following tests and is demonstrated in Figure 6: Depending on the (flat) course, 8 time 
segments of 21 minutes each plus one segment of 9 minutes of specific constant heart rates are 
prepared and can be used as controlling indicators during the run by means of heart rate 
measuring. 

The particular example presented in Figure 6 stems from the Munich Marathon 2009, where 
one of the authors (Stefan Endler) scheduled a finishing time of 2:57:00 and in fact finished in 
2:56:54. 

 

Figure 6. Munich Marathon 2009, optimized by simulation and controlled by heart rate profile: Calculated time: 
2:57:00. Finishing time: 2:56:54. 
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Even more precisely run control can be done using speed instead of heart rate data, if a speed 
sensor or a GPS-device is available (also see Conclusion and Outlook). 

Results 

Of course, not always the results are that perfect. But during the 18 month since Munich there 
have been a lot of tests which show that simulation-based run optimization works surprisingly 
well (also see Endler & Perl (2011)): 

 
Figure 7. Marathon and half marathon results of the last two years. Highlighted are results with negative (green) 

or large positive (orange, red) deviations between finishing time and simulated time. In case of 
positive deviations the reasons were added. 

The recruited persons have different sex, age and running pre-condition to cover a wide range 
of conditional states. Figure 7 shows all long distance results (marathon and half marathon). 
Moreover, the simulation was used successfully for shorter distances (see Endler (2011)). 

The normal difference between the simulated PerPot time and the finishing time is about ±2%. 
There are only a few larger deviations, which normally are caused by specific reasons or 
conditions:  
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The simulation is based on the last step test before the competition. If the time difference 
between that calibration day and the competition day is too long, running conditions like 
weather as well as personal state and parameters can change meanwhile.  

One example was the Rom marathon 2010. The calibration process was run in Germany at a 
temperature of about zero degrees Celsius, while the temperature in Rom during the marathon 
was about twenty degrees Celsius.  

Another reason can be an illness after calibration, which causes a significant reduction of the 
runner's maximum performance. 

Conclusion and Outlook 

As has been demonstrated, simulation-based calculation of IAT, which is not meant to replace 
medical lactate tests, in practice can help a lot for better estimating the current status of the 
athlete in order to optimize his speed load during the run. This seems not only important for 
well-trained athletes to improve their performance but also for leisure time runners or 
rehabilitation under the aspect of health care.  

Coming projects will deal with ways of on-line controlling and adjusting the running speed by 
means of on-line data recording and look ahead-simulation. A promising co-operation 
currently is projected with the working group of Arnold Baca, University of Vienna, Austria, 
who works with the concept of internet-based remote data acquisition and analysis and 
therefore in combination with PerPot simulation would enable a perfect on-line run control. 

First tests, which where run by one of us (Stefan Endler) in Mainz using the Vienna 
technology, proved that internet-based on-line coaching also works on long distance. 

Finally, the DoMo-Version of PerPot (Perl & Pfeiffer, 2011) enables the handling of course 
profiles as load components like running speed, which improves precision of prediction 
together with on-line coaching significantly. 
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