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Editorial 

Arnold Baca 

Department of Biomechanics, Kinesiology and Applied Computer Science, 

ZSU, University of Vienna 

 

Dear readers: 
 

Welcome to the summer 2010 issue of the International Journal of Computer Science in 
Sport (IJCSS).  

Two full papers and three project reports have been included within this issue.  

B. Eskofier, M. Wagner, I. Munson and M. Oleson present classifiers for speed and 
inclination during running based on features, which can be calculated on microprocessors 
embedded in a shoe.  

In the paper by P. Lamb, R. Bartlett and A. Robins self organizing maps (SOMs) are used to 
classify the coordination patterns of four participants performing three different types of basket 
ball shot from different distances. The authors conclude that SOMs may be helpful in 
recognizing aspects that are not obvious from more traditional approaches. 

N. Hirotsu, M. Ito, C. Miyaji, K. Hamano and A. Taguchi analyze tactical conflicts between 
attacking formations and blocking formations in the phase of reception attack in volleyball by 
using a zero-sum game model. They resume that their method could be a promising alternative 
in volleyball match analysis.  

A Genetic Algorithm is applied by S. Lenjan-nejadian and M. Rostami  in order to optimize 
the motion of a weightlifter snatching.  

N. Roznawski and J. Wiemeyer report an experimental pilot study which tested e-learning 
units with different degrees of interactivity. No significant impact on knowledge improvement 
could be found. 

I hope you enjoy this issue. 

If you have any questions, comments, suggestions and points of criticism, please send them 
to me. 

Enjoy the summer! 

 

Arnold Baca, Editor in Chief 

University of Vienna, arnold.baca@univie.ac.at 



International Journal of Computer Science in Sport – Volume 9/Edition 1 www.iacss.org 

   

 

4 

Embedded Classification of Speed and Inclination 
during Running 

Bjoern Eskofier1, Martin Wagner2, Ian Munson3 and Mark Oleson3 
1Human Performance Lab, Faculty of Kinesiology, University of Calgary, Canada 

2Pattern Recognition Lab, University of Erlangen-Nuremberg, Germany 
3adidas innovation team ait., adidas AG, Portland OR, USA 

 

Abstract 

This paper presents methods for classifying speed and track inclination groups 
during recreational runs using input data from the “adidas_1” running shoe. 
Running speed, altitude and shoe heel compression were recorded continuously 
while athletes ran freely outdoors. A total of 84 one-hour-runs were collected in 
order to have sufficient ground truth as well as sensor data for classification. The 
data was analyzed using features computed for each step of the athlete. 

The goal of this work was to distinguish three speed and three surface inclination 
classes, respectively. The speed and inclination classes were established using the 
collected ground truth data. 

The results showed that surface inclination classification was only possible with 
an accuracy of 67.2% due to measurement restrictions. However, it is also 
demonstrated that speed classification was feasible with up to 89.2% accuracy. 

The developed classification system for speed classification was implemented and 
verified on the embedded microprocessor of the “adidas_1”. Such a system can be 
used to support sportsmen, for example by adapting their equipment to the 
specific running speed. The employed pattern recognition methods are general in 
nature and can thus be applied to other embedded classification applications as 
well. 

 

KEYWORDS: EMBEDDED CLASSIFICATION, TRACK INCLINATION 
CLASSIFICATION, SPEED CLASSIFICATION, DIGITAL SPORTS, ADIDAS_1 

Introduction 

Smart sensors embedded in clothes and equipment for sports open novel opportunities to 
support and guide athletes. An example is the “adidas_1” running shoe, which is the first 
shoe that features an embedded system (see Figure 1). This shoe was built to adapt to various 
running conditions. Examples for conditions that have to be taken into account include the 
prevailing surface situation, the fatigue state and the speed of the runner. 

The adaptation was performed by changing the cushioning of the sole by a motor driven 
cable system inside the shoe. In order to recognize the current running situation, the heel 
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compression of the shoe was continuously measured. The embedded microprocessor of the 
“adidas_1” processed this signal and performed a classification of the prevailing situation. 
Based on this classification result, a decision for a cushioning adaptation was made. 

Pattern recognition methods in general were frequently used in recent locomotion related 
research (e.g. Schöllhorn, 2004; Wu & Wang, 2008). For example, a wavelet transformation 
was applied to electromyographic signals of runners (von Tscharner & Goepfert, 2003) for 
feature extraction. The resulting multi-muscle pattern could be employed for gender 
classification with high classification rate of 95%. In another study, the authors calculated 
three types of features (basic temporal/spatial, kinetic and kinematic) on human walking gait 
data (Begg & Kamruzzaman, 2005). The resulting set of 24 features was utilized to 
distinguish the gait of young and elderly subjects with a classification rate of 91.7%. Those 
application examples illustrated that pattern recognition algorithms can contribute 
considerably to data analysis tasks in locomotion related projects. 

To the best of our knowledge, the embedded classification of running speed and surface 
inclination using the described compression measurements has previously not been 
investigated in the literature. Previous publications with the purpose of classifying these two 
variables used different sensor input and were not focused on embedded implementation. For 
example, a method for walking gait that was based on accelerometer measurements was 
presented (Aminian et al., 1995). For classification, the authors applied a neural network. The 
methodology was subsequently extended (Herren et al., 1999) for outdoor running. However, 
these approaches were based on triaxial accelerometry. The acceleration signal had implicitly 
included the running speed in its signal. Thus, the results from these studies could not be 
compared to results derived from compression measurements that were the basis for the 
running speed and surface inclination classification system that was developed in the present 
paper. Moreover, the measured signals were evaluated on PC hardware only. The complex 
mathematical calculations used for the complex neural networks that were employed 
(Aminian, et al., 1995; Herren, et al., 1999) may not have been possible with an embedded 
microprocessor. Nevertheless, the embedded classification of the speed and the track 
inclination variables were important in the “adidas_1” application scenario. Hence, the 
primary purpose of this paper was to use methods from pattern recognition to identify a 
classification system that distinguished three speed and three inclination classes based on the 
heel compression measurements. 

In general, athletes can benefit from embedded classification systems. In the particular case 
of running with the “adidas_1”, the shoe could be adapted accordingly, setting itself into a 
cushioning state that was considered optimal for the given situation. However, the “adidas_1” 
shoe was just one example of smart sensors embedded in apparel and sport equipment. 
Comparable systems could be useful in other sports where an athlete can be actively 
supported by adapting the equipment to the prevailing situation. In a previous publication 
(Eskofier et al., 2009), it was already demonstrated that accurate classification on an 
embedded microprocessor in sports was feasible. For this purpose, a framework for 
embedded classification was developed. This framework aimed at calculating features that 
described the originally measured signal well, while being at the same time efficiently 
calculable on embedded hardware. It was also discussed, which types of classifiers are suited 
for implementation on embedded hardware. The key idea that was followed was to conduct 
the various experiments on computationally powerful desktop computers, and to implement 
and validate only the most promising solution on the embedded hardware. Comparable 
systems could be useful in other sports where an athlete can be actively supported by 
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adapting the equipment to the prevailing situation. Therefore, the secondary purpose of this 
paper was to further develop the previously employed (Eskofier, et al., 2009) general 
methods for embedded classification, so that the developed methodology could be more 
straightforwardly applied to other similar embedded classification tasks. 

Methods 

Data Collection 

A total of 84 runners (30 female, 54 male) participated in a one-hour outdoor data collection. 
The age of the subjects was 32.9 ± 7.9 years (average, standard deviation). The subjects were 
not specifically chosen according to running experience; instead, the group contained runners 
of all activity levels. The measurement system consisted of three separate devices. Firstly, a 
“Polar RS800 Running Computer” (Polar Electro Oy, 2010) was used, which included an “S3 
stride sensor” and a chest strap. This system was capable of measuring running speed, stride 
frequency and barometric height. The sampling interval for the collected signals was set to 
5 s. These measurements formed the ground truth data, which means that the classes for the 
subsequent classification experiments were assigned according to these measurements. 

Secondly, the heel compression signal f[t] of the runners was continuously measured using 
the “adidas_1” shoe (DiBenedetto et al., 2004; Eskofier, et al., 2009). The heel part of the 
shoe contained an adjustable cushioning element (Figure 1). The amount of vertical 
compression that this element allowed was regulated by a motor-driven cable system 
(DiBenedetto, et al., 2004). For the purpose of the data collection for this study, the 
cushioning element was manually put in a setting that allowed maximal heel compression and 
was not changed subsequently. This setting was chosen because the resulting compression 
signal had the highest possible signal-to-noise ratio. A hall sensor mounted at the top of the 
cushioning element detected the magnetic field strength induced by a small magnet at the 
bottom of the element. The sensor was sampled with a rate fs = 342 Hz by the embedded 
microprocessor. The sensor-magnet distance dm was computed from the measured field 
strength with an accuracy of ± 0.1 mm (Figure 3).  

 
Figure 1. The “adidas_1” shoe, its cushioning element, magnet and motor unit (DiBenedetto, et al., 2004; 

Eskofier, et al., 2009) 

Lastly, a specially programmed mobile phone (Eskofier et al., 2008) was used to store the 
GPS position of the runner in intervals of 1 s. This allowed reconstructing all running 
situations after data collection. An example run is visualized in Figure 2 based on the Google 
Earth (Google Inc., Mountain View, CA, USA) software. In this illustration, running speed is 
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displayed as the height of the orange band along the running track. The software (Eskofier & 
Melzer, 2009) that was utilized to generate Figure 2 is available for download from 
http://tinyurl.com/gervit. 

After completion of the run, each participant was asked to fill in a questionnaire. Among 
other information, the questionnaire asked the test subjects whether they thought that the 
amount of equipment was in any way hindering to their run. Only two out of the 84 runners 
perceived a notable impediment by the equipment while running. This indicated that the 
collected data represented a free outdoor run very well (Eskofier, et al., 2008). 

 
Figure 2. Visualization of an example run in Portland, OR, USA. The height of the band represents the running 

speed. 

Data Processing 

Out of the 84 study participants, 28 had to be excluded from further processing for various 
reasons. More specifically, five runners had incomplete data from the Polar RS800 system. 
The remaining 23 participants had to be excluded because of unusable data from the 
“adidas_1” shoe. In eight of these cases, data collection was not possible because the 
“adidas_1” was not present in all shoe sizes at the beginning of the study, and therefore the 
runners had to use other shoe models. In the remaining 15 cases (about 18% of all subjects), 
the runners were mid- or forefoot strikers. The measurement system of the “adidas_1” is 
located at the heel of the shoe and can therefore only capture meaningful data for rearfoot 
strikers, which represent more than 80% of the running population (Kerr et al., 1983). 

Step Segmentation 

Prior to feature extraction, the single strides were segmented by finding the deflection of the 
respective compression phases. Figure 3 shows an example representation of the heel 
compression signal. The task of step segmentation was to find the beginning of the 
compression phase, i.e. the point in time when the runners started to compress the heel. A 
linear filter with the convolution vector 

(1)  1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1 conv
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was used for this purpose. It was implemented with a moving window strategy in order to 
minimize the number of multiplications. That means that when a new sample was measured, 
the multiplication with the filter was only computed once. The multiplication result was 
stored in a ring buffer which contained only the preceding results according to the filter 
length. For each new sample, the filter output was then updated according to the elements in 
the buffer. 

The filter was chosen for two reasons. First, noise was present in the signal during the time 
that the foot was in the air (Figure 3). The filter had sufficient length to avoid misdetecting 
this noise as beginning of compression. Second, the filter yielded maxima for the beginning 
of the compression phase. The respective maxima after filtering marked the beginnings of the 
compression phase. In Figure 3, the points where the maxima were located are depicted as 
red crosses. 

The beginnings of each compression phase were defining the starts of consecutive strides ts,i 
and ts,i+1, with i and i+1 indicating the respective stride number. Within the boundaries of one 
single stride, the point of maximum compression tm,i was identified by a linear search. The 
points of maximum compression are depicted as red circles in Figure 3. The end of the 
compression phase tc,i (depicted with red stars in Figure 3) was defined by the first sample 
value after maximum compression that was greater than the mean value before the actual 
compression phase minus two sample units. The reliability of this method was tested by 
visual inspection of 449 measured strides from 6 subjects (Eskofier, et al., 2009). The end of 
the compression phase was always identified at the correct position. 

Feature Extraction 

From every step, eleven hand-selected features were calculated (Table 1 and Figure 3). These 
basic features were denoted by F1…F11. In order to add context information, the means N 
and standard deviations N over the features of the preceding N = {4, 8, 16} steps were also 
calculated. These features were denoted N(Fn) and N(Fn), and were calculated from the 
n = 1, …, 11 basic features. For standard deviation calculation the unbiased version given in 
Equation 2 was used. In this equation, cm denotes a single calculated feature value for stride 
number m and c is the mean value of the respective feature values. 

(2) 

The gradients of all 11 basic features using N = 16 steps were also calculated and were 
denoted g16(Fn). Consequently, a total of Nf = 88 features were calculated. For feature 
extraction, the first five minutes of each run were not considered to ensure that the runners 
were warmed up and accustomed to data collection. 

The obvious redundancy that was contained in these 88 extracted features was volitional. It 
was a goal from the start to use only a subset of the originally computed features in order to 
reduce complexity and to use only features with small or no mutual dependence. The feature 
subset selection algorithm will be presented below. 

When conducting the speed classification experiments, it was noticed that a runner dependent 
feature rescaling considerably improved the result. A rescaling to the [0, 1] interval for each 
feature Fn of a runner according to 

(3) 
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was therefore implemented for each of the n = 1, …, Nf, = 88 features for the speed 

classification experiments. In this equation, nF̂  denominates the rescaled feature value. 

 

Table 1. Definition of the eleven basic features. From these, additional features were derived by 
computing context information over multiple steps. The resulting feature vector had 88 
dimensions. 

  Nr. Name Formula 

  F1 Inter step time ts,i+1 – ts,i 

  F2 Time to peak tm,i – ts,i 

  F3 Maximum compression f [tm,i] (measured value at tm,i) 

  F4 Compression time tc,i – ts,i 

  F5 Mean compression 1/F4,i   

ic

is

t

tm
mf,

,
 

  F6 Step mass center 1/F7,i      
ic

is

t

tm is mftm,

,
,  

  F7 Step energy   

ic

is

t

tm
mf,

,
 

  F8 Normalized compression time F4 / F1 

  F9 Normalized time to peak F2 / F4 

  F10 Compression gradient (f [tm,i] – f [ts,i]) / F2,i 

  F11 Decompression gradient (f [tc,i] – f [tm,i]) / (tc,i – tm,i) 

 

Labeling 

After consulting four sports experts, three classes according to running speed v and surface 
inclination, respectively, were defined (Table 2, Table 3). The class definition was chosen in 
a way that the resulting ranges of running speeds and inclinations covered an approximately 
equal amount of the distribution of the respective values for a typical training run. For this 
definition, an internal adidas report was used that had investigated relevant running speed and 
inclination distributions. In Table 2 and Table 3, k = 1…3 indicates the class number. Each 
detected step was labeled for the subsequent classification experiments according to these 
classes using the measured ground truth speed and surface inclination signals. 

 

Table 2. Definition of the three classes according to running speed v. 

Class Class definition in m/s 

1,v 

2,v 

3,v 

   0 v 
2.5 v 
3.6 v 
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Table 3. Definition of the three classes according to surface inclination . A negative value indicates 
that the athlete was running downhill. 

Class Class definition in deg. 

1, 

2, 

3, 

  
3°  
  3°  

 

 
Figure 3. Illustration of the eleven basic features. From these, additional features were derived by 

computing context information over multiple steps. The resulting feature vector had 88 
dimensions. 

Classifiers 

In the classification experiments, five different classifiers were compared in order to evaluate 
their performance on the measured data. The selected classifiers were chosen because each of 
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them can be implemented on an embedded microprocessor. More specifically, the following 
classifiers were used for the evaluation: 

 Bayes Classifier (BC). The BC makes use of the assumption that all features are 
mutually independently distributed (Niemann, 1983). This assumption allows a 
straightforward estimation of the classifier parameters from the samples that are used 
for classifier training by direct mean and variance computation. The resulting linear 
discriminant function gk can be computed by a multiplication of each feature with a 
weight factor, adding the results of the multiplications and comparing the sum against 
a threshold. Due to this simplicity, the BC is well suited for embedded 
implementation. The BC has been proven to perform well in many classification tasks 
(Domingos & Pazzani, 1997; Langley et al., 1992). 

 Linear Discriminant Analysis (LDA). The LDA classifier is based on Fisher’s (Fisher, 
1936) work on discriminant methods. It is a transformation that aims at minimizing 
the variability within a class, and maximizing the distance between classes. When 
LDA is applied for classification, the feature space is effectively projected onto a 
single axis. On this single axis, a linear decision boundary is applied for 
differentiation. In contrast to BC, the full covariance of the distribution is considered. 
However, the resulting linear discriminant function gk can be implemented in the 
same simple way as for the BC. Applications of LDA can be found in a variety of 
fields, including face recognition (Lu et al., 2003) and document classification (Ye & 
Li, 2005). 

 Polynomial Classifier (PC). The PC does, in contrast to BC and LDA, not use the 
parameters of the distribution of the features in the sample used for classifier training, 
but estimates the discriminant function gk directly from this training sample 
(Niemann, 1983)). Different polynomial degrees can be used. In the present study, 
given that a simple classification rule for the embedded system had to be used, a 
linear polynomial was chosen. The estimation of the discriminant function gk is then 
performed by solving a least squares systems of equations. The discriminant function 
gk that results is again linear and can be implemented in the same simple way as for 
the BC and LDA classifiers. The PC has been shown to obtain good classification 
results in a variety of studies (e.g. Franke, 1997; Liu & Sako, 2006). 

 Support Vector Machine (SVM). Support Vector Machines operate by first 
transforming the features into a high dimensional space (Vapnik, 1998). This 
transformation can be computed quite efficiently by different kernel functions 
(Schölkopf & Smola, 2002). In the present study a linear kernel was chosen, again due 
to reasons of computational simplicity. After the kernel transformation, a linear 
decision boundary with maximum margin is established in the resultant high 
dimensional space. While the process of training is complex, it is computed on a 
desktop PC and therefore not relevant for the implementation of the classifier on the 
embedded system. A standard SVM implementation was used throughout the present 
study (“libSVM” (Chang & Lin, 2001), freely available on the web). Support Vector 
Machines obtain high classification rates in many pattern recognition tasks 
(Sapankevych & Sankar, 2009). Numerous applications of this classifier exist, 
including image classification (Chapelle et al., 1999) and email categorization 
(Drucker et al., 1999). 

 Multilayer Perceptron Classifier (MLP). The MLP is built to simulate neuron 
interaction in the human brain (Specht, 1990). The neurons are implemented by 
multiple single nodes that are connected in multilayer nets (Duda et al., 2001). Each 
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node has an input and an output. A feature value that is input into the node is 
subjected to a specified nonlinear function, e.g. a sigmoid function. Weights specify 
the contribution of individual nodes to the classification result. These weights are 
adjusted during classifier training according to different learning strategies (Hagan & 
Menhaj, 1994). The resulting discriminant function gk is nonlinear. For the classifier 
implementation, the complete weight structure multiplication and the evaluation of the 
nonlinear (e.g. sigmoid) function needs to be performed on the embedded system. 
While this is still practicable, considerable higher computational demands are posed 
to the embedded system. MLP classifiers are frequently applied and several survey 
articles cover them (e.g. Baxt, 1995; Chua & Yang, 1988; Hunt et al., 1992). 

With these classifiers, each vector of observed features x = (F1…F88) was assigned to the 
class k for that the discriminant function gk of the respective classifier is maximal. In the 
experiments, five-fold cross-validation was performed in order to ensure generalizability of 
the results. In each of the cross-validation iterations the classifier was trained using all but the 
feature vectors from one specific fold. Subsequently, the feature vectors from the remaining 
fold (the test set) was classified according to maximum gk. The mean classification accuracy 
was then computed as the average over all cross-validation iterations. To ensure that feature 
vectors were equally distributed over all classes, 10,000 vectors from each class were 
randomly selected from the collected data. The equal distribution of feature vectors per class 
allowed using equal priors for example for the Bayes Classifier. 

Classification accuracies were deemed significant if the null hypothesis that classification 
was random could be rejected using a binomial test with significance level  = 0.01. 

Feature Selection 

Due to the requirement that all computations had to be made in real-time on the employed 
microprocessor of the “adidas_1”, it was impossible to implement a classifier based on the 
complete set of 88 features. A feature selection algorithm was therefore implemented, the 
dynamic programming algorithm (Niemann, 1983). It required that the initial feature set was 
rather small, and that the scoring metric was monotone and separable. This is true for the 
Mahalanobis distance (Mahalanobis, 1936) 

(4) 

between two classes k and l. In Equation 3, k and l denote the class means and 1Σ  is the 
common inverse covariance matrix of all features. The dynamic programming algorithm was 
applied in multiple iterations using the Mahalanobis distance criterion. In each iteration, one 
single feature was added that gave the highest improvement for the worst class pair. 

Microprocessor Implementation 

The number of features that was possible to be computed in real-time on the employed 
microprocessor of the “adidas_1” was empirically found to be only two. Therefore, for the 
microprocessor implementation, the best performing two features had to be chosen. However, 
combinations of more features were also evaluated, because they could be implemented in 
future “adidas_1” versions that employ computationally more powerful microprocessors. 

In order to demonstrate the ability of the developed methodology to perform accurately on 
the embedded microprocessor of the “adidas_1” shoe, the best classification system 

   lk
T

lklk μμμμG  1
, Σ
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(according to the results on a desktop PC) was implemented on this microprocessor. The first 
important framework requirement for this implementation was the limited size of the internal 
memory (256 bytes). This meant that the program had to be as short as possible to save ROM 
and that it had to economize on variables. Moreover the classification had to be done in real-
time with the available computing power. The microprocessor of the “adidas_1” was clocked 
with 24 MHz, which posed considerable demands to the embedded classification algorithm. 
Finally, a floating point unit was lacking and therefore all computations had to work with 
integer operations only. 

Considering this different hardware architecture, a final evaluation of the performance of the 
classification system on the embedded microprocessor was made. For this purpose, the 
classification decisions made by the microprocessor were compared with those of a desktop 
PC. For the multi-class decision system a one-against-one approach was used, where the 
decision for every class against each other was calculated. The one class that won the most 
decisions was the selected class. If two classes won exactly the same number of comparisons, 
the selection depended on the iteration sequence, and a decision for the first considered class 
was always made. In the case of a three class problem this was equal to a decision tree of 
depth 2. Therefore, two decision functions per step were calculated. 

Results 

Inclination Classification 

The resulting classification rates for the inclination classification are given in Figure 4. Figure 
4 shows the class-wise averaged classification rates that were obtained using one to six 
features that were selected according to the feature selection algorithm for each classifier. 

The results of the feature selection algorithms showed that the most important features for this 
task were μ16 (F2), μ16 (F9) and μ16 (F11). These are the mean values over 16 steps computed 
from time to peak, normalized time to peak and decompression gradient, respectively. Those 
features were, in the given order, selected in almost all cases for the classification. It can be 
seen that by using more features, better classification results were achieved in general. The 
best accuracy of 67.2 % class-wise mean accuracy was reached by using six features and the 
MLP classifier. This classification result is significantly different from random (p < 0.001). 
The confusion matrix for this case is given in Table 4. 
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Figure 4. Resulting inclination classification rates. For each classifier, the results using one to six features 

according to the feature selection algorithm are shown. Depicted are the class-wise averaged 
accuracies in %. 

 

Table 4. Confusion matrices for six features when using the MLP classifier for inclination classification. The 
classification accuracy values are given in %. 

Classified as 1, 2, 3  

labeled 1,

labeled 2,

labeled 3, 

54.6 22.6 22.8
  5.5 87.8   6.7
19.7 21.1 59.2 

 

Speed Classification 

The resulting classification rates for the speed classification are given in Figure 5. Figure 5 
shows the class-wise averaged classification rates that were obtained using one to six features 
that were selected according to the feature selection algorithm for each classifier. 

The results of the feature selection algorithms showed that the most important features for 
this task were μ16 (F3) and μ16 (F1). These are the mean values over 16 steps computed from 
maximum compression and inter step time, respectively. Those features were, in the given 
order, selected in almost all cases for the classification. It can again be seen that by using 
more features, better classification results were achieved in general. The classification 
accuracies showed a noteworthy rise when using two features for all classification 
approaches. For some approaches (BC, SVM, MLP), another considerable rise in the 
classification accuracies was noticed when using four features. The best accuracy of 89.2 % 
class-wise mean accuracy was reached by calculating six features and applying the MLP 
classifier. This classification result is significantly different from random (p < 0.001). 



International Journal of Computer Science in Sport – Volume 9/Edition 1 www.iacss.org 

   

 

15 

 
Figure 5. Resulting speed classification rates. For each classifier, the results using one to six features according 

to the feature selection algorithm are shown. Depicted are the class-wise averaged accuracies 
in %. 

For the two-feature case (the number of features that could be computed on the currently 
employed microprocessor of the “adidas_1”) the best results were found using the SVM 
classifier and features μ16 (F3) and μ16 (F1). The class-wise mean accuracy was 74.6%, which 
is significantly different from random (p < 0.001). The confusion matrix for the SVM two-
feature case is given in Table 5. 

Table 5. Confusion matrices for two features when using the SVM classifier for speed classification. 
The classification accuracy values are given in %. 

Classified as 1,v 2,v 3,v 

labeled 1,v

labeled 2,v

labeled 3,v 

73.7 11.7 14.7
  4.0 74.9 21.1
  7.7 17.0 75.2 

 

Microprocessor Evaluation 

Due to the low classification rates of the surface inclination system, only the SVM two-
feature speed classification system was implemented on the product version of the “adidas_1” 
shoe. For the speed classification case, the classification decisions made by the 
microprocessor were compared with those of a desktop PC. The tests showed that 99.2% of 
the classification decisions were the same. 

Discussion 

The inclination classification (Figure 4) could not be performed with high classification rate. 
A major reason for this result was the fact that the quality of the signal measured with the 
“adidas_1” was decreasing with increasing inclination (both up- and downhill). This can be 
seen in the confusion matrix (Table 4) for this case, which showed to be unbalanced with a 
preference for the class for the low inclination range. Further examination of the data 
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revealed that the reason for this unbalance was that the measurement sensor was located in 
the heel part of the shoe. When running up- or downhill at certain inclinations many runners 
tended to land more on the mid- or forefoot. In consequence, less overall compression was 
sensed. This resulted in a reduced signal to noise ratio and thus in a lower classification 
accuracy. To resolve this issue, at least a second sensor would have been needed in the front 
part of the shoe. Using such a sensor, additional information would have been available for 
classification. The incorporation of a second or even more sensors, therefore, is part of the 
future research work within this project. 

The speed classification accuracies showed a considerable rise when using two features for 
all classification approaches (see Figure 5). Another noteworthy rise was noticed when using 
four features for some approaches (BC, SVM, MLP). The result that adding more features, 
and therefore more information, to the classification process and to then obtain higher 
classification rates is often observed in pattern recognition (Duda, et al., 2001; Theodoridis & 
Koutroumbas, 2009). The particular result in this study suggested using either two or four 
features for the final implementation on the microprocessor. Because of the limited hardware 
of the microprocessor, only the two feature approach was possible. In a future 
implementation on a computationally more powerful microprocessor, more features might 
also be implemented based on the results. The two selected features for classification were 
μ16 (F3) and μ16 (F1), as these were performing best. 

Although the MLP classifier delivered results that were among the best for all conducted 
classification experiments, it was not chosen for the final implementation. First, it is 
computationally more demanding in a working classification system than the other classifiers. 
The BC, LDA, PC and SVM classifiers all have a different approach to classifier training, 
with typically increasing complexity. In the working classification system, however, all these 
classifiers pose a similar demand to the system they are implemented on. Only the MLP 
classifier is computationally considerably more demanding with its necessity of a more 
complex incorporation of the neuron weights and the requirement of the evaluation of the 
nonlinear function. Second, in the two feature case, the SVM classifier obtained the highest 
accuracies in any case. Thus, a decision was made to use SVM in the final microprocessor 
implementation. The confusion matrix in Table 5 for this case showed that the SVM yielded 
nearly equally good results for all classes. This meant that no speed class was considerable 
favored over another. This is an advantage of the system, because it prevents an 
overestimation of a certain prevailing speed condition. 

The runner dependent feature rescaling was needed in order to obtain more accurate 
classification results. This rescaling thus had to implemented on the microprocessor, which 
might be considered a disadvantage due to the additional calculational effort. However, the 
additional computational effort was low because only the current extreme values of the two 
features selected for implementation had to be stored in memory. Those were updated 
regularly, this way the shoe adapted to different runners. Moreover, the actual computation of 
the rescaling could be efficiently implemented and thus the real-time requirements could still 
be met. 

The fact that the microprocessor classification results were the same as the results on a 
desktop computer in 99.2% of classified steps showed that it was feasible to do all the 
evaluations that require high computational effort on desktop computers while only 
evaluating the final product solution on the embedded microprocessor. The obtained 
classification results were practically the same on both systems. This confirms the results 
shown in a previous study (Eskofier, et al., 2009). The 0.8% of steps that were not classified 
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in the same way as on the desktop computer were a negligible minority. Although a deficient 
implementation of the classification algorithms on the desktop PC could, in principle, also be 
the reason for the discrepancy, the different classification results were mainly ascribed to the 
different hardware architectures of both systems, e.g. a missing floating point unit on the 
microprocessor. 

The core idea for enabling embedded classification was using computationally simple 
features and classifiers that could also be implemented on embedded microprocessors. 
Furthermore, all comparative experiments were performed on computationally powerful 
desktop computers, and only the best solution was implemented and validated on the 
embedded hardware. This approach was again successful, and an accurate embedded speed 
classification system could be developed. The proposed methodology will be helpful in many 
tasks in sports where classification on embedded systems has to be performed. 

Summary 

This research demonstrated the application of pattern recognition methods to detect running 
surface inclination and running speed using heel compression measured with the “adidas_1” 
running shoe. A set of 88 features was manually designed that was suited for the 
classification task at hand. The features were computationally inexpensive and could be 
calculated using the embedded microprocessor of the “adidas_1” shoe. Several classifiers that 
are suited for embedded implementation were compared with respect to their classification 
rate. Subsequently, it was shown how a subset of the original 88 features, which were most 
important for the classification task, could be identified. The applicability of the developed 
speed classification system was demonstrated by implementing and evaluating it on the 
embedded microprocessor of the “adidas_1”. Thus, a classification of the prevailing running 
speed was performed directly on the embedded system. 

It was shown that in the three-class inclination case, a classification rate of 67.2% could be 
obtained using six features and a MLP classifier. Better performance was not possible due to 
the fact that only the heel compression was measured, and for the classification of some track 
inclinations this available sensor information was insufficient. However, it was demonstrated 
that if continuously good heel compression signals were available, as it was in the three-class 
speed classification case, acceptable classification rates of 74.6% could be achieved using 
only two and even 89.2% using six features. This result suggested that a trained automatic 
system could quite precisely support the athlete, for example by providing more shoe 
stiffness and thus more stability by the “adidas_1” running shoe when the sportsman was 
running faster. 
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Abstract 

In this study self-organising maps (SOM) were used to classify the coordination 
patterns of four participants performing three different types of basketball shot 
from different distances. The shots were the free throw, the three-point and the 
hook shot. The free throw and three-point shot were hypothesised to be more 
similar to one another than to the hook shot. The first analysis involved an 
analysis of trial trajectories visualised on a U-matrix. Two of the participants, 
unexpectedly, showed more similarity between the three-point shot and the hook 
shot, instead of the free throw. Where the first analysis was useful in showing 
aspects of the movement that were not obvious from viewing the computer 
animation of the original movement, a second SOM was trained on the 
appearance of the original trajectories and used to produce an output that shows 
the variability in coordination between all trials in the study. The second SOM 
showed groupings of the three shooting conditions which were unexpected. The 
second SOM technique may provide a more objective method than visual 
technique analysis for explaining movement patterning and structuring practice 
routines. 

 

KEYWORDS: NEURAL NETWORKS, KOHONEN, SOM, COORDINATION, 
BASKETBALL. 

Introduction 

The data used for this study were generated from four players performing three different 
types of basketball shot from different distances. The shots were the three-point shot, the free 
throw and the hook shot. The free throw and three-point shot were hypothesised to be more 
similar to one another than to the hook shot. A free throw is commonly awarded when an 
offensive player is fouled during shooting. Each foul usually results in the offended player 
being awarded two free throw shots, which makes the free throw shot an important skill. The 
three-point shot is more strategic; the probability of successfully scoring with this shot is 
much less but the reward is higher. The three-point shot is taken from further away than the 
free throw shot and is often performed in the presence of defenders. Subsequently, the three-
point shot is almost always performed as a jump shot, both to afford more power for the shot 
and to release the ball higher thus reducing the chance of being blocked. During the study, the 
hook shot was performed starting with the player’s back to the net then turning and shooting 
with a one-handed release. The hook shot has a lower percentage success rate but, because of 
the release point, it is a difficult shot to defend. A good hook shot involves the shooter’s body 
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being positioned between the ball and the defender. Typically the hook shot is used as a last 
resort and, therefore, occurs less frequently than the other two shots. 

A likely practice routine would reflect the hook shot’s infrequent use. The hook shot is often 
assumed to be a different movement pattern compared to the similar patterns used for the free 
throw and the three-point shot, which are often thought of as modifications of the ‘set shot’ 
movement pattern. Consider why these assumptions exist. The observational learning 
literature suggests the motion of distal segments as one of the most influential factors when 
learning new skills (Hodges, Williams, Hayes, & Breslin, 2007). The typical one-handed 
release of the hook shot makes the kinematics of the distal segments a plausible explanation 
for its distinction as a unique shot. If such visual information negatively influences the 
observer, the opportunity exists for a new method of structuring practice and thinking about 
movement patterning to come to light. The purpose of this study was to show that SOMs are 
an objective tool for movement analysis. 

Methods 

Data Collection and Processing 

A 12-camera, three-dimensional motion capture system (Motion Analysis Corporation Inc, 
Santa Rosa, CA, USA) was used to collect the data for this study. Using post-processing 
software (Visual3D, C-Motion), a 12-segment body model was established. Based on the 
Euler convention, motion in the sagittal plane for the right and left ankles, knees, hips (Bell, 
Pedersen, & Brand, 1990) and shoulders (Rab, Petuskey, & Bagley, 2002) were processed for 
the SOM analysis. 

Trials were time normalised to 101 data points. Within each trial, each variable was range 
normalised to maximum and minimum values of +1 and -1, respectively. The trials were 
appended one after the other to create one block of data used for training the neural network. 

SOM Outline 

The SOM can be thought of as a layer of nodes with associated weight vectors, fed forward 
by a layer of inputs. Weight vectors of the map nodes are adjusted based on an unsupervised 
learning strategy to represent relevent information in the input. The output node whose 
weight vector has the smallest Euclidean distance to a given input is declared that input’s best 
matching node. Convergence to the input is acheived by iteratively updating the weights of 
the best matching node and its neighbours, within a specified radius, according to the 
neighbourhood function and learning rate (Kohonen, 2001). Because of such non-linear 
properties, the SOM is able to remove redundancies in high-dimensional input data and 
produce a low-dimensional mapping of the output while preserving topological relationships 
in the data. The neighbourhood function effectively allows local interactions between map 
nodes to coalesce into states of global order and to achieve self-organisation. 

Network Architecture 

The SOM toolbox for MATLAB was integrated into the software tool (Vesanto, Himberg, 
Alhoniemi, & Parkankangas, 2000) for the analysis. A PCA-based initialisation process was 
used to create a two-dimensional hexagonal lattice output map (Table 6). The neighbourhood 
sizes were selected according to the principal components of the data (Barton, Lees, Lisboa, 
& Attfield, 2006). 
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A second SOM, inspired by Barton (1999), was trained on the trajectories from the original 
SOM. Inputs for the second SOM were created from projecting the weight vectors into 
weight space using Sammon’s mapping (Sammon, 1969). The two-dimensional coordinates 
of each consecutive best matching node were used to create an input vector representative of 
an individual trial. This process was repeated for the best matching nodes of all trials in the 
study. The result of the second map is a SOM in which each trial can be represented by one 
node on the output map and, therefore, a clustering of all the trials in the dataset can be 
visualised more easily. In what follows we will refer to the original SOM as the phase SOM 
and the second SOM as the trial SOM. 

Table 6: SOM training parameters and quality measures 

 

Analysis 

We chose to use the U-matrix (Figure 6(a)) to visualise the output of the phase SOM. 
Trajectories connecting nodes on the U-matrix that best represent the input were used to 
visualise the multi-segment coordination performed by the participants. The nodes in Region 
A of the U-matrix represent the preparation phase of the shot. Region B represents the 
extension phase where the player generates power for the release. Region C represents the 
final release phase of the movement. Typical movement patterns activate nodes in Region A, 
ascend up the map through Region B and end at the release phase in Region C. Movements 
that were patterned uniquely, activated nodes in Region D. Clusters of data can be identified 
on the U-matrix with blue ‘distance cells’ which are evidence of similar data among 
neighbouring nodes. Orange and red distance cells represent larger Euclidean distances 
between neighbouring nodes and therefore outline borders between clusters. 
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Figure 6: a) U-matrix and movement phases: A Preparation, B Extension, C Release, D Unique coordination; b) 

Preparation phase; c) Extension phase; d) Release phase. 

 

The phase SOM analysis uses the trajectory of the best matching nodes through the time 
series of each trial to compare various trials simulated on the same U-matrix visualisation 
(Lamb, Bartlett, Robins, & Kennedy, 2008). The orange trajectories shown on the U-matrix 
(Figure 7(a), (c) and (e)) give a representation of the order of the best matching nodes with 
respect to time. However, the trajectory can potentially be misleading as it gives the 
impression that the best matching nodes move fluidly through the U-matrix. Visualising trials 
with just the best matching nodes highlighted in white on black shows the discontinuity on 
the U-matrix for this dataset. Figure 7 ((b), (d) and (f)) shows these hit histograms with best 
matching nodes shown as white patches with their size increasing as the frequency of hits 
increases. For these nodes to stand out the rest of the U-matrix is blacked out. 

Sammon’s mapping was used to visualise the trial SOM because the map size was small with 
an accordingly small topographical error (Table 6). Each trial in the dataset was assigned a 
best matching node which was shown on the output map (Figure 11). The text at each node 
represents the type of shot, the colour of the text identifies the player and the size of the text 
increases as the hit frequency increases. The lateral connections between nodes represent the 
Euclidean distance between them. 

Results 

Phase SOM analysis 

The trajectories for the three-point shot and free throw are visually similar in Regions A and 
C of the U-matrix, suggesting that the coordination patterns in the preparation and release 
phases were similar. The trajectories differ in the middle area of the map, in Region B, in 
which the three-point shot moves closer to the right edge of the map (Figure 2(a)) than the 
trajectories for the free throw (Figure 2(c)). The trajectory for the hook shot (Figures 2(e), (f)) 
is qualitatively different from the other two shots for Player 1. The main visual difference in 
the trajectories was seen as the trajectory moves diagonally up and across the U-matrix in 
Region C. 
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Figure 7: Player 1, a) Three-point shot trajectory, b) Three-point shot hits, c) Free throw trajectory, d) free throw 

hits, e) hook shot trajectory, f) hook shot hits, g) U-matrix with movement phases. 

 

For Player 2 (Figure 8), the preparation phase for the three-point shot and the free throw are 
almost identical, occupying many of the same nodes and clustering similarly. During the 
release phase, the three-point shot moves diagonally up and to the left from the right edge of 
the map in Region C (Figure 8(a), (b)), similarly to the three-point shot and free throw of 
Player 1. The diagonal movement on the U-matrix of the free throw is not as long or as 
consistent as the three-point shot (compare Figure 8(a) with Figure 8(c)). The hook shot 
(Figure 8(e), (f)) is, again, qualitatively different from the other two shots. Unlike all other 
shooting conditions for all other players, the best matching node trajectory for the hook shot 
for Player 2 does not always progress upwards on the U-matrix. The hit histogram in Figure 
8(f) shows the best matching nodes for most of the movement are within two brightly 
coloured borders in Region D of the U-matrix. This is different from any other shot in the 
dataset. 

 
Figure 8: Player 2, a) Three-point shot trajectory, b) ) Three-point shot hits, c) Free throw trajectory, d) free 

throw hits, e) hook shot trajectory, f) hook shot hits, g) U-matrix with movement phases. 
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The best matching node trajectories for Player 3 are similar for the three-point shot and the 
free throw (Figure 9(a), (c)). The hit histograms show a large discontinuity as the movement 
transitions from preparation to release (see Figure 9(b), (d)). The trajectory jumps from 
Region A to a series of about three different nodes in Region D before jumping into Region C 
for the release phase of the shot. The jump into Region D is different from any of the other 
shots in the dataset. The hook shot is visually much different from the three-point shot and 
the free throw; it stays within Region D, without jumping across any borders, and along a 
very consistent trajectory of nodes (Figure 9(e)). 

 
Figure 9: Player 3, a) Three-point shot trajectory, b) ) Three-point shot hits, c) Free throw trajectory, d) free 

throw hits, e) hook shot trajectory, f) hook shot hits, g) U-matrix with movement phases. 

 

For Player 4, the trajectories for the preparation phase of each shot are different. The three-
point (Figure 10(a), (b)) and hook shot (Figure 10(e), (f)) best matching nodes were in 
Region A, as expected, whereas the free throw (Figure 10(c), (d)) began in Region D. In 
Region B, the three-point shot and hook shot trajectories travel to the left of the bright blue 
border near the right edge of the U-matrix (highlighted in yellow in Figure 10(g)) whereas the 
free throw travels to the right of the border. The release, shown in Region C, of the three-
point shot and the free throw are quite similar, as shown in Figure 10(a) and (c). The release 
of all three shots of Player 4 resemble the release of Player 1. The trajectories for the three-
point shot and the free throw move above the bright blue border in the middle of Region C, 
while the trajectory for the hook shot moves below the border. 
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Figure 10: Player 4, a) Three-point shot trajectory, b) ) Three-point shot hits, c) Free throw trajectory, d) free 

throw hits, e) hook shot trajectory, f) hook shot hits, g) U-matrix with movement phases. 

Trial SOM analysis 

Starting with Player 1 (blue text in Figure 11), the three-point shot and hook shot occupy 
nodes at the left edge of the map which makes the two shots second nearest neighbours. The 
free throw hits a region toward the bottom of the map, located more closely to different shot 
types of different players than to other shots by Player 1. As was shown in the previous 
section in Figure 7 and 3, the coordination patterns for each respective shot for Player 1 and 
Player 4 (red) are similar. Also the three-point shots and free throws of Player 2 (green) were 
clustered near the three-point shot of Player 1 (compare Figure 11 with Figure 7 and Figure 
8). 

The three-point shot and free throw for Players 2 and 3, respectively, are second nearest 
neighbours with a noticeably short Euclidean distance between them (compare trajectories in 
Figure 8(a) and (c) and Figure 9(a) and (c)). Most of the hook shots for Player 2 were isolated 
toward the top right corner of the map. Higher variability within this shooting condition is 
evident by the distribution of hits across six nodes. Three other shooting conditions occupy 
more than one node (Player 2 three-point shot and free throw and Player 3 free throw); 
however, the Euclidean distance spanned by the hook shots of Player 2 show this to be the 
most variable shooting condition in the dataset. 
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Figure 11: Sammon's mapping of trial SOM. Player 1 is shown in blue, Player 2 in green, Player 3 in red and 

Player 4 in cyan. 

Figure 9 showed the three-point shot and free throw of Player 3 (red) to appear similar to, 
although distinct from, other shots in the dataset. The hook shot occupied a small area in 
Region D in Figure 9, which was also distinct from other shots in the dataset. Both of these 
observations are apparent in Figure 11 (in red). The three-point shot and free throw are 
separated by only one node and the hook shot is isolated in the top right corner of the map. 

The free throw of Player 4 (cyan) is another shot that is clustered away from the rest of the 
data, in this case the bottom right corner of the map. The three-point and hook shots are 
shown to be more similar to each other than to the free throw; these shots are also more 
similar to the three-point and hook shots of Player 1 that they are to the free throw of Player 
4. Finally, notice that the three-point shot appears to be the most similar shooting condition 
among the players, and the hook shot the least similar. 

Discussion 

The Jump Hook 

Qualitatively, Player 1 supported the hypothesis that the three-point shot (Figure 7(a)) and the 
free throw (Figure 7(b)) would be most similar, but only for the preparation and release 
phases. Although all time frames of the movement were weighted equally, the trial SOM 
classified the data for the three-point shot and hook shot in the extension phase to be a larger 
contributor to overall similarity, partly because of a slight delay at mid-flight between lower 
and upper body extension in these shots. Overall, the trial SOM showed the lowest variability 
between the three-point and the hook shots; during the late extension phase and the beginning 
of the release of the shot, the three-point shot showed more similarity with the hook shot than 
with the free throw. 

For the three-point (Figure 10(a)) and hook (Figure 10(e)) shots, many similar nodes were 
activated in the extension phase (Region B, Figure 10(g)) for Player 4, adding further 
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evidence that the kinematics involved in the jump in these two shots contribute to the data for 
each of these shooting conditions being more similar to each other than to the free throw, 
which does not involve a jump. The release phase of the three-point shot (Figure 10(a)) and 
free throw (Figure 10(c)) showed more similarity on the U-matrix. This was expected since 
the three-point shot and the free throw are two-handed shots, whereas the hook shot is a one-
handed shot. Computer animations showed that the noticeable difference between the three-
point shot and the free throw for Player 4 was the in-phase extension of the upper and lower 
body; for the free throw the knees and hips reached maximum extension while the upper arms 
continued to flex and the elbows and ankles continued to extend. The upper arms then 
stopped, leaving both the ankles and elbows still extending – a somewhat atypical sequence. 
This sequence is shown on the U-matrix by nodes between the edge of the map and the 
rightmost brightly coloured border in Region B (Figure 10(c)). Player 4's free throw was the 
only shot for any of the players to activate these nodes. The overall similarity of the 
movement patterns used for the three-point shot and the hook shot is verified in Figure 11. 

The close proximity of best matching nodes for the release phase of the hook shot for Players 
1 and 4 suggest high similarity between these players for the hook shot release. The short 
Euclidean distance for the hook shots between Players 1 and 4 on the trial SOM (Figure 11) 
suggests further that the hook shots of these two players are similar. The high dimensionality 
of the time series data for these throws makes an in-depth, visual analysis of coordination 
difficult using conventional methods. Research into the information attended to in visual 
demonstrations has shown that the kinematics of distal segments (arms) has a greater impact 
than the kinematics of more proximal segments (trunk) in skill acquisition (Hodges et al., 
2007). This may be used as evidence suggesting that certain information biases the movement 
analyst. Since the major difference associated with the hook shot compared to the other two 
shots is the one-handed release, one could speculate that the movement of the distal segments 
over-influence the analyst into classifying the hook shot as a completely different movement. 
If this is the case, the SOM might provide an objective method for analysing human 
movement for movement analysts and coaches. 

The standing hook 

Only the shots of Players 2 and 3 were clustered on the trial SOM in support of the 
hypothesis that the three-point shot and free throw would show less variability between them 
than when compared to the hook shot. Qualitatively, the three-point shot and free throw, for 
both Player 2 (Figure 8(a), (c)) and Player 3 (Figure 9(a), (c)), were similar to each other for 
not only the preparation and release phases of the movement, as for Player 1, but also the 
extension phase of the movement. The hook shots were qualitatively different for each phase 
and occupied Region D on the U-matrix (Figure 8(e) and Figure 9(e)). Unique to Players 2 
and 3 was that their hook shots lacked a significant jump along with an early release of their 
three-point shot. The jumping kinematics that separated the three-point shot and the free 
throw for Players 1 and 4 were much less pronounced for Players 2 and 3, reflected in the 
short Euclidean distance between the three-point shot and free throw on the trial SOM 
(Figure 11, Players 2 and 3). 

Conclusions 

The phase SOM drew our attention to aspects of the movement that were not obvious from 
more traditional approaches, such as visual analysis of the original movement, or from 
multiple time series data. Characteristics of the movements found by analysis of the phase 
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SOM were summarised on a single output map using the trial SOM. In several cases, the 
SOM output and our natural inclinations as movement analysts did not agree; SOMs thus 
proved to be a useful tool in our analysis of coordination. The movement analyst might be 
distracted by visual information in the movement; the SOM might provide a more objective 
method for explaining movement coordination. In particular, the trial SOM approach may be 
useful for a gaining a more global representation of the dataset and thus neatly summarise the 
relationships between a set of coordination patterns. 
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Abstract 

In this paper, we analyze tactical conflicts between attacking formations and 
blocking formations in the phase of reception attack in volleyball, using a zero-
sum game model.  In this model, we categorize the attacking formations into 9 
patterns which consist of 3 moving patterns of forward players and 3 positions 
(right, center and left) from which the ball can be spiked.  We also categorize the 
blocking formations into 3 formations: “spread”, “bunch” and “dedicate”.  The 
conflicts are formulated as a zero-sum game by tabulating these formations, and 
analyzed by calculating the equilibrium points together with the value of the 
game.  Following this formulation we have developed a game analysis system 
with Visual Basic programming code for solving the game. The solution gives us 
minimax strategies with the ratio of successful blocks.  Here, we try an 
application of game theoretic analysis, using the empirical data taken from an 
intercollegiate women’s league in 2004.  We estimate the values of the game in 
the matches, and illustrate a possible improvement in terms of the allocation of 
attacking and blocking formations used in the matches from the macro-view of 
game theoretic analysis.  This approach could hopefully provide a new standpoint 
of the analysis of real volleyball matches. 

 

KEYWORDS, GAME THEORY, TACTICS, RECEPTION ATTACK, VOLLEYBALL  

Introduction 

Together with the recent enhancements in information technology, a variety of computer 
systems have been developed to analyze the performance in sporting activities. In terms of 
volleyball, some game analysis systems have been used for recording game data and 
providing statistical information to coaches and players for tactical support. For example, a 
well-known program, “Data Volley”, is widely used by national teams and club teams to feed 
back the result of the analysis to coaches and players. Another program, “Touch Volley”, 
(Shigenaga, Ezaki, Yamamoto, & Yamada, 2001; Shigenaga, Ezaki, & Uno, 2002; 
Shigenaga, Ezaki, Hirotsu, & Miyaji, 2004) has been developed for users to easily input data 
using laptop computers with a touch sensor.  
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On the other hand, volleyball will be a possible sport which game theory can be applied in 
practical analysis.  Game theory is a theory of decision-making in conciliation (e.g. Davis, 
1983), and has been applied mainly to economic issues rather than to sports, although some 
applications to sports have been used in textbooks to illustrate the concepts of game theory 
(e.g. Sadovskii & Sadovskii, 1993; Winston, 1993). In terms of academic research, game 
theory is applied to analysis on baseball (Weinstein-Gould, 2009; Turocy; 2008), American 
football (Boronico & Newbert, 1999; Jordan et al., 2009) and soccer (Cowan, 1992; Hirotsu 
and Wright, 2006; Hirotsu et al.,2009). For volleyball, Yoshida, et al.(1994) applied game 
theory in order to identify the optimal strategy for use of the four blocking formations, 
conducting an experiment using intercollegiate players by repeating the attacking-blocking 
situation. However, there does not until now appear to have been any research published 
applying game theory to volleyball using real match data.   

In this paper, we propose a method for analyzing tactics in volleyball using game theory. 
Here, we focus on the phase of reception attack, because the tactical conflicts between 
attacking formations and blocking formations appear in this phase. Firstly, we categorize the 
patterns of the attacking formations and blocking formations. For the purpose of application 
of game theory, we separated the attacking formations into 9 patterns of 3 moving patterns of 
forward players and 3 positions (right, center and left) from which the ball can be spiked. In 
terms of blocking formations, we separated them into 3 formations: “spread”, “bunch” and 
“dedicate”. We then formulated the conflict between attack and block as a zero-sum game by 
tabulating these patterns and analyzed the tactics by calculating the value of the game. 
Following this formulation we have developed a game analysis system with Visual Basic 
(VB) programming code for solving the game. The solution gives us minimax strategies with 
the ratio of successful blocks.  

Here, we try an application of game theoretic analysis, using the empirical data taken from an 
intercollegiate women’s league in 2004.  We estimate the game values in the matches and 
illustrate a possible improvement of the allocation of tactics from this macro-view of game 
theoretic analysis.  Although there can be a lot of subtle confliction which is too complicated 
to be analysed in each phase of real matches, this approach has an advantage of quantifying 
the confliction as a game value and we can discuss the tactics based on the empirical data. 

This research will be a first step to provide a practical application of game theory to real 
volleyball matches.  We hope that this method may help coaches or players to analyse tactics 
quantitatively in volleyball matches. 

Methods 

Modeling the confliction in the phase of reception attack 

We now describe how to model a tactical conflict in volleyball, which consists of a series of 
plays starting off with a service. Here, the phase of reception attack (i.e. the first attack after a 
serve-receive) can be considered as one tactical conflict between attacking formations and 
blocking formations. To model this conflict, we tried to categorize the patterns of the 
attacking formations and blocking formations.  

Here, we separated the attacking formations into 9 patterns which consist of 3 moving 
patterns of forward players and 3 positions (right, center and left) from which the ball can be 
spiked.  Figure 1 shows the 3 moving patterns of forward players for attacking. The patterns 
are named using the similarly shaped Roman numeral. In terms of Pattern III shown in Figure 
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1(a), three forward players move without crossing toward the net for attacking. In terms of 
Pattern XI and IX, two of three forward players cross toward the net for attacking as shown in 
Figure 1(b) and (c), respectively. By taking into account 3 positions (right, center and left) 
from which the ball can be spiked with the above 3 moving patterns, we separate the 
attacking formations into 9 patterns ( = 3 moving patterns × 3 positions). 

 

 

 

 

 

 

 

(a) Pattern III       (b) Pattern XI       (c) Pattern IX  

Figure 1. Three moving patterns of forward players for attacking 

In terms of blocking formations, we also separated them into 3 formations: “spread”, 
“bunch” and “dedicate” (Figure 2). 

 

 

 

 

 

 

(a) Spread    (b) Bunch        (c) Dedicate  

Figure 2. Three blocking formations 

We look at the situations which are categorized in the above patterns, and analyse the ratio of 
successful blocks.  Regarding to the judgment of success or fail of blocks, we define the 
successful blocks as the case that blocking team gets the blocking point, touch the ball to help 
the dig or return the ball by blocking.  We note that we do not include the number of the 
mistake of attacks or feint as the number of attacks. 

Although this analysis may not reflect the real intention of tactics because we estimate the 
tactics by watching the players’ movement or even players can move without being aware of 
it, we would like to propose a way of modeling the tactical confliction in volleyball, 
especially a method for analysis of attacking-blocking situation in this paper.  Application of 
this proposed method will become more practical and informative for coaches and players if 
the tactics or patterns considered into this macro-view of game theoretic analysis are set 
based on teams’ needs or aims. 

  

Setter     Attacker 
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The mathematical formulation 

We now briefly explain how we formulated the conflicts between the attacking formations 
and the blocking formations in the phase of reception attack using the above patterns. Here, 
we formulated it as so called (two-person) zero-sum game, in which two teams play a game 
and both teams cannot get any points at the same time— if one team gets a point, then the 
other team loses and the gain of the ratio of successful blocks of one team should be equal to 
the loss of the ratio of successful attacks of the other team. Actually, this situation can be 
formulated by tabulating the patterns.   

Let aij, be the ratio of successful blocks in the case of attacking pattern i ∊{III R, III C, 
III L, XI R, XI C, XI L, IX R, IX C, IX L} and blocking formation j ∊{S,B,D} as follows: 

 

D}B,{S,IXL},IXC,IXR,XIL,XIC,XIR,L,C,R,{/  jiijijij nsa ⅢⅢⅢ  

where nij is the observed number of the combination that attacking i and blocking j occurred. 
sij is the observed number of successful blocks in this combination.  For example, aIIIRS be the 
ratio of successful blocks in the case of attacking pattern III with a spike from the right 
position and blocking formation “spread”. In this way, we define matrix A=(aij), i ∊{III R, III 
C, III L, XI R, XI C, XI L, IX R, IX C, IX L}, j ∊{S,B,D}, as a payoff matrix as shown in 
Table 1. 
Table 1. Payoff matrix for the phase of the reception attack in the formulation of zero-sum game 

    Blocks  

 Moving pattern Attacked position Spread (S) Bunch (B) Dedicate (D) 

A
tt

ac
ks

 

Pattern III  Right (R) aIIIRS aIIIRB aIIIRD 

Center (C) aIIICS aIIICB aIIICD 

Left (L) aIIILS aIIILB aIIILD 

Pattern XI  Right (R) aXIRS aXIRB aXIRD 

Center (C) aXICS aXICB aXICD 

Left (L) aXILS aXILB aXILD 

Pattern IX  Right (R) aIXRS aIXRB aIXRD 

Center (C) aIXCS aIXCB aIXCD 

Left (L) aIXLS aIXLB aIXLD 

 

In a zero-sum game, each team chooses a tactic that enables the team to do the best it can. 
That is, if both teams play rationally, the attacking team chooses a tactic that provides the 
smallest ratio of successful blocks in row of the matrix. On the other hand, the blocking team 
will choose its tactic that provides the largest ratio of successful blocks in column of the 
matrix. Following this type of inference, if this matrix satisfies the condition that the largest 
minimum of the rows equals to the smallest maximum of these columns (i.e. max (row 
minimum) = min (column maximum)). That is, if  

 

D}B,{S,IXL},IXC,IXR,XIL,XIC,XIR,IIIL,IIIC,{IIIR,maxminminmax  jiij
ji

ij
ij

aa    (2) 

(1) 
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holds, it is said to have a saddle point and this value is called the value of the game. A saddle 
point can also be thought of as an equilibrium point, in the sense that even if one team were 
to change from this tactic, it will not increase their gain (here, the ratio of successful attacks 
or blocks). 

If there are not any saddle points, then the game is solved as mixed strategies, in which each 
team selects its tactics with a probability.  Let the attacking team choose tactic i among m 
tactics with a probability pi (i=1,…,m).  In the same manner, the blocking team choose tactic j 
among n tactics with a probability qj (j=1,…,n). Here, by defining probability vector p＝(p1, p2, 
…,pm) and q＝(q1, q2, …,qn), let E(ｐ, ｑ) be the expected payoff taken by blocking team,  this 
is expressed by  

j

m

i

i

n

j

ij qpaE  ),( qp  

Now in terms of the expected payoff there will be an equilibrium point.  That is,   
),(maxmin qp

qp
E for the attacking team is equal to ),(minmax qp

pq
E  for the blocking team, 

),(maxmin),(minmax
qp

qpqp
pq

EE   

holds�In this way, if mixed strategies are allowed, it can be shown that this type of zero sum 
game has an equilibrium point, the value of the game can be obtained.  In practice, for 
example, by solving the following linear programming problem, the value of the game v with 
tactic i and probability pi can be calculated.  

0,,,

1
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The System For Identifying Minimax Strategies 

Data Input 

Following the above formulation, we have developed a game analysis system with VB code 
for solving the zero-sum game. The solution gives us minimax strategies with the ratio of 
successful blocks.  In this section, we briefly explain this system.  

For the practical use of this system, we can input not only real-time data on the site and 
analyze tactics immediately during a game, but also the past data by watching a recorded scene 
on the screen after a match and analyzing tactics. Through this input operation, the observed 
number of the combination of attacking i and blocking j and the number of successful blocks 
are obtained, and we calculate the ratio based on expression (1). 

In practice, the user watches a recorded scene on “Streaming screen” in Figure 3 and clicks 
buttons on “Data input frame” in the following order:  

- Select a moving pattern and click the button 

- Select a blocking formation and click the button 

(3) 

(4) 

(5) 
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- Evaluate the quality of the block and click the button 

 Then the calculation results are appeared on “Data analysis frame”.  

 
Figure 3. The layout of the frames for a user to input data in this system 

Calculation for Identifying Minimax Strategies 

Using these calculated ratios, we can make the matrix in the form of Table 1, and the game 
can be solved based on expression (5) with the help of the VB code. This calculation starts 
every time after user inputs the data and then clicks “Success” or “Fail” button in data input 
frame on the screen as shown in Figure 3. This calculation is finished less than a few seconds, 
and the entries corresponding to minimax strategies for attacking and blocking are 
highlighted in the matrix on the screen, as also shown in Figure 3. If the game is solved as 
mixed strategies, the probabilities for realizing the minimax strategies are presented in the 
lower textbox on the screen. Here, we note that data is summarized depending on each 
attacking team’s rotation. The result of calculation is aggregated separately for the case that 
the setter of attacking team is in the front positions or in the back positions and displayed in 
the right table in the frame for data analysis in Figure 3.  

The Data 

In this analysis we use the data taken from 32 matches of Division 1 of the Kanto 
intercollegiate women’s league in the fall of the 2004 season.  In the league there were 8 
teams and we here name the teams as A,B,...,H in order of final standings of the season.  We 
took the data by watching recorded scenes after the matches and observed each play. We 
analyzed the 1830 cases of the successful service-receive i.e. the setter gets the received ball 
without moving his position in the phase of reception attack.  We finally selected 1753 cases 
for this analysis by excluding the mistakes of an attack or a feint, and count the number of 
successful blocks with regard to the situations of attacking formations and blocking 
formation.  

Data input frame 

Data analysis frame 

Streaming screen  
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Result of the Analysis 

Overall result 

We firstly describe the explanatory statistics for this analysis.  Table 2 represents the 
frequency and the ratio of the situations which have occurred in the 9 attacking patterns (3 
moving patterns of forward players and 3 positions from which the ball can be spiked).  We 
separate the case of the attacking teams’ setter being in backward position from the case of 
the setter being in forward position, and in this paper we focus on the former case i.e. 
attacking teams’ setter being in backward position.  This is because actual movements of 
players in the case of setter in backward position are more clearly categorized into the above 
3 moving patterns than that in the case of setter in forward position which looks more 
complicated, and the former case will be enough to illustrate the analysis method proposed in 
this paper. 

As shown in table 2, III and XI were used 63% and 27%, respectively, but IX was used just 
around 10% in total.  With regard to the positions from which the ball was spiked, C is used 
more (41%) than L (26%) but there looks not so much difference in distribution.  

Table 2. Frequency of the attacks with regard to moving patterns and positions. 
  R   C L Total  

Ⅲ  225 (22%)  246 (24%) 179 (17%) 650 (63%) 

ⅩⅠ  95 (9%)  121 (12%) 62 (6%) 278 (27%) 

ⅠⅩ  28 (3%)  51 (5%) 25 (2%) 104 (10%) 

Total  348 (34%)  418 (41%) 266 (26%) 1032 (100%) 

Table 3 represents the relationship between attacking patterns and blocking formations. 
According to this table, 99.3% of all blocking formations are categorized into the 3 blocking 
formations (S,B and C), and mostly into S and B.  

Table 3. Relationship between attacking patterns and blocking formations. 
  Frequency of Attacks Frequency of Blocks   

   Freq. Ratio  S B D Others 

Ⅲ,R  225 21.8%  91 130 4 0  

Ⅲ,C  246 23.8%  71 167 7 1  

Ⅲ,L  179 17.3%  71 96 9 3  

ⅩⅠ,R  95 9.2%  27 67 1 0  

ⅩⅠ,C  121 11.7%  21 88 12 0  

ⅩⅠ,L  62 6.0%  11 46 2 3  

ⅠⅩ,R  28 2.7%  10 17 1 0  

ⅠⅩ,C  51 4.9%  19 32 0 0  

ⅠⅩ,L  25 2.4%  9 14 2 0  

Total  1032 100.0%  330 657 38 7  

Ratio     32.0% 63.7% 3.7% 0.7% 
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Table 4 shows the detail of Table 3 by adding the information of the success ratio of blocks.  
The value of the success ratio of blocks should be reliable in some extent.  So we exclude the 
combination of attacking patterns and blocking formations which occurred less than 10 times 
in the calculation of the success ratio of blocks, and make it as a blank in Table 4. 

Table 4. Success ratio of blocks 

 
Attacking    Success ratio of blocks       

    Breakdown   

Pattern Ratio  Average S B D Row Max.  

Ⅲ,R 21.8%  0.418 0.330 0.492 0.492    

Ⅲ,C 23.8%  0.290 0.254 0.305 0.305  (0.75)

Ⅲ,L 17.3%  0.386 0.338 0.448 0.448   

ⅩⅠ,R 9.2%  0.295 0.296 0.299 0.299   

ⅩⅠ,C 11.7%  0.298 0.429 0.273 0.250 0.429  (0.25)

ⅩⅠ,L 6.0%  0.492 0.273 0.522 0.522  

ⅠⅩ,R 2.7%  0.464 0.500 0.471 0.500   

ⅠⅩ,C 4.9%  0.412 0.211 0.531 0.531   

ⅠⅩ,L 2.4%  0.400 0.500 0.500    

Total 100.0%  0.361 0.312 0.393 0.237 0.393    

   Column Min. 0.211 0.273 0.250   

       (0.16) (0.84)  Game value 0.297 

 

As shown in Table 4, pattern “III,C” was used most frequently (23.8% ) and its success ratio of 
blocking is small (0.290). That is, the attacking is not bad because the attacking was done at 
the least average success ratio of blocks.  However, “III,R” was also used frequently (21.8%) 
although its average success ratio of blocking is quite high (0.418).  So, in general the 
allocation of the attacking patterns seems not to be efficient.  

We can obtain the value of the game based on Table 4. The smallest maximum of these rows is 
0.299 and the largest minimum of these columns is 0.273.  We calculated the value of the 
game as 0.297, which is realized by the combination of “Pattern III C” in 0.75 and “Pattern XI 
C in 0.25 for the attacking teams.  This implies that if the attacking teams had used the tactics 
of “III C” in 0.75 and “III C” in 0.25 as a mixed strategy, it could have reduce the success ratio 
of blocks to 0.297. 

Result for each team  

In the above we represented overall result of the league.  Now in this section we describe the 
result for each team separately as shown in Table 5.  Note that in Table 5 each team’s data is 
summarized such that each team is considered as a blocking team, and other 7 teams are 
aggregated as an attacking team against team A.  We also exclude the combination of 
attacking patterns and blocking formations which occurred few times and make it as a blank 
in Table 5. 
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Here, for example, team A have the minimum average success ratio of blocks 0.268 against the 
attacking pattern “III,C”, which was highly used 26.8%.  That is, team A was frequently 
attacked by the patterns which has relatively low success ratio of blocks, although “III,R” of 
the average success ratio of blocks 0.472 was used 22.9%.   

We can also obtain the value of the game based on Table 5.  For example, as the smallest 
maximum of these rows is 0.417 and the largest minimum of these columns is 0.214.  We 
obtained the value of the game as 0.315, which is realized by the combination of “III, C” in 
0.58 and “III, L in 0.42 for the attacking teams.  This implies that if the attacking teams had 
used the tactics of “III C” in 0.58 and “III L” in 0.42 as a mixed strategy, it could have reduced 
the success ratio of blocks to 0.315. We also represent the other 7 teams in Table 5 and each 
team can be analyzed in the same manner. 

 

Discussion 

Overall evaluation of the league 

We now discuss the result of overall tendency of the plays by looking over the whole league 
data.  As shown in Table 4, in general, “III,C” which realized small average success ratio of 
blocks was used most frequently by attacking teams, but  “III,R” which realized high average 
success ratio of blocks was also used frequently. Thus, the attacking patterns seem not to be 
used efficiently.  From the game theoretic point of view, as the value of the game is 0.297 
which is smaller than the average success ratio of blocks, the attacking teams could decrease 
the average success ratio of blocks by changing the allocation of the attacking patterns.  

Result for each team  

Similar to the overall result in the league as discussed in the above, the attacking teams could 
decrease the average success ratio of blocks by changing the allocation of the attacking 
patterns.  For example, team A has the value of the game as 0.315 and it could be realized by 
the combination of “III, C” in 0.58 and “III, C in 0.42 for the opponent attacking teams as a 
mixed strategy. 

Until now, we have analyzed the data from the standpoint of the blocking team, i.e. the team 
we focused is a blocking team.  But, we can look at the situation from the standpoint of the 
attacking team by changing the aspect of the data.  In Table 6, we considered team A, for 
example, as an attacking team and other 7 teams are aggregated as a opposing team against 
team A.  From this aspect, team A have the minimum average success ratio of opponent blocks 
0.243 against team A’s attacking pattern “XI,C”, which was used 23.1% as shown in Table 6.  
On the other hand, “XI, L” against the success ratio of opponent blocks 0.650 was used 12.5%.  
That is, team A frequently attacked with the patterns which has low average success ratio of 
opponent blocks.  The value of the game as 0.295 is realized by the combination of “III, L” in 
0.92 and “XI, C in 0.08.  This implies that team A could still have reduced the success ratio of 
opponent blocks to 0.295. That is, by changing the allocation of attacking patterns of team A, it 
could decrease the success ratio of blocking by 0.346－0.295=0.051.  We also represent the 
other 7 teams in Table 6 and each team can be analyzed in the same manner. 
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Table 5. The data from the standpoint of each team’s blocking formations 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Freq. of Attacks Freq.of Blocks Success ratio of blocks
Freq. Ratio S B D Others Total S B D Row Max.

Team A

Ⅲ,R 36 22.9% 14 22 0 0 0.472 0.429 0.500 0.500

Ⅲ,C 42 26.8% 12 28 1 1 0.268 0.417 0.214 0.417 (0.58)

Ⅲ,L 41 26.1% 17 22 2 0 0.317 0.176 0.455 0.455 (0.42)

ⅩⅠ,R 5 3.2% 1 4 0 0 0.600

ⅩⅠ,C 8 5.1% 1 7 0 0 0.750

ⅩⅠ,L 3 1.9% 1 2 0 0 0.333

ⅠⅩ,R 6 3.8% 0 5 1 0 0.500
ⅠⅩ,C 10 6.4% 1 9 0 0 0.400 0.444 0.444
ⅠⅩ,L 6 3.8% 0 5 1 0 0.833

Total 157 100.0% 47 104 5 1 0.404 0.319 0.452 0.452
29.9% 66.2% 3.2% 0.6% Column Min. 0.180 0.214

(0.35) (0.65) Game Value 0.315

Team B
Ⅲ,R 35 23.8% 6 28 1 0 0.543 0.333 0.607 0.607

Ⅲ,C 33 22.4% 7 25 1 0 0.273 0.143 0.280 0.280

Ⅲ,L 28 19.0% 8 18 1 1 0.444 0.625 0.389 0.625

ⅩⅠ,R 14 9.5% 5 9 0 0 0.357 0.400 0.333 0.400

ⅩⅠ,C 13 8.8% 2 11 0 0 0.385 0.500 0.364 0.500

ⅩⅠ,L 7 4.8% 1 6 0 0 0.571

ⅠⅩ,R 4 2.7% 0 4 0 0 0.500
ⅠⅩ,C 8 5.4% 3 5 0 0 0.500
ⅠⅩ,L 5 3.4% 1 4 0 0 0.200
Total 147 100.0% 33 110 3 1 0.418 0.424 0.418 0.424

22.4% 74.8% 2.0% 0.7% Column Min. 0.14 0.28
Game Value 0.280

Team C
Ⅲ,R 36 22.4% 4 32 0 0 0.528 0.750 0.500 0.750

Ⅲ,C 38 23.6% 4 32 2 0 0.421 0.000 0.469 0.469

Ⅲ,L 23 14.3% 4 18 1 0 0.435 0.000 0.556 0.556

ⅩⅠ,R 24 14.9% 0 24 0 0 0.250 0.250 0.250

ⅩⅠ,C 20 12.4% 0 18 2 0 0.200 0.222 0.222

ⅩⅠ,L 14 8.7% 0 14 0 0 0.500 0.500 0.500

ⅠⅩ,R 0 0.0% 0 0 0 0
ⅠⅩ,C 6 3.7% 1 5 0 0 0.500
ⅠⅩ,L 0 0.0% 0 0 0 0
Total 161 100.0% 13 143 5 0 0.404 0.231 0.427 0.427

8.1% 88.8% 3.1% 0.0% Column Min. 0.000 0.222
Game Value 0.222

Team D
Ⅲ,R 27 25.0% 1 26 0 0 0.444 0.462 0.462

Ⅲ,C 30 27.8% 0 29 1 0 0.300 0.310 0.310

Ⅲ,L 16 14.8% 1 14 1 0 0.250 0.286 0.286

ⅩⅠ,R 13 12.0% 2 11 0 0 0.308 0.364 0.364

ⅩⅠ,C 16 14.8% 1 15 0 0 0.125 0.067 0.067

ⅩⅠ,L 4 3.7% 0 4 0 0 0.500

ⅠⅩ,R 0 0.0% 0 0 0 0
ⅠⅩ,C 1 0.9% 0 1 0 0 0.000
ⅠⅩ,L 1 0.9% 0 1 0 0 1.000
Total 108 100.0% 5 101 2 0 0.315 0.327 0.327

4.6% 93.5% 1.9% 0.0% Column Min. 0.067
Game Value 0.067

Team E
Ⅲ,R 26 20.3% 21 3 2 0 0.423 0.476 0.333 0.476

Ⅲ,C 31 24.2% 14 17 0 0 0.323 0.357 0.294 0.357

Ⅲ,L 18 14.1% 13 5 0 0 0.389 0.308 0.600 0.600

ⅩⅠ,R 11 8.6% 5 5 1 0 0.364 0.400 0.400 0.400

ⅩⅠ,C 13 10.2% 5 8 0 0 0.231 0.200 0.250 0.250

ⅩⅠ,L 8 6.3% 1 6 0 1 0.286

ⅠⅩ,R 6 4.7% 5 1 0 0 0.500
ⅠⅩ,C 9 7.0% 5 4 0 0 0.556
ⅠⅩ,L 6 4.7% 4 1 1 0 0.333
Total 128 100.0% 73 50 4 1 0.370 0.370 0.400 0.400

57.0% 39.1% 3.1% 0.8% Column Min. 0.200 0.250
Game Value 0.250

Team F
Ⅲ,R 31 23.1% 17 13 1 0 0.355 0.353 0.385 0.385

Ⅲ,C 32 23.9% 14 18 0 0 0.250 0.214 0.278 0.278

Ⅲ,L 19 14.2% 10 8 0 1 0.500 0.500 0.500 0.500

ⅩⅠ,R 8 6.0% 4 4 0 0 0.125

ⅩⅠ,C 19 14.2% 3 13 3 0 0.421 0.667 0.385 0.667

ⅩⅠ,L 10 7.5% 3 7 0 0 0.500 0.000 0.714 0.714

ⅠⅩ,R 4 3.0% 1 3 0 0 0.500
ⅠⅩ,C 7 5.2% 2 5 0 0 0.429
ⅠⅩ,L 4 3.0% 1 3 0 0 0.250
Total 134 100.0% 55 74 4 1 0.361 0.309 0.405 0.405

41.0% 55.2% 3.0% 0.7% Column Min. 0.000 0.278
Game Value 0.278

Team G
Ⅲ,R 13 14.9% 10 3 0 0 0.077 0.000 0.333 0.333

Ⅲ,C 15 17.2% 6 9 0 0 0.200 0.000 0.333 0.333 (0.40)

Ⅲ,L 15 17.2% 7 6 1 1 0.429 0.429 0.500 0.500

ⅩⅠ,R 5 5.7% 1 4 0 0 0.000

ⅩⅠ,C 16 18.4% 2 11 3 0 0.250 0.500 0.273 0.500 (0.60)

ⅩⅠ,L 12 13.8% 3 5 2 2 0.600 0.333 0.600 0.600

ⅠⅩ,R 6 6.9% 2 4 0 0 0.500
ⅠⅩ,C 5 5.7% 3 2 0 0 0.200
ⅠⅩ,L 0 0.0% 0 0 0 0
Total 87 100.0% 34 44 6 3 0.286 0.235 0.318 0.318

39.1% 50.6% 6.9% 3.4% Column Min. 0.000 0.273
(0.11) (0.89) Game Value 0.297

Team H
Ⅲ,R 21 19.1% 18 3 0 0 0.190 0.167 0.333 0.333 (0.63)

Ⅲ,C 25 22.7% 14 9 2 0 0.200 0.286 0.111 0.286

Ⅲ,L 19 17.3% 11 5 3 0 0.368 0.364 0.400 0.400

ⅩⅠ,R 15 13.6% 9 6 0 0 0.333 0.444 0.167 0.444

ⅩⅠ,C 16 14.5% 7 5 4 0 0.250 0.286 0.000 0.286 (0.37)

ⅩⅠ,L 4 3.6% 2 2 0 0 0.500

ⅠⅩ,R 2 1.8% 2 0 0 0 0.000
ⅠⅩ,C 5 4.5% 4 1 0 0 0.200
ⅠⅩ,L 3 2.7% 3 0 0 0 0.000
Total 110 100.0% 70 31 9 0 0.255 0.257 0.226 0.257

110 63.6% 28.2% 8.2% 0.0% Column Min. 0.167 0.000
(0.74) (0.26) Game Value 0.21
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Table 6. The data from the standpoint of each team’ attacking patterns 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Freq. of Attacks Freq.of Blocks Success ratio of blocks
Freq. Ratio S B D Others Total S B D Row Max.

Team A

Ⅲ,R 28 17.5% 7 21 0 0 0.357 0.000 0.476 0.476

Ⅲ,C 26 16.3% 11 12 3 0 0.346 0.182 0.417 0.667

Ⅲ,L 20 12.5% 7 10 2 1 0.263 0.286 0.300 0.300 (0.92)

ⅩⅠ,R 29 18.1% 4 25 0 0 0.310 0.500 0.280 0.500

ⅩⅠ,C 37 23.1% 5 30 2 0 0.243 0.400 0.233 0.400 (0.08)

ⅩⅠ,L 20 12.5% 2 18 0 0 0.650 0.500 0.667 0.667

ⅠⅩ,R 0 0.0% 0 0 0 0
ⅠⅩ,C 0 0.0% 0 0 0 0
ⅠⅩ,L 0 0.0% 0 0 0 0

Total 160 100.0% 36 116 7 1 0.346 0.250 0.379 0.379
22.5% 72.5% 4.4% 0.6% Column Min. 0.000 0.233

(0.37) (0.63) Game Value 0.295

Team B
Ⅲ,R 43 32.8% 18 24 1 0 0.419 0.278 0.542 0.542

Ⅲ,C 37 28.2% 10 26 1 0 0.216 0.300 0.192 0.300

Ⅲ,L 27 20.6% 12 12 3 0 0.111 0.083 0.167 0.167

ⅩⅠ,R 10 7.6% 4 6 0 0 0.200 0.250 0.167 0.250

ⅩⅠ,C 6 4.6% 3 3 0 0 0.667

ⅩⅠ,L 2 1.5% 1 1 0 0 0.500

ⅠⅩ,R 2 1.5% 0 2 0 0 0.500
ⅠⅩ,C 4 3.1% 2 2 0 0 0.500
ⅠⅩ,L 0 0.0% 0 0 0 0
Total 131 100.0% 50 76 5 0 0.298 0.280 0.329 0.329

38.2% 58.0% 3.8% 0.0% Column Min. 0.083 0.167
Game Value 0.167

Team C
Ⅲ,R 21 15.6% 7 13 1 0 0.333 0.571 0.231 0.571

Ⅲ,C 26 19.3% 6 19 0 1 0.360 0.333 0.368 0.368

Ⅲ,L 20 14.8% 6 12 2 0 0.400 0.167 0.583 0.583

ⅩⅠ,R 11 8.1% 5 6 0 0 0.364 0.200 0.500 0.500

ⅩⅠ,C 20 14.8% 4 14 2 0 0.250 0.250 0.286 0.286 (0.90)

ⅩⅠ,L 7 5.2% 2 4 1 0 0.571 1.000

ⅠⅩ,R 6 4.4% 1 4 1 0 0.333 1.000
ⅠⅩ,C 13 9.6% 4 9 0 0 0.385 0.250 0.444 0.444
ⅠⅩ,L 11 8.1% 4 6 1 0 0.273 0.500 0.167 0.500 (0.10)
Total 135 100.0% 39 87 8 1 0.351 0.333 0.379 0.379

28.9% 64.4% 5.9% 0.7% Column Min. 0.167 0.167
(0.33) (0.67) Game Value 0.274

Team D
Ⅲ,R 32 23.4% 15 17 0 0 0.375 0.267 0.471 0.471

Ⅲ,C 37 27.0% 14 22 1 0 0.162 0.214 0.136 0.214

Ⅲ,L 31 22.6% 17 12 1 1 0.533 0.529 0.500 0.529

ⅩⅠ,R 3 2.2% 0 3 0 0 0.000

ⅩⅠ,C 2 1.5% 0 2 0 0 0.000

ⅩⅠ,L 3 2.2% 1 2 0 0 0.333

ⅠⅩ,R 10 7.3% 3 7 0 0 0.700 0.667 0.714 0.714
ⅠⅩ,C 13 9.5% 3 10 0 0 0.462 0.333 0.500 0.500
ⅠⅩ,L 6 4.4% 2 3 1 0 0.333
Total 137 100.0% 55 78 3 1 0.368 0.345 0.372 0.372

40.1% 56.9% 2.2% 0.7% Column Min. 0.214 0.136
Game Value 0.214

Team E
Ⅲ,R 30 26.3% 16 14 0 0 0.400 0.250 0.571 0.571

Ⅲ,C 44 38.6% 8 34 2 0 0.273 0.250 0.294 0.294 (0.86)

Ⅲ,L 12 10.5% 5 7 0 0 0.583 0.800 0.429 0.800

ⅩⅠ,R 6 5.3% 2 4 0 0 0.333

ⅩⅠ,C 17 14.9% 2 9 6 0 0.353 0.500 0.222 0.500 (0.14)

ⅩⅠ,L 4 3.5% 1 3 0 0 0.500

ⅠⅩ,R 1 0.9% 1 0 0 0 1.000
ⅠⅩ,C 0 0.0% 0 0 0 0
ⅠⅩ,L 0 0.0% 0 0 0 0
Total 114 100.0% 35 71 8 0 0.368 0.371 0.366 0.371

30.7% 62.3% 7.0% 0.0% Column Min. 0.250 0.222
(0.23) (0.77) Game Value 0.284

Team F
Ⅲ,R 26 21.3% 14 12 0 0 0.462 0.500 0.417 0.500

Ⅲ,C 25 20.5% 13 12 0 0 0.240 0.385 0.083 0.385 (0.59)

Ⅲ,L 10 8.2% 5 5 0 0 0.400 0.200 0.600 0.600

ⅩⅠ,R 21 17.2% 6 15 0 0 0.286 0.167 0.333 0.333

ⅩⅠ,C 12 9.8% 3 9 0 0 0.333 0.000 0.444 0.444 (0.41)

ⅩⅠ,L 7 5.7% 1 5 0 1 0.333

ⅠⅩ,R 6 4.9% 4 2 0 0 0.167
ⅠⅩ,C 12 9.8% 8 4 0 0 0.250 0.250 0.250 0.250
ⅠⅩ,L 3 2.5% 3 0 0 0 0.000
Total 122 100.0% 57 64 0 1 0.314 0.281 0.344 0.344

46.7% 52.5% 0.0% 0.8% Column Min. 0.000 0.083
(0.48) (0.52) Game Value 0.228

Team G
Ⅲ,R 13 19.1% 2 10 1 0 0.692 1.000 0.700 1.000

Ⅲ,C 8 11.8% 0 8 0 0 0.375

Ⅲ,L 23 33.8% 6 16 1 0 0.435 0.500 0.438 0.500

ⅩⅠ,R 5 7.4% 2 3 0 0 0.400

ⅩⅠ,C 10 14.7% 1 9 0 0 0.300 0.333 0.333

ⅩⅠ,L 6 8.8% 1 5 0 0 0.500

ⅠⅩ,R 0 0.0% 0 0 0 0
ⅠⅩ,C 3 4.4% 1 2 0 0 0.333
ⅠⅩ,L 0 0.0% 0 0 0 0
Total 68 100.0% 13 53 2 0 0.456 0.538 0.453 0.538

19.1% 77.9% 2.9% 0.0% Column Min. 0.000 0.333
Game Value 0.333

Team H
Ⅲ,R 32 19.4% 12 19 1 0 0.438 0.333 0.526 0.526

Ⅲ,C 43 26.1% 9 34 0 0 0.419 0.111 0.500 0.500

Ⅲ,L 36 21.8% 13 22 0 1 0.429 0.231 0.545 0.545

ⅩⅠ,R 10 6.1% 4 5 1 0 0.300 0.250 0.400 0.400

ⅩⅠ,C 17 10.3% 3 12 2 0 0.294 0.667 0.250 0.667

ⅩⅠ,L 13 7.9% 2 8 1 2 0.273 0.000 0.250 0.250

ⅠⅩ,R 3 1.8% 1 2 0 0 0.333
ⅠⅩ,C 6 3.6% 1 5 0 0 0.667
ⅠⅩ,L 5 3.0% 0 5 0 0 1.000
Total 165 100.0% 45 112 5 3 0.420 0.267 0.491 0.491

27.3% 67.9% 3.0% 1.8% Column Min. 0.000 0.250
Game Value 0.250
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Here, we summarize the difference between the average success ratio of blocks and the value 
of the game in Table 7. 

Table 7. Success ratio of blocks 
 

 

 

 

 

 

 

 

 

 

In Table 7, firstly we look at the difference of the success ratio of blocks between the 
standpoint of blocking and attacking.  For example, as shown Table 7 team A has the average 
success ratio of blocks 0.404 as the blocking team.  This value corresponds to the value in 
Table 5.  As an attacking team, team A faces the opponent blocks as the average success ratio 
of 0.346, which corresponds to the value in Table 6.  Here the difference 0.404－0.346=0.058 
is considered to be a superiority of average blocking ability by team A to average ability being 
blocked by other 7 teams.  

On the other hand, team A has the difference between the average success ratio of blocks and 
the value of the game in blocking such that 0.404－0.315=0.089.  This is considered to be a 
potential gain comes from the tendency that other 7 teams do not use suitable allocation of 
attacking patterns.  In other words, if other 7 teams change the allocation of attacking patterns, 
team A could decrease the success ratio of blocks by 0.089. (i.e. Team A seems to get benefit 
0.089 from other 7 teams’ inefficiencies.) 

Team A also has the difference between the average success ratio of opponent blocks and the 
value of the game in terms of attacking such that 0.346－0.295=0.051.  This is considered to 
be a potential loss of team A which does not use suitable allocation of attacking patterns.  In 
other words, if team A change the allocation of attacking patterns, team A could decrease the 
average success ratio of opponent blocks by 0.051. (i.e. Team A seems to lose benefit 0.051 
from other 7 teams by team A’s inefficiencies.) 

In total, team A gets benefit of 0.089 and lose 0.051, so it gets 0.089－0.051=0.038 as shown 
in the right column of Table 7.  The other 7 teams are analyzed in the same manner.   

We plot these values shown in Table 7 on Figure 4. As illustrated in Figure 3, this macro-view 
of the game theoretic analysis shed the light on the characteristics of teams.  In this figure, x-
axis represents the difference of success ratio of blocking between the standpoint of blocking 
and attacking, which is observed just by the statistical data represented by the heading 
“①－②” in Table 7.  Y-axis represents the difference of potential benefit, which is estimated 
by this game theoretical analysis represented by “④－⑥” in Table 7.  Therefore, the teams 
plotted in the upper right area are considered that they are relatively not only superior in 

Standpoint of Standpoint of ①－② Standpoint of ①－③ Standpoint of ②－⑤ ④－⑥
Blocks Attacks Blocks Attacks

Success ratio Success ratio Game Value Game Value

① ② ③ ④ ⑤ ⑥

1 Team A 0.404 0.346 0.058 0.315 0.089 0.295 0.051 0.038

2 Team B 0.418 0.298 0.120 0.280 0.138 0.167 0.131 0.007

3 Team C 0.404 0.351 0.053 0.222 0.182 0.274 0.077 0.105

4 Team D 0.315 0.368 -0.053 0.067 0.248 0.214 0.153 0.095

5 Team E 0.370 0.368 0.002 0.250 0.120 0.284 0.084 0.036

6 Team F 0.361 0.314 0.047 0.278 0.083 0.228 0.086 -0.003

7 Team G 0.286 0.456 -0.170 0.210 0.076 0.333 0.123 -0.047
8 Team H 0.255 0.420 -0.165 0.210 0.045 0.250 0.170 -0.125
Total 0.361 0.361 0.297 0.064 0.297 0.064
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average success ratio of blocks but also get potential benefit form other teams’ poor allocation 
of attacking patterns. On the other hand the team located in the lower left area are relatively 
inferior in average success ratio of blocks but also lose potential benefit by its own poor 
allocation of patterns. 

Not surprisingly, the top 3 teams of the league (teams A, B and C) locate in the upper right 
area.  Here, team C get the highest potential benefit by the allocation of attacking patterns from 
the standpoint of this game theoretic analysis.  The bottom 2 teams (teams G and H) locate in 
the lower left area.  Team D is not good in the sense of its relative success ratio of blocks but it 
seems to get quite large benefit by allocation of attacking patterns.  These results are of 
particular interest since they give insights which could in no way be ascertained without help 
of game theory.   

 

 

 

 

 
 

  

 

 

 

Figure 4. Characteristics of teams 

Conclusions 

We have presented a method for analyzing tactics in volleyball using game theory, focusing 
on the phase of reception attack. We have formulated the conflict between attacking 
formations and blocking formations as a zero-sum game by tabulating these patterns of 
formations, and have analyzed the tactics by calculating the value of the game with the game 
analysis system developed on VB.  We have also shown an example of a macro-view of 
game theoretic analysis, using the data taken from the intercollegiate women’s league in 
2004.  Here, we have estimated the game values for the league and show a possible 
improvement of the allocation of attacking patterns.  We have also tried to illustrate the 
characteristics of teams from the point of success ratio of blocks and allocation of attacking 
patterns.  

Although we have used the empirical data of the intercollegiate women’s league in the 
situation that the setter’s position in backward, we will analyze the situation that the setter’s 
position in forward which will be more complicated to model the tactics. We can also state 
that we should extend our analysis from the women’s league to other level and modifying the 
mathematical model of the pattern of attacking and blocking suitable for the level of play in 
practice.   

This research is just a first step to provide a practical application of game theory to real 
volleyball matches, but this approach could provide a new standpoint of the macro-view of 
the volleyball match analysis.  Further, this type of game theoretic analysis could be also 

B 

H 

‐ 0.20 

‐ 0.15 

‐ 0.10 

‐ 0.05 

0.00 

0.05 

0.10 

0.15 

0.20 

‐0.20  ‐0.10 0.00  0.10  0.20 

C 
D 

G F 

E A 

④－⑥ 

①－② 



International Journal of Computer Science in Sport – Volume 9/Edition 1 www.iacss.org 

   

 

43 

applicable to other sports by formulating a confliction in each sport, and could hopefully give 
us new insights into the game. 
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Abstract 

Simulating the movement of a snatch weightlifter by means of the dynamic 
formulation and optimizing this movement using Genetic Algorithm as a soft 
computing method is the main purpose of this study. The snatch weightlifter is 
modeled by an open kinematic chain. The problem is defined as the optimization 
of the movement of this model from the first position to the predefined second 
position while considering the specific optimum criterion like minimizing the 
muscular effort. The results are represented in the forms of kinematic and kinetic 
data like trajectory of barbell and actuating joint torques. Because of some 
similarities between the results and experimental observations by other researches 
we conclude that our method can be able to model the real situation. This model 
can be used to optimize the performance of the weightlifters and it could give us 
some useful advice about the most effective technique. 

 

KEYWORDS: WEIGHTLIFTING, SIMULATION, SPORT BIOMECHANICS 

Introduction 

Optimization of sport techniques is one of the main goals of sport biomechanics. Since the 
increasing coaches’ tendency to biomechanical analysis of weightlifting, several 
biomechanical characteristics have been introduced to categorize the weightlifters’ 
performance. Power produced by weightlifters, barbell trajectory, and velocity of barbell are 
three examples of these characteristics. Analyzing these parameters introduce some indices 
for evaluating the lifting performance. The most common is the barbell trajectory which has 
been investigated over the years by several researchers (Baumann, Gross, Quade, Galbierz, & 
Schwirtz, 1998; Byrd, 2001; Garhammer, 1985, 1998, 2001; Gourgoulis, Aggelousis, 
Mavromatis, & Garas, 2000; Hiskia, 1997; Isaka, Okada, & Funato, 1996; Schilling, Stone, 
O’Brayant, Fry, Cogllanese, & Pierce, 2002; Vorobyev, 1978).  

Dividing the optimal barbell trajectories from non-optimal ones is in agreement with the most 
of above mentioned researchers. They studied the differences between the elite weightlifters’ 
characteristics of motion and then categorized the optimal lifting motion patterns. After all, 
they introduced several optimal trajectories for snatch weightlifting. Vorobyev (1978) 
suggested three barbell movement patterns for snatch weightlifting roughly depicted in 
Figure 1. The vertical lines in this Figure indicate the x-component of initial position of 
barbell and consequently demonstrate its inward-toward motion during the snatch lift. 
Garhammer (1998) showed that the pattern type A is the best trajectory according to his 
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investigation among the elite weightlifters. Bauman et al. (1998) reported some results which 
showed the type B is the best, but Hiskia (1997) who studied a large number of weightlifters 
concluded that the type C is more common than the other types. Byrd (2001) and Bartonietz 
(1996) also published some results which showed the pattern type B in their experimental 
observations.  

 
Figure 1. Three types of barbell trajectory in snatch weightlifting (Vertical line demonstrates the inward-toward 

motion of barbell during the snatch lift) 

One of the reasons to this inconsistency for choosing the best type is this idea that the 
selected criterion by above researchers might not be appropriate. Their criterion was the 
weightlifters’ success percentage to do the snatch. Considering none of the mechanical 
characteristics to introduce the best pattern is the disadvantage of this criterion. Also the 
researchers accept the dependency of the optimal barbell trajectory to specific personal 
parameters such as anthropometric and physical characteristics (Campos, 2006). On the other 
hand these empirically optimal patterns have not the ability to improve the performance of 
elite weightlifters themselves, because you cannot compare a good pattern with itself to reach 
to better performance.  

According to above mentioned deficiencies, the necessity for developing a pure mechanical 
model which considers the specific characteristics of each individual will be obvious. 
Theoretically this model will be able to lead us to the best ideal technique by using the 
mechanical principles. The mechanical models have been used to evaluate each technique 
and to facilitate the procedure of optimization by using the mathematical approach. To do 
this, we use a five-link model in sagittal plane which is used for lifting task modeling by 
several researchers (Chang, Brown, Bloswick, & Hsiang, 2001; Lin, Ayoub, & Bernard, 
1999; Park, Martin, Choe, Chaffin, & Reed, 2005). The movement of this model can be 
optimized by minimizing specific mechanical criteria like time, actuating joint torques, and 
energy consumption (Rostami & Bessonnet, 2001). In recent years, some researchers (Chang 
et al., 2001) used actuating joint torque as a mechanical criterion to introduce optimal 
patterns for lifting tasks.We prefer the same because of its relation to injuries (Chang et al., 
2001). Optimization of lifting tasks was done by some researchers (Gruver, Ayoub, & Muth, 
1979; Hsiang, Chang, & McGorry, 1999; Lin et al, 1999; Salaami et al, 2008; Javadi, Arshi, 
& Shirzad, 2007) who obtain the optimal movement by using some pre-defined trajectory for 
each joint. The optimization algorithm minimizes the selective criterion by changing the 
coefficient of these above mentioned trajectories. Each trajectory should be defined by user 
and it will be varied if the number of constraints is changed. Another restriction of their 
optimizing approach is dimensional problem of dynamic programming which is used by 
them. Chang et al. (2001) believed that this approach is not suitable and use spacetime 
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optimization method to produce better solution for manual lifting task. We believe that 
although the sequential quadratic programming which is used by him is a good approach and 
it has some attractive features but also it represents some problems. The Hessian matrix 
containing the second order derivatives and the solution often requires inversion or 
factorization of it which is time consuming and it is not easy also. Therefore we want to 
introduce a suitable and easy to use approach which will be able to predict the optimal 
movement in snatch weightlifting technique.  

Let us summarize the problem as finding the most effective technique while considering the 
motion equations, the specific mechanical criterion, and the dynamic constraints 
simultaneously. To formulate this problem we encounter with a set of motion equations 
should be solved together with minimizing an equation representing the optimization 
criterion. This situation forms a problem in optimal control domain. There are two different 
methods to solve this problem. First, the mathematical indirect approach which gives us a 
unique solution (Nejadian & Rostami, 2007; Lenjan Nejadian, Rostami, & Towhidkhah, 
2008) and the second, direct search approach between all solutions of motion equations to 
reach a solution which fulfills the criterion equation (Lenjan Nejadian & Rostami, 2007). We 
choose the latter because of its easy modeling and applying and also its faster response. But 
the direct search without any specific patterns is not suitable or even applicable in this special 
problem. There are many algorithms to conduct the search approach and one of them is 
genetic algorithm. In the recent past, genetic algorithm (GA) has been increasingly applied to 
various optimization problems, including engineering and sciences. It has the advantage of 
broad applicability, ease of use, and global perspective. In this study, we use a five-link 
biomechanical model to evaluate the different snatch motions and to predict the optimum 
barbell trajectory which minimizes the specific mechanical criterion by using genetic 
algorithm (GA) which is a valid approach to problems requiring efficient and effective 
searches. The validity of this model can be obtained by comparing its results and 
experimental observations. But we expect some differences because of two main reasons; 
first, the intrinsic simplicity of our model and the second, the deviation of each weightlifter 
from the perfect optimal technique. 

Methods 

To build a biomechanical model of a weightlifter we should translate the physical property of 
human into the mathematical one.  It means that we should convert the body to appropriate 
model of links with proper length, mass and moment of inertia. For this purpose, we can use 
the anthropometric models developed by several researchers. A few comprehensive models 
have been described by Chaffin and Anderson (1991). By using the proper model, we have a 
multi-segment model that contains information about mass, center of gravity, length and 
moments of inertia of each segment which represents the whole body. In this model, the body 
segments convert into solid links and the body joints convert into simple revolute joints. We 
simplify this model to a two-dimensional model in sagittal plane which can be used for 
modeling the weightlifting or other general lifting activities. This is a common assumption 
that has been used by several researchers (Chang et al., 2001; Menegaldo, Fleury, & Weber, 
2003; Park et al., 2005). Now we should make a decision about the number of links we like to 
use and hence the number of degrees of freedom (DOF) which is the main factor that affects 
the complexity of model, and therefore it has a direct effect on time and cost of computing 
and solving the problem. The best model is the one that minimizes the complexity and 
simultaneously offers a good approximation of the whole motion. Several researchers (Chang 
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et al., 2001; Menegaldo et al., 2003; Park et al., 2005) used five-link model to analyze lifting 
tasks. Therefore we use the five degrees of freedom model. 

Equations of Motion 

Using the five-link planar model enables us to extract its motion equations. In Figure 2 the 
schematic diagram of this model at initial time can be observed. This model is made by five 
links by which shin, thigh, trunk, upper arm and forearm are represented, respectively named 
L1 to L5. Also, five body joints: ankle, knee, hip, shoulder and elbow are represented O1 to 
O5 respectively. 

 
Figure 2. Biomechanical model of a weightlifter at initial position. 

Consider a coordinate system ( 000 ZYX ) which is locked at ankle joint. The model motion 
can be described by the five relative joint coordinates which are defined by: 

)(5 , ... 1,),( 0001 0
YXZXX Z   iq iii        (1) 

The vector iX  indicates the direction of link iL and 0Z  indicates the positive direction of 

angular parameters. 

Let us add the following complementary notations: 
T

5 ),...,( qq1q , vector of joint coordinates 

T
5 ),...,( qq1  q , vector of joint velocities 

T
5 ),...,( qq1  q , vector of joint accelerations 

where 22 d/dd/d tqq,tqq iiii   . 

According to Figure 2, we define the dimension and inertia characteristics of the model by: 

iiii1ii Lr;5...,1,ir linkoflength,,  XOO  

5...,1,ia iiii  ,XGO  

In which, iG  is center of gravity of link iL  and ia  is its distance from proximal joint. 
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ii Lm link  of mass,  

z
iI   , moment of inertia of iL  with respect to the joint axis )(Oi 0Z,   

Numerical values of these dimensional parameters are calculated based on body weight and 
height of the weightlifter using the models described before (Chaffin and Anderson 1991). 
For obtaining the equations of motion the Lagrangian of the model is written as: 

)(),(),( qqqqq UTL           (2) 

where U is the potential energy and T is the kinetic energy defined by: 

qqMqqq  )(2/1),( TT          (3) 

M is the mass matrix of the kinetic chain which its componets are complex function of im  

and z
iI . Equations of motion may be derived by Lagrange’s formula: 
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The right hand term is generalized force which is, due to the definition of virtual work in 
rotational movements, convert to applied torques.  a

iQ  represents the joint actuating torque 

exerted by 1iL  on iL  at iO  and d
iQ  is joint dissipative torque. We neglect the d

iQ  term 

because it is very small by comparison with a
iQ . 

Constraints 

The initial and final conditions specify the conditions of model at start position and at the end 
of second pulling phase (i.e. start of moving the barbell as a projectile) respectively. The 
initial conditions are primarily formulated by:  
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)( 6OV  is the velocity of barbell which is labled as 6O  in Figure 2. The first equation (5a) 

defines the position of each link and consequently the mass center of barbell and the last two 
equations (5b, c) indicate that barbell has no initial velocity in horizontal and vertical 
direction at the beginning of motion, i.e., “Lift-off” phase. We formulate the final conditions 
as below: 
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The first equation (6a) is the vertical position of barbell at the end of second pulling phase 
and the last two equations (6b, c) indicate the horizontal and vertical velocities of the barbell 
at this point. These final conditions should be selected appropriately to allow the weightlifter 
completing the snatch. It means that the projectile motion of barbell should be started in 
appropriate height and velocity to give weightlifter sufficient time for completing the snatch. 
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The total time between two above mentioned state conditions is fixed to a certain value which 
is obtained approximately from experimental results. In order to respect joint stops, to 
prevent counter-flexion and to moderate total joint coordinate variations, we have to 
prescribe bounds on the joint coordinates, defined by the below constraints: 

maxmin )(,5,],[ iii
fi qtqqittt        (7) 

In which the it  and ft  are the initial and final times and the min
iq  and max

iq  are specified 

values (Lin et al., 1999). In addition to state or kinematics constrains, we use control 
constraints in the form of the inequalities defining limitation on torques acting on the 
mechanical system. Muscles produce joint torques with limited values in each angular 
position (Chaffin & Anderson, 1991). Therefore we can write: 

)()(,],[ max, tQtQttt a
i

a
i

fi         (8) 

Another constraint is balance maintenance. At each instant the mass center of entire system, 
including weightlifter and barbell, should be in acceptable range or base of support limits.  

LimitUppertCOMLimitLowerttt barbellbody
fi   )(,],[     (9) 

COM means “center of mass” which was considered for a system comprised body and 
barbell. Finally, the avoidance of collision between body segments themselves and between 
barbell and body segments is considered as an important constraint. At each instant we 
calculate the line representing each segment and then find the intersection of each two lines. 
If this intersection point is located in the range of both two supposed line, it shows that the 
criteria is not satisfied. According to above mentioned constraints we should specify that 
whether a solution is admissible or not. If it is not admissible we can remove that solution or 
we can impose a penalty for the solution by additional virtual cost.  

Criteria Functions 

We want to generate an optimal motion by minimizing a performance criterion or dynamic 
cost. As mentioned before, there are various options to be selected as the optimization 
criteria. Minimizing the summation of actuating joint torques (Chang et al., 2001; Lin et al., 
1999; Rostami & Bessonet, 2001) and minimizing the total power consumption are two 
options which were used before. To uniform the effect of all joints in these criteria, we divide 
each joint torque or joint produced power to its maximum permissible value. Sometimes the 
former is called muscular effort. Therefore the criterion based on muscular effort is written 
as: 
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and the criterion based on power consumption is:  
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In above equations a
iQ  is actuating joint torque, max

iQ is maximum of actuating joint torque, 

i  is joint angular velocity, and max
i  is maximum of joint angular velocities. Therefore the 

first equation (10) describes the summation of normalized joint torque and the second (11) 
describes the summation of normalized joitn power during the specified movement. We 
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extract the cost of each solution by using the functions (10) or (11) separately. To do this, we 
should solve the equations of motion (4) to compute the actuating joint torques. This is 
performed by using inverse dynamics approach. We employ the specific trajectory, vector of 
joint coordinates during the whole motion, and use the finite difference method to calculate 
the vectors of joint velocities and joint accelerations numerically. Once we have these data, it 
could be possible to calculate the actuating joint torques or power consumption at each 
instant. 

Optimization Algorithm 

Genetic algorithm (GA) is a general purpose search algorithm that used principle inspired by 
natural population genetics to evolve solution to problems. It was first proposed by Holland 
(1975) and has been well described in other text books (Cordón, Herrera, Hoffmann, & 
Magdalena, 2001). GA provides robust search in complex problems. It operates on a 
population of several individual solutions, called chromosomes, and improves this population 
towards a better solution. This procedure is performed by means of selection the better 
chromosomes according to their scores and employ them to make the next generation via GA 
operators. The classic operators are crossover and mutation which the former hybridize two 
chromosomes, parents, to make new child and the latter mutate some children to maintain the 
diversity of population. In other words, crossover is used to effectively explore search space 
and mutation is used to extend initial search space defined by initial chromosome's 
population. To solve a particular optimization problem using a GA, we should define a 
genetic representation of candidate solutions (chromosomes), create an initial population of 
solutions, and then assess the quality of each individual via computing the criterion function. 
Then we should select the best solutions (elitism), using them for producing the next 
generation, and repeat this algorithm until the specific stop criteria is fulfilled. Figure 3 shows 
this algorithm schematically. 
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Random generation of 
Initial Population 

Score the population 
via inverse dynamic 

Making the mating pool with 
tournament approach 

Select the best solution 

Is the stop 
criteria 

fulfilled? 

Make the next generation by: 
 

1. The best previous solution 
2. The children of random parents 

selected from mating pool via 
crossover 

3. The children of selected parents 
via mutation 

4. New  random solution 

Stop the program 

 
Figure 3. The GA algorithm. 

The success of a GA strongly depends on a proper genetic representation of candidate 
solutions. Binary-coded strings for the representation of candidate solutions historically tend 
to dominate in research and application of GA. More recently, some authors (Hu & Yang, 
2004) proposed that using non-binary representations in GA is more adequate for a certain 
class of optimization problems. Using a real number representation seems particularly natural 
for optimization problems in the continuous domain. The chromosome in real-coded genetic 
algorithms (RCGAs) is a vector of floating point numbers, ),,...,( 1 nxxC   which its size 

equals the dimension of the continuous search space, or in other words each gene jx  

corresponds to a particular parameter of the problem. RCGAs offer the advantage that the 
continuous parameters can gradually adapt to the fitness landscape over the entire search 
space whereas parameter values in binary implementations are limited to a certain interval 
and resolution (Cordón et al., 2001). Therefore we use a vector of floating point numbers, 
indicating the sequences of joint angles during snatch lift. We employ a five-link model with 
five degrees of freedom (DOF) and use the below pattern to represent each individual 
solution, chromosome, as a sequence of these five DOFs during the whole snatch time: 

)5(),5(,...),5(1),5(,...),1(),1(...,),1(1),1( QfinQinvNQinvQiniQfinQinvNQinvQini   (12) 
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Where )(iQini  and )(iQfin  indicate the initial and final position of each angle (five joints in 
this specific problem) and )(...,),(1 iQinvNiQinv  indicate the N interval angles between the 
initial and final positions. Therefore each chromosome consists of )2(5  N  genes. The 
first two, initial and final angles of each joint (totally 1025   genes), are defined as 
boundary conditions. The rest interval angles (totally N5 ) are produced randomly at the 
start of execution and then modified by GA to the best sequence of motion which minimizes 
our selected criterion. To evaluate each chromosome we need to solve an inverse dynamics 
problem. To reduce the coarse variation of joint angles, actual angles are obtained using a 
cubic polynomial curve fitting to above angles. Then we differentiate numerically by using 
finite difference method to calculate the angular velocities and accelerations. Now the 
actuated joint torques can be calculated easily by using the motion equations.  

The first population is made randomly and then a ranking selection mechanism is used. 
Ranking selection is based on the ranking of the population according to their fitness score 
which is obtained according to selected criterion. A randomly chosen of individuals compete 
in a tournament and among them, only the best-score individual is selected for mating pool. 
This tournament is repeated until the mating pool is filled (Cordón et al. 2001). The next 
generation is divided into three groups: the best individual of the previous generation (elitist 
selection mechanism), the newly random population, and the children who made from mating 
pool by using the crossover and mutation operators. Simple crossover is equivalent to the 
conventional one-point crossover in swapping the parent tail segments starting from a 
randomly chosen crossover site. But one-point crossover operator has the drawback of a 
positional bias, in that genes located at both ends of the chromosomes are disrupted more 
frequently than those in the centre (Cordón et al. 2001). Two-point crossover avoids this 
positional asymmetry in cutting the chromosome at two locations rather than one and 
swapping the middle segments in the offspring. We use these two methods alternatively with 
same probability to produce the offspring. In random mutation, the mutated gene is drawn 
randomly, uniformly from the specific intervals which the user defines as the lower and upper 
limits of each parameter or gene.  

The most important step to produce the next generation is the selection of the elite parents 
according to their scores. This step is different in each specific problem. According to our 
approach to minimize the muscular effort or power consumption, we should give the best 
score to the solution which has the minimum corresponding value. For doing this procedure, 
we must first calculate the actuating torques of each individual solution. The trajectory is 
known by each individual and we must solve the equations of motion via inverse dynamic 
method. 

Starting with the first random population; we score them by solving the equations of motion 
and computing the integral cost for each individual. Then we select the best individuals by 
tournament method and store them in mating pool. Reproducing of the next generation is 
done by crossover and mutation operators applying to mating pool. The next generation is 
evaluated in the same manner. This procedure continues until the stop criterion fulfilled. The 
population size, the maximum iteration and the number of interval points (N) between initial 
and final positions are some inputs of our algorithm.  

A Simple Example 

To demonstrate the efficiency of this algorithm, we solved a simple problem of finding the 
minimum distance of two points. This is an optimization problem similar to finding the 
trajectory of snatch but, with different criteria function. Since the result of this problem was 



International Journal of Computer Science in Sport – Volume 9/Edition 1 www.iacss.org 

   

 

54 

obvious, the answer was found by GA algorithm, ensured correct working of this algorithm. 
Suppose 100 points in a 1010  network which is started from 1 to 10 in each x and y 
direction. The problem is defined as travel from point A to point B with minimum distance. 
The procedure of solving this problem is similar with the weightlifter problem. We define a 
vector of 8 interval points between the points A and B as an individual solution. The program 
starts with a random population and continues toward an optimal solution. You can see the 
results of one sample run from point A with coordinates (3, 8) to point B with coordinates (8, 
2) in Figure 4. 

 

 

Figure 4. The result of sample problem to validate our algorithm: travel from point A () to point B (). 

Snatch Weightlifting Technique 

We solved four different problems for a weightlifter with 80 (kg) mass and 1.8 (m) height 
who lifts 180 (kg) and 100 (kg) barbell by snatch technique. Other parameters for solving this 
problem are listed in Table 1. 
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Table 1. Some parameters used for optimization 
Item No. Description Value 

1 Relative joint angles at initial time (deg) (80, 85, -155, -110, 0) 

2 Upper limits of relative joint angles (deg) (95, 90, 0, -90, 0) 

3 Lower limits of relative joint angles (deg) (75, 0, -155, -170, 0) 

4 Height at final time (m) 1 

5 Total duration time and time intervals (sec) 0.7, 0.01 

6 Maximum permissible joint torques (Nm) (250, 350, 500, 150, 100) 

7 Min. and Max. limits for base of support (m) (0, 0.25) 

 

We selected two performance criteria; the first one is the muscular effort and the second one 
is the total power consumption which both were described before by (10) and (11). We 
solved our problem between two points representing the start of snatch and the start of catch 
phase respectively. Considering the snatch description by Derwin (1990) states “the basic 
principle of the snatch quite simply as vertically accelerating the barbell to a sufficient height, 
enabling the lifter to rapidly move beneath the bar and support it in an overhead full squat 
position”, the start of catch phase has been selected in a manner that the barbell had a good 
condition to continue its motion and the weightlifter could move under the bar quickly. At 
first generation of random solutions we are able to apply the constraints directly, but for next 
generations which are produced by means of genetic operators, we use the penalty method to 
apply the above mentioned constraints. 

Results 

The Figure 5 shows the barbell trajectories during the snatch lift for 180 (kg) and 100 (kg) 
barbell while considering both muscular effort and total power consumption as optimizing 
criteria. These trajectories have been plotted from the time just prior to when the barbell left 
the floor (“lift-off”) until just after the bar reached at the end of second pull. At this point the 
barbell continues to move as a “projectile” and it allows the athlete to complete “move under 
the bar” to catch it. According to experimental observations, the typical form of trajectory 
described by Garhammer (2001) shows that when the barbell is lifted from the “lift-off” 
phase, it moves toward the athlete during the first pull, then away from the athlete, and finally 
toward him again as it begins to descend during the catch phase. Only one trajectory of four 
trajectories depicted in Figure5 shows this typical form. This trajectory obtained for 180 (kg) 
barbell when the optimizing criterion is based on muscular effort. One can see the similarity 
between this optimized trajectory and experimental results of trajectory type B recommended 
by Baumann (1988) and shown in Figure 1. 
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Figure 5: Optimized Barbell Trajectory for 180 kg barbell (left) and 100 kg barbell (right) when optimization 

criteria are muscular effort (T) and power consumption (P), (line X indicates the initial x-
coordinates of barbell) 

The sequences of snatch motions by considering both optimizing criteria (i.e. muscular effort 
and total power consumption) are depicted in Figure 6 which shows that the collision 
avoidance constraint has been satisfied well by using penalty method. 

 

 
Figure 6. Optimized motion of model with minimum muscular effort for 180 kg barbell (upper) and 100 kg 

barbell (lower) 

Figure 7 shows the variations of actuating joint torques for ankle, knee, and hip between 
initial and final positions. The contribution of each joint in making a complete snatch lifting 
motion can be realized by these diagrams. For instance it shows that the actuated torques in 
hip joint is more than other joints during the snatch lift and hence the hip joint has the greater 
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importance to produce this movement. One can see that all the values for actuating joint 
torques are in the permissible range that we enter as the kinetic constraints. 

 

 

 
Figure 7: Optimized actuating torques in ankle, knee, and hip joints for 180 kg (left column) and 100 kg (right 

column) barbell weights; criteria functions are muscular effort (T) and power consumption (P) 

Discussion 

Barbell trajectory for 180 (kg) barbell mass which is optimized for minimizing the muscular 
effort shows the typical inward-toward form that we can see in experimental data. Since we 
obtain this optimized trajectory by using dynamic motion equations considering the proper 
kinetic constraints, we sure that according to mechanical point of view this trajectory can be 
produced by a weightlifter, although we may encounter to some other difficulties like the 
training method or something else. But this similarity to well-known inward-toward 
trajectory is not seen in trajectories which are optimized by power consumption and also it is 
not seen for 100 (kg) barbell even when the optimizing criterion is muscular effort. Therefore 
we can conclude that for heavy barbells if the criterion function changes, the trajectory will 
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change also. According to our results when the optimizing criterion changes from muscular 
effort to total power consumption, the initial inward motion has never seen anymore. But for 
lighter barbell (100 kg), there are no sensible differences between two optimizing criteria. If 
we accept that the movements of human, especially the elites, are according to some 
optimizing criteria, then it seems that the muscular effort shows the better agreement than 
power consumption. Therefore the relative success to predict the optimal motion will depend 
on the selective criterion. However selecting the best criteria to improve the performance of 
weightlifters requires more studies and it could consist of more than one criterion combined 
together during the full snatch. Since there are no similarities between our optimal barbell 
trajectory and experimental observations in the case of lighter barbell, we conclude that we 
have different optimal trajectories depending on the barbell mass. Comparing to experimental 
optimal trajectories for heavy barbell mass, it seems that the muscular effort criterion 
suggests a trajectory which is similar to pattern type B (see Figure 1) and the total power 
consumption criterion lead us to optimal trajectory which is similar to pattern type C. 
Another advantage of this theoretical model is the ability to obtain the best trajectory for each 
individual weightlifter. As mentioned before, the researchers have accepted that the optimal 
trajectory is individual depended. The optimal trajectory according to the weightlifters’ 
experiences neglects this dependency and hence we would not be able to advise the resultant 
pattern to another weightlifter with different anthropometric or physical characteristics. 
Therefore our above suggestions are only valid for the specific weightlifter with 80 (kg) mass 
and 1.8 (m) height. 

The actuating joint torques are good parameters to show us the practical differences between 
an actual snatch motion of a weightlifter and the ideal optimized one which he could achieve. 
We can reduce these differences by advising the weightlifter about the strength training he 
should do to compensate the weakness of particular joint. As anyone expects, these actuating 
torques will reduce when the barbell mass decreases. Figure 7 shows that the hip joint plays 
the greater role to complete the snatch movement.  

The results of this optimization may help us to train weightlifters according to optimized 
kinematics and kinetics parameters. Comparing the actual parameters of the weightlifter with 
optimized one may guide us to achieve these useful comments. The determination of optimal 
motion during the whole motion of snatch lift may help coaches to train weightlifters on a 
more systematic manner.  

The above mentioned notes are related to the advantages of this model, but we like to 
describe the advantages of our selected approach too. We know that the search space may 
have more than one local optimal solution. It means that when we use the mathematical 
solution approach (e.g. Pontryagin Maximum Principle), we should start our solution routine 
with an initial guess. The final optimal solution is affected by this initial guess and because of 
this problem we called our solution as local optimal one. On this situation we encounter with 
some local optimal solutions that resulted from several runs with different initial guess. This 
is the common problem between almost all mathematical methods. Therefore traditional 
methods are not good candidates as efficient optimization algorithms for this nonlinear 
problem and using GA technique can alleviate the above difficulty and may constitute an 
efficient optimization tool. The genetic algorithm provides the global optimal solution 
without any dependency to initial starting point. Also, because there is no need to compute 
the sophisticated gradient of criteria or other functions (e.g. mass matrix), this algorithm is 
very easy and fast. Also the divergence of solution is a common problem of mathematical 
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approaches when the initial guess was not suitable or when the problem is highly nonlinear, 
but in GA we don’t encounter with this problem. 

The good results obtained from optimization problem shows that this method is reliable. The 
fair success of this model encourages us to continue our approach and improve our model by 
the models which have more degrees of freedom in the near future. 
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Abstract 

Interactive features play an important role in e-learning. In this paper we report an 
experimental pilot study which tested e-learning units with different degrees of 
interactivity. A specific experimental design adapted to a blended-learning 
scenario was developed. Participants learned with e-learning units, dealing with 
different movement analysis concepts (MACs), which differ only in interactive 
features (different degrees of interactivity). Pretest and posttest measured 
participants’ basic knowledge and knowledge transfer of the MACs. A further 
measurement of participants’ basic knowledge was performed immediately after 
learning. Moreover participants’ experience of activation and interactivity was 
assessed by a questionnaire. The results show that students could improve their 
knowledge. However we did not find any significant impact of different degrees 
of interactivity. This result may be due to confounding problems or a small 
sample size. In some items the groups who learned interactively or actively rated 
activation and interactivity higher than the non-active or non-interactive groups. 
Open-ended questions showed, that when being exposed to non-interactive or 
non-active e-learning units students complained about the absence of interactive 
features.  

 

KEYWORDS: E-LEARNING, DEGREES OF INTERACTIVITY, EXPERIMENTAL 
STUDY 

Introduction 

Interactivity and interactions are important aspects in e-learning (Sims, 1997). According to 
Wiemeyer (2008) within an e-learning system complex interactions can be distinguished 
(interactions between learners, teachers, learning content and learning system). The 
importance of interactions for the learning process is described by Wagner (1997) who 
focused on interaction outcomes. According to Wagner (1997, p. 22-23) interactions facilitate 
active engagement of learners, support individualized learning experiences, enhance 
understanding, support knowledge transfer and increase motivation. Interactions and 
interactivity in e-learning can enhance the learning process and have an additional benefit to 
students only if they are well designed and integrated into a didactical design. In the literature 
different classifications, concepts, categories and ideas exist how to design interactive e-
learning (Chou, 2003; Kettanurak, Ramamurthy & Haseman, 2001; Roblyer & Ekhaml, 
2000; Sims, 1997; Wagner, 1997). Different technologies like synchronous communication 
tools (online-chats, video-conferencing) or asynchronous communication tools (discussion 
forum, e-mailing, mailing-lists, wikis) as well as specifically designed learning objects 
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(tasks/questions with feedback, simulations, animations and interactive videos) enable 
interactions. Several studies examined the effects of different degrees of interactivity and 
interactions on learning outcome in multimedia learning (Evans & Gibbons, 2007; Gao & 
Lehmann, 2003; Haseman, Polatoglu & Ramamurthy, 2002; Ritter & Wallach, 2006). The 
studies of Ritter and Wallach (2006) and Gao and Lehmann (2003) showed that students who 
learned interactively improved their learning outcome significantly more compared to non 
interactive conditions. The study of Evans and Gibbons (2007) showed an interactivity effect 
only for an immediate transfer test. No significant impact of interactivity on learning outcome 
was found by the study of Haseman, Polatoglu and Ramamurthy (2002). These inconsistent 
results may be due to different implementation of interactivity (different kinds of tasks) and 
methodological shortcomings (e.g., missing or mismatching pretest, confounding of time on 
task and interactivity, short retention interval). 

In the subproject “Functional movement analysis” of the HeLPS project, a cooperative 
project of the five Hessian Institutes of Sport Science, interactive e-learning units were 
designed. The aim was to teach knowledge concerning three different movement analysis 
concepts (Göhner, 1979; Kassat, 1995; Meinel & Schnabel, 1998) in an interactive way and 
moreover to practice the application of these concepts. Formative evaluations of the 
developed e-learning units performed in the winter term 2007/08 and in the summer term 
2008 showed, that students liked and appreciated the interactive features and wished more 
interactive support (Roznawski & Wiemeyer, 2008). To analyze the effects of interactive 
features within e-learning units on students’ knowledge and motivation, a specific 
experimental design was developed and tested in a pilot study in the winter term 2008/09. 

 

Hypotheses 

The primary aim of the experimental field study was to gain detailed knowledge about 
learning with interactive e-learning units within a blended-learning scenario. The study 
focused on two main aspects: first students’ learning outcome (achievement) and second 
students’ experience of activation and interactivity when learning with interactive e-learning 
units. The following hypotheses were tested.  

Hypothesis 1: Students who learn with the interactive or the active versions of the e-learning 
units achieve better learning outcomes in the knowledge tests than students who learn with 
the non-interactive or the non-active version of the e-learning units.  

Hypothesis 2: Students who learn with the interactive or active version of the e-learning units 
experience higher activation and interactivity than students who learn with the non-
interactive or non-active versions of the e-learning units. 

Methods 

The pilot study was performed in the course “How do movements work?”. A sample of 12 
students (9 males, 3 females, mean age: 24.4 years) participated and completed the course. 
This course was organized based on a blended-learning concept with alternating online 
working phases and phases of physical presence. The online working phases were supported 
by ILIAS, a web-based open-source learning management system. We used ILIAS for 
providing the online learning units, communication with the students (chat and discussion 
forum) and online-tests. Altogether three online phases took place. During these phases 
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participants worked on e-learning units for one week, dealing with the movement analysis 
concepts (MACs) of Meinel and Schnabel (1998; MAC-MS), Göhner (1979; MAC-G) and 
Kassat (1995; MAC-K). In the following two phases of physical presence students applied 
these concepts to selected sport movements. In the first lesson students discussed how to 
apply the concepts in small groups. Discussions were moderated by experts and supported by 
prepared checklists which illustrated the procedure of the MACs. In the second lesson the 
results of the teamwork were presented and discussed in a plenary session. 

The experimental design and tests 

The experimental design was adapted to the course structure. For testing the differences 
between varying levels of interactivity we used an experimental pre-post design with two 
experimental groups. The participants’ knowledge was assessed by five tests: a pretest, three 
immediate tests and a posttest. At the beginning and at the end of the experiment the 
participants had to answer a questionnaire to assess their motivation and attitude towards e-
learning. Furthermore the participants completed a short online survey after each immediate 
test to evaluate their attitude towards and perception of the e-learning units (only selected 
results will be reported). 

 
Figure 1. Interactive task (I) for Meinel and Schnabel (1998) with system feedback and non-interactive task (NI) 

without system feedback 
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Experimental treatment 

Based on pretest performance participants were assigned to the experimental groups 
(matching method). During each online working phase the experimental groups worked on an 
e-learning unit with identical content. The e-learning units only differed in interactive 
features or the active engagement. Interactive units (I) consisted of tasks and questions 
including system feedback, whereas non-interactive units (NI) did not deliver any system 
feedback. Figure 1 shows an example of an interactive and non-interactive task in the e-
learning unit dealing with MAC-MS. Active units (A) required active engagement with tasks 
and questions, whereas non-active units (NA) did not contain tasks and questions. Figure 2 
shows an example of an active task (drag and drop) which supported active engagement with 
the learning content and the same learning content which is represented as tabular form and 
supported less active engagement. 

 

Figure 2. Active unit (A) for Göhner (1979) with active engagement and non-active unit (NA) without active 
engagement 

The following table (Table 1) provides an overview and explains the experimental treatment 
and the differences of the treatment groups in more detail. The MAC-MS units (I/NI) only 
differ in the existence of interactive tools (i.e., hints and feedback) but they have an identical 
number of tasks and questions. The MAC-G and MAC-K units (A/NA) differ in the way they 
support active engagement. Active units (A) assist active engagement with the learning 
content because of tasks and questions, whereas non active units (NA) do not contain any 
tasks and questions.  
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Table 1: Differences of experimental conditions in the three e-learning units 

Learning 
unit 

Differences of experimental 
conditions 

Number of 

Questions 

Number of 
Tasks 

MAC-MS 
(U1) 

I    (with interactive tools)  6 (hints etc.) 12 (hints etc.) 

NI (without interactive tools) 6 12 

MAC-G 
(U2) 

A   (with active engagement) 3 21 

NA (without active engagement) None None 

MAC- K 
(U3) 

A   (with active engagement) 1 10 

NA (without active engagement) None None 

 

Figure 3 illustrates the treatment for the experimental groups. The groups learned with e-
learning units which differ only in the degrees of interactivity. In the first online phase group 
1 learned interactively about the MAC-MS (U1 I), in the second online-phase they learned 
non-actively about the MAC-G (U2 NA), and in the third online phase they learned actively 
about the MAC-K (U3 A). Conversely, group 2 first learned non-interactively in the first 
online phase about the MAC-MS (UI NI), actively in the second online phase about the 
MAC-G (U2 A) and in the last online phase non-actively about the MAC-K (U3 NA). Each 
online working phase was followed by an immediate knowledge test performed online. One 
week after the last session of the course a posttest addressing all three MACs followed. 
Whereas the results of the knowledge pretest and the three specific knowledge tests did not 
count for the course grade the results of the final knowledge test contributed 50% to the final 
course grade. 

 

Figure 3. Experimental Design (U – Unit, I – Interactive, NI – Non-Interactive, A – Active, NA – Non-Active; 
MAC-MS, MAC-G, MAC-K – movement analysis concepts of Meinel & Schnabel (1998), 
Göhner (1979) and Kassat (1995), respectively). 
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Tests 

Knowledge tests (Pretest and Posttest) 

Pretests and posttests covered each of three MACs and were structured identically; the first 
part assessed basic knowledge and the second part tested knowledge transfer. Altogether both 
tests consisted of 30 basic knowledge questions (10 for each MAC) and 12 knowledge 
transfer questions for all MACs. In order to avoid recognition effects questions were different 
in pretest and posttest. The basic knowledge questions were selected from a pool consisting 
of 145 questions. Students were asked if short statements dealing with the different MACs 
were correct or wrong and how confident they were with their answers (five-point scale: 
‘highly sure, that the statement is right’, ‘rather sure that the statement is right’, ‘I don´t 
know’, ‘rather sure that the statement is wrong’, ‘highly sure that the statement is wrong’). 
The design of the knowledge transfer tests was adapted to the procedure of the different 
MACs and the developed checklists. Students were asked to apply the three MACs to sport 
movements (i.e., butterfly stroke, high jump and kip on the high bar).  

Immediate tests  

Each of the three immediate knowledge tests addressed basic knowledge about one of the 
studied MACs. These questions (short statements) were also taken from the above-mentioned 
question pool and the options to answer the questions were the same as in the pretest and 
posttest. The immediate knowledge tests were performed using the ILIAS survey tool and 
have been carried out after each online working phase. 

Questionnaires 

Altogether two different types of questionnaires were applied in the study. The first 
questionnaire measured students’ motivation and attitude towards e-learning, e-learning 
experience, computer literacy and use of computers. In order to notice changes in attitude 
students answered this questionnaire at pretest and posttest.  

The second questionnaire measured use, experience, and attitude (utilization, design and 
structure of tasks and questions, learning, comprehensibility, experience of activation and 
interactivity) towards the e-learning units with a four-point scale (‘strongly agree’ to 
’strongly disagree’). Open-ended questions at the end gave students the opportunity to 
mention positive and negative aspects of the e-learning units. 

Procedure 

Pretest 

In the second lesson of the course students performed the pretest to measure students’ 
existing basic knowledge and knowledge transfer concerning the three MACs (MAC-MS, 
MAC-G, MAC-K). The test was performed as a paper-and-pencil test in the classroom at 
usual course time and took 45 minutes. Students were informed that pretest results did not 
count for the course grade. Furthermore they were instructed to answer the test to the best of 
their knowledge. Based on pretest performance students were assigned to the experimental 
groups. Furthermore students answered the questionnaire which measured students’ 
motivation and attitude towards e-learning, e-learning experience, computer literacy and use 
of computers which took about 15 minutes. 
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Online phases - learning the MACs 

After a further lesson held by the teacher three online learning phases followed. The same 
procedure was applied at all online phases. First the groups learned with the e-learning units 
concerning the different concepts (first phase: MAC-MS, second phase: MAC-G, third phase: 
MAC-K) which only differed in the degrees of interactivity at the learning management 
system ILIAS. The phase of online self-study ended with an online session where all students 
met at the learning management system to perform the immediate online knowledge tests 
dealing with the different MACs (first phase: MAC-MS, second phase: MAC-G, third phase: 
MAC-K). Additionally the groups answered questionnaires about the learning units. 
Altogether students had 20 minutes time to complete the test and the questionnaire. Students 
were instructed to answer the test to the best of their knowledge and without any help (e.g., 
consult a book, look up the e-learning units) in order to measure the learning achievement. 
Furthermore students were informed that the results did not count for their final grade. 
Immediately after passing the test and questionnaire an online chat lesson followed. In the 
chat lesson students applied the concepts to selected sport movements with the assistance of 
the lecturer.  

Phases of physical presence – applying the concepts 

At the end of each online phase, two phases of physical presence followed. In the first lesson 
students applied the concepts in small groups to selected sport movements using checklists 
and in the following lesson their results were discussed in a plenary session.  

Posttest 

One week after finishing the last MAC the posttest was performed as a paper-and-pencil test 
in the classroom at the usual course time. Similar to pretest procedure students had 45 
minutes to answer the questions for each concept. This time the results counted for the final 
grade. Again students answered the questionnaire which measured motivation and attitude 
towards e-learning, e-learning experience, computer literacy, and use of computers.  

Results 

Statistical data analysis was performed using SPSS Statistics version 17.0.0. The applied 
statistical tests are specified in the respective sections.  

Knowledge tests 

The total scores of the pretest and posttest were analyzed using a 2 (groups)  2 (tests) 
ANOVA with repeated measures on the factor tests. ANOVA yielded a significant main 
effect of knowledge test (F (1,10) = 124.14, p < .001) indicating a gain from pretest to 
posttest (see Figure 4). The analysis yielded no significant main effect of experimental groups 
(F (1,10) = .001, p = .975) and no groups  tests interaction (F (1,10) = .002, p = .965). 
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Figure 4. Means of total knowledge score (%) of the two experimental groups in different tests 

Furthermore participants’ basic knowledge at pretest, immediate test and posttest was 
analyzed (Table 2). The 3 (MACs)  2 (groups)  3 (tests) ANOVA with repeated measures 
on the factor tests yielded a significant main effect of MACs (F (1, 13) = 65.70, p <. 001). 
There was also a significant main effect of tests (F (2, 18) = 6.26, p < .01). The MACs  tests 
interaction was also significant (F (3,25) = 3.51, p < .05). 

Table 2. Results of 3 (MACs)  2 (groups)  3 (tests) ANOVA for differences in basic knowledge 

Effects df F p 

Main Effects    

MACs 1,13 ε1 65.70 < .001 

Tests 2,18 6.26 < .01 

Groups 1,9   .56    .48 

Two-way interaction    

MACs  Groups 2,18 1.72    .21 

Tests  Groups 2,18   .86    .44 

MACs  Tests 3,25 ε2 3.51 < .05 

Three-way interaction    

MACs  Tests  Groups 4,36   .22    .92 

ε1, 
ε2 Adjusted with Greenhouse-Geisser: ε1 = .696, ε2 =.686 

Figure 5 shows the relative basic knowledge scores of the two experimental groups in the 
different tests. Wilcoxon tests revealed that participants continuously increased performance 
at each test for each MAC. Comparing the MACs Wilcoxon tests showed, that the concept of 
MAC-MS was significantly easier than the concepts of MC-G and MC-K at the immediate 
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tests. Furthermore there was a significant difference between the concepts of MC-MS and 
MC-K at posttest indicating greater difficulty of MAC-K.  
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Figure 5. Basic knowledge scores (%) of the two experimental groups at different tests 

The participants’ knowledge transfer of each MAC at pretest and posttest was analyzed using 
a 3 (MACs)  2 (groups)  2 (tests) ANOVA with repeated measures on the factor tests 
(Table 3). We found a significant main effect of MACs (F (2, 20) = 17.09, p < .001). 
Furthermore ANOVA yielded a significant main effect of tests (F (1, 10) = 8.67, p < .001) 
indicating knowledge gain from pretest to posttest. Wilcoxon tests revealed significant 
differences between all MACs at posttest. At pretest there was only a significant difference 
between MAC-MS and MAC-K. Furthermore Wilcoxon tests showed that from pretest to 
posttest students significantly improved their knowledge transfer of MAC-MS and MAC-K 
but not for MAC-G.  

Table 3. Results of 3 (MACs)  2 (groups)  2 (tests) ANOVA for differences in knowledge transfer 

Effects df F p 

Main Effects    

MACs 2,20 17.09 < .001 

Tests 1,10   8.67 < .05 

Groups 1,10    .38    .55 

Two-way interaction    

MACs  Groups 2,20    .48    .63 

Tests  Groups 1,10    .20    .66 

MACs  Tests 2,20    .34    .72 

Three-way interaction    
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MACs  Tests  Groups 2,20    .13    .88 

 

Figure 6 shows the relative knowledge transfer scores for each MAC at pretest and posttest. 
Hypothesis 1 was not supported. Students learning with the interactive or active e-learning 
units did not achieve better learning outcomes. 
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Figure 6. Knowledge transfer scores (%) of the two experimental groups at pretest and posttest 

Confidence in answering questions 

The originally used five-point scale was transformed to a three-point scale. This transformed 
confidence score reflects how sure students were with their answers (‘I don´t know’, ‘rather 
sure’ and ‘highly sure’). If they selected ‘highly sure’ in all questions they gained 30 points at 
pretest and posttest for each MAC and 20 points at each immediate test. The confidence in 
answering questions at pretest and posttest was analyzed using a 2 (groups)  2 (tests) 
ANOVA with repeated measures on the factor tests. There was a significant main effect of 
tests at MAC-MS (F (1,10) = 162.89, p < .001), MAC-G (F (1,10) = 232.68, p < .001) and 
MAC-K (F (1,10) = 129.48, p < .001) indicating an increase of confidence in answering the 
questions (Figure 7) from pretest to posttest. No significant group effects were found for 
MAC-MS (F (1,10) = .88, p = .37), MAC-G (F (1,10) = .24, p = .63) and MAC-K (F (1,10) = 
.26, p = .62). The groups  test interactions were also not significant for MAC-MS (F (1,10) 
= .69, p = .43), MAC-G (F (1,10) = 1.09, p = .32) and MAC-K (F (1,10) = .60, p = .46). 
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Figure 7. Relative mean confidence scores at pretest (Pre_) and posttest (Post_) for all concepts (MS – Meinel & 

Schnabel, G – Göhner, K – Kassat) 

Confidence scores of immediate tests were analyzed using a 2 (groups)  3 (MACs) ANOVA 
with repeated measures on MACs. ANOVA yielded no main effect of groups (F (1,9) = 1.05, 
p = .33). The main effect of MACs was significant (F (2,18) = 8.31, p < .01). The interaction 
groups  MACs was not significant (F (2,18) = .29, p = .75). Wilcoxon tests revealed that the 
MAC-MS was significantly easier than the MAC-G and MAC-K.  

Again, hypothesis 1 was not supported. 

Questionnaire (Activation and Interactivity) 

The experience of activation and interactivity was measured with a four-point scale (4 – 
‘strongly agree’, 1 – ‘strongly disagree’). Activation and interactivity of the MAC-MS, 
MAC-G and MAC-K questionnaire were analyzed using a 3 (MACs)  2 (groups)  9 (items) 
ANOVA with repeated measures on the factor items (Table 4). The analysis yielded a 
significant main effect of groups (F (1,9) = 9.69, p < .05). There was also a significant 
interaction of MACs  groups  items (F (16,144) = 2.26, p < .01). Because we were 
interested in group differences, U-test follow up analyses were calculated.  
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Table 4. Results of 3 (MACs)  2 (groups)  9 (items) ANOVA for differences in perception of activation and 
interactivity 

Effects df F p 

Main Effects    

MACs 2,18 2.19   .14 

Groups 1,9 9.69 <.05 

Items 3,24 ε 1.55   .23 

Two-way interaction    

MACs  Groups 2,18 2.10   .15 

MACs  Items 16,144 1.30   .21 

Groups  Items 8,72 1.22   .30 

Three-way interaction    

MACs  Items  Groups 16,144 2.26 <.01 

ε Adjusted with Greenhouse-Geisser ε = .336 

U-tests for MAC-MS (Figure 8) confirmed significant group differences concerning the 
variables ‘respond to actions’, ‘deep learning’ and ‘self determined learning’.  
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Figure 8. Experienced activation and interactivity of the e-learning unit dealing with the MAC of Meinel & 

Schnabel (1998) (4 – ‘strongly agree’ , 1 – ‘strongly disagree’) 

U-tests for MAC-G confirmed significant group differences concerning the variables 
‘individual learning’ and ‘self determined learning’. U-test for MAC-K did not show any 
significant group differences. Hypothesis 2 was supported only for selected variables. 
Students learning with the interactive or active e-learning units experienced higher activation 

* * * 
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and interactivity concerning response to actions, deep learning, self-determined learning and 
individual learning.  

 

Results of open-ended questions 

Open-ended questions at the end of the questionnaires showed that participants clearly 
recognized the differences between the different degrees of interactivity of the e-learning 
units. Students who learned with the interactive e-learning unit for example mentioned that 
‘the tasks and questions demonstrated what I have learned’ and that they liked the 
combination of text, video and pictures. Students who learned with the non-interactive e-
learning unit complained about ‘the lack of direct feedback’ or the ‘lack of solutions’. 
Students who learned actively appreciated the interactivity of the units, ‘the tasks, which 
demonstrated what I have learned’ and ‘the questions which introduced a new topic’. 
Conversely when learning with the non-active e-learning units they complained about the 
lack of tasks and questions and that they had ‘no opportunity to test what I have learned with 
the e-learning unit’. 

Discussion and Conclusions 

The reported pilot study served to test an experimental design for examining different degrees 
of interactivity and to measure knowledge achievement, motivation, and attitude towards e-
learning.  

The results reveal various learning effects. A total effect refers to the whole course and a 
specific effect to the e-learning units. Both experimental groups could improve their 
knowledge of the three different MACs during the course. Compared to pretest results the 
results of the immediate tests showed that both experimental groups improved their basic 
knowledge of each concept after learning with the e-learning units. Altogether students could 
improve their knowledge continuously until the posttest (no ceiling effect). 

Comparing the immediate knowledge test scores of all MACs, these scores showed, that both 
groups scored best at MAC-MS, second best at MAC-G and worst at MAC-K. This is 
probably caused by the degree of difficulty of the three concepts, because difficulty and 
complexity of the concepts are increasing from MAC-MS to MAC-K. Furthermore it is 
noticeable that group 2 received lower scores than group1 in all immediate tests and that they 
only performed comparably well in the posttest. A reason for this can not easily be identified. 
Presumably the students of group 2 were not motivated at the immediate tests. 

The students also improved their knowledge transfer concerning MAC-MS and MAC-K from 
pretest to posttest but there was no effect for MAC-G. A reason for this could be, that the 
criteria for analysis proposed by Göhner (1979) are comparably abstract. This is consistent 
with the criticism by Kassat (1995) who states that Göhner (1979) does not deliver clear 
criteria for analysis. 

Contrary to our expectations we did not find any significant differences between the groups 
who learned with different degrees of interactivity. This could be due to the fact that we only 
tested small groups (6 participants per group). Furthermore we may not find an interactivity 
effect because there is a confounding problem. This study tested different degrees of 
interactivity within a real blended-learning scenario and students are possibly influenced by 
different factors like chat session, group discussions and team-work after they had learned 
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with the e-learning units. Moreover we could not eliminate or control the impact of potential 
external factors like using additional support during the online tests. A further reason could 
be, that despite differences between the interactive and non-interactive version and the active 
and non-active version of the e-learning units both groups experienced a comparatively 
enriched learning environment. This may be confirmed by the fact that both groups doubled 
their knowledge. Maybe more pronounced interactive features within the active and 
interactive versions of the e-learning units are necessary to show an interactivity effect.  

The confidence in answering questions at pretest and posttest shows a similar and even more 
distinct development as the knowledge test results at pretest and posttest. There is a great 
increase in confidence from pretest to posttest but no significant differences between the 
groups. There were also no group differences at the immediate tests for confidence in 
answering questions. The development of the confidence scores at the immediate tests is also 
comparable with the immediate knowledge test results. MAC-MS was the easiest concept 
showing the best knowledge test results and the highest confidence scores, followed by 
MAC-G and MAC-K. 

The variables which measured students’ experienced activation and interactivity showed no 
clear results. The three-way interaction MACs  groups  items indicates that only few 
variables show differences between groups. The item ‘self-determined learning’ seems to be 
particularly sensible, whereas the items ‘response to actions’, ‘individualized learning’ and 
‘deep learning’ differentiate only between selected MAC-related e-learning units. An 
unexpected result occurred with MAC-G. Here group 1 rated the e-learning units as more 
activating and interactive than group 2, although group 2 received the more activating e-
learning unit. Obviously the perception of activation and interactivity of group 1 is generally 
higher regardless of the real degree of interactivity of the respective e-learning unit. This may 
be due to a different concept of activation and interactivity.  

As a consequence of the inconsistent results the following improvements will be 
implemented in follow-up research and especially in the next term: First this experiment will 
be repeated with a larger number of participants to improve validity. A power analysis will be 
done to determine the sample size needed. To control the impact of potential external factors 
during the online tests, like using additional support, a time limit will be introduced. The time 
limit forces students to answer the tests immediately without leaving time to look up 
solutions or communicate to other persons. Furthermore all test results (except pretest results) 
will contribute to the final grade. In future research transfer of knowledge should be tested in 
a broader way using a greater variety of sport movements. Moreover long term retention tests 
are planned to test whether different degrees of interactivity generate delayed learning 
effects. 
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