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Editorial 
Arnold Baca 

Department of Biomechanics, Kinesiology and Applied Computer Science, 

ISW, University of Vienna 
 
 
Dear readers: 
 
Welcome to the winter 2007 issue of the International Journal of Computer Science in 
Sport (IJCSS). 
 
Two original papers and three reports have been included within this issue.  
 
Britta Weber, Josef Wiemeyer, Ingo Hermanns and Rolf P. Ellegast present a measuring 
device for recording and identifying everyday activity behaviour. A high classification 
accuracy was observed..  
 
In the paper by Thomas Mauthner, Christina Koch, Markus Tilp and Horst Bischof a 
novel method is introduced for tracking beachvolleyball athletes in competition using one 
camera only. The authors presented their method during the 6th International Symposium on 
Computer Science in Sport in Calgary (June 2007) and were invited to submit a full paper 
version to IJCSS. 
 
The report by Florian Walter, Martin Lames and Tim McGarry as well as that by Tim 
McGarry and Florian Walter have also been presented during that conference.  
 
In the first of these reports, the potential and the challenges of a dynamical system’s analysis 
with relative phase measurement of interaction phenomena in dyadic game sports are 
discussed. In the second, dynamical analysis techniques are successfully used to identify real 
squash dyads from distractors.  
 
Francisco A. Iturriaga, Pablo G. Marin, Jose I. A. Roque and Encarnacion R. Lara 
investigate the relation of certain performance parameters to the outcome of water polo 
games. 
 
If you have any questions, comments, suggestions and points of criticism, please send them 
to me. 
 
Best wishes for 2008! 
 
Arnold Baca, Editor in Chief 
University of Vienna, arnold.baca@iacss.org 
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Assessment of everyday physical activity: Development 
and evaluation of an accelerometry-based measuring 

system 
Britta Weber1,2, Josef Wiemeyer1, Ingo Hermanns2, Rolf P. Ellegast2 

1Institute of Sport Science, Darmstadt University of Technology 
2BG Institute for Occupational Safety and Health, German Federation of Institutions for 

Statutory Accident Insurance and Prevention 
 

Abstract 
By modifying an ergonomic motion analysis system, an accelerometry-based 
measuring system has been developed in the course of a feasibility study for 
quantitative and qualitative activity acquisition. To permit almost non-reactive 
long-term measurements in everyday situations, the scale of the original sensor 
equipment has been reduced by employing eight triaxial accelerometers. The 
existing evaluation software has been supplemented with appropriate functions. 
Movement intensity is determined and expressed in activity levels (none, low, 
medium and high), and a recognition algorithm has been implemented, which in 
its current version is capable of automatically identifying walking as well as 
different variants of standing, sitting, lying, kneeling and crouching. Activities 
were simultaneously videotaped to test classification accuracy. Tests yielded an 
agreement rate of 97.5% for measurements under controlled conditions. For 
measurements under everyday conditions, agreement rose to 99.0%. Preliminary 
testing by heart rate records confirmed the implemented intensity determination. 
In conclusion, the developed prototype is suitable for the objective recording and 
automatic identification of everyday activity behaviour. Using reliable hardware 
and enhanced, user-friendly software, the system has great potential for further 
development. 
 

KEY WORDS: MEASURING PHYSICAL ACTIVITY, ACCELEROMETRY, ACTIVITY 
INTENSITY, ACTIVITY RECOGNITION 

Introduction 

Lack of physical exercise as risk factor for numerous chronic diseases as well as physical 
activity (PA) as multi-faceted health resource are well documented in the scientific literature 
(e.g., Pate, Pratt, Blair, Haskell, Macera, Bouchard, Buchner, Ettinger, Heath, & King, 1995). 
In the international public health discussion, a comprehensive conception of health-enhancing 
physical activity (HEPA) has been established over the last decade. In addition to leisure PA 
– usually including sport –, occupational and household PA and PA for the purpose of 
covering distances (such as cycling or climbing stairs) are now attributed the same 
importance. 
However, until now there has not been sufficient knowledge of the dose-response relationship 
between PA in everyday life and the preservation or improvement of the functional state of 
health. In order to analyze the complex relationship between PA and its health outcome more 
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precisely, the type and extent of daily PA has to be surveyed objectively and reliably in the 
population. However, the key problem with the quantification of PA is the lack of a generally 
accepted valid method for measuring PA (Woll, 2004, p. 58). 
Research in PA often applies questionnaires and diary-based monitoring methods, which are 
distinguished by their economy and practicability even with large samples. Nevertheless, 
statements on one’s own PA depend on the individual’s capacity of remembering and his or 
her subjective estimations. Therefore, an electronic measuring system for the objective 
assessment of everyday PA is required. By means of such an instrument, interview- and 
questionnaire-based methods can be tested and developed further. 
Electronic measuring systems for the monitoring of PA have already been designed and 
tested for applicability. In particular, there have been numerous efforts to develop 
accelerometer-based measuring systems. However, in health research the large-scale use of a 
valid and commonly accepted instrument which provides differentiated information on 
everyday PA has not been documented by now. 
In ergonomics, an objective measuring system is regularly used to analyze movement and 
loading at the workplace. By means of various sensors, the CUELA measuring system 
(German abbreviation for “computer-assisted recording and long-term analysis of 
musculoskeletal loads”) records trunk and leg positions and foot pressure distributions and 
evaluates these data automatically using ergonomic and biomechanical methods (see Ellegast, 
1998; Ellegast, Hermanns, Hamburger, Post, Glitsch, Ditchen, & Hoehne-Hückstädt, 2006; 
Ellegast & Kupfer, 2000). The CUELA system is considered a viable starting point for 
further development towards an activity measuring instrument which can also be employed in 
everyday situations. By using miniaturized accelerometers, a scaled-down variant of the 
original system is conceivable. 
The purpose of this paper is to discuss the existing measuring systems for assessing PA and 
to introduce a new system based on the CUELA system. 

Literature review 

Accelerometry-based assessment of PA 
Accelerometry currently ranks as the most accepted and most useful method for the mobile 
recording of human movement (see Mathie, Coster, Lovell, & Celler, 2004, p. R2). Firstly, 
because of their size accelerometers are suitable for low-reactive movement recording. Being 
able to measure static and dynamic states, they secondly supply significant information for 
subsequent data analysis. In addition, accelerometers applied in existing studies (Bouten, 
Koekkoekk, Verduin, Kodde, & Janssen, 1997; Meijer, Westerterp, Verhoeven, Koper, & ten 
Hoor, 1991; Moe-Nilssen, 1998) have shown a high degree of measurement reliability with 
low variability over time. This has enabled the development of mobile systems with low 
weight and size which can be worn unsupervised for long time periods in everyday situations 
without having a major impact on the subject’s movement behaviour. A broad range of 
applications – including movement classification, determination of physical activity intensity 
(PAI), estimation of energy expenditure, and movement analysis – can be realized with the 
aid of accelerometry-based measurement systems. Accelerometry can also be employed in 
combination with other techniques, for example heart rate (HR) measurement. 
The systems developed to date can be subdivided into systems for the measurement of the 
intensity of PA and systems designed for automatic activity recognition. 

Physical activity intensity (PAI) 
As far back as almost 30 years ago, it was discovered that the integrated sums of the 
accelerations measured on the body are proportional to activity-induced energy expenditure 
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(EEact) (Reswick, Perry, & Antonelli, 1978; Bhattacharya, McCutcheon, Shvartz, & 
Greenleaf, 1980). Today’s systems designed for recording PAI are also based on this 
assumption. Activity is usually recorded using a single uni- or triaxial accelerometer placed 
on the hip or lower back (as rough representation of the body’s centre of mass). Examples of 
the uniaxial variant are Caltrac® (Muscle Dynamics Fitness Network, Torrance, USA) and 
ActiGraph® (MTI Health Service, Inc., Fort Walton Beach, USA). The 3D measuring devices 
include the RT3® Activity Recorder (Stayhealthy, Inc., Monrovia, USA) and the not 
commercially available Tracmor (Philips Research, Eindhoven, Netherlands). The output 
supplied by these devices contains either so-called “activity counts”, or EEact calculated on 
the basis of linear regression models. 
Studies have shown that both the uniaxial and triaxial instruments can be employed to 
distinguish between different degrees of PAI (see Bouten et al., 1997; Nichols, Patterson, & 
Early, 1992; Trost, McIver, & Pate, 2005; Westerterp, 1999). However, there is some 
uncertainty about EEact determined on this basis (see Hagemann, Norman, Pfefferkorn, Reiss, 
& Riesberg, 2004; Montoye, Kemper, Saris, & Washburn, 1996). 
A more precise estimate of the EEact is achieved with the Actiheart® device (Cambridge 
Neurotechnology Ltd., Papworth, UK) by means of the combined use of accelerometry and 
HR measurement. To determine EEact, a model is employed which differentially weights the 
acceleration and HR data (branched equation modelling). Compared to indirect calorimetry as 
reference method, the device calculates good estimates of the energy consumption for rest, 
walking and running (see Brage, Brage, Franks, Ekelund, & Wareham, 2005; Corder, Brage, 
Wareham, & Ekelund, 2005) and for activities of low to moderate intensity (Thompson, 
Batterham, Bock, Robson, & Stokes, 2006). 

Automatic activity recognition 
To obtain information on the type of activity performed, accelerometry-based measurement 
systems have also been developed which automatically recognize postures and activities. A 
representative sample of past work on activity recognition using acceleration is given in 
Table 1. For each system the measurement setup, the classes of identifiable activities, the 
evaluation strategy and the classification accuracy is quoted. 
The spectrum of physical activity identified by these systems covers 

• the distinction between standing, sitting, lying and movement (Aminian, Robert, 
Buchser, Rutschmann, Hayoz, & Depairon, 1999; Busser, Ott, van Lummel, 
Uiterwaal, & Blank, 1997; Kiani, Snijders, & Gelsema, 1997, 1998; Lyons, Culhane, 
Hilton, Grace, & Lyons, 2005; Uiterwaal, Glerum, Busser, & van Lummel, 1998) 

• the recognition of specific classes of PA, such as household tasks, different strenuous 
forms of locomotion, falls etc. (Bao & Intille, 2004; Bussmann, Martens, Tulen, 
Schaasfoort, van den Berg-Emons, & Stam, 2001; Foerster, Smeja, & Fahrenberg, 
1999; Kern, Schiele, & Schmidt, 2003; Mäntyjärvi, Himberg, & Seppänen, 2001; 
Mathie, Celler, Lovell, & Coster, 2004; Sherill, Moy, Reilly, & Bonato, 2005). 

Table 1. Summary of existing activity recognition systems using accelerometry. 

Investiga-
tion 

Chan-
nelsa 

Sensor  
placementb 

Activity classes Extracted 
featuresc 

Classification 
technique 

Accuracyd

Aminian et 
al. (1999) 
“Physiolog” 

2 Thigh (s),  
back (v) 

Lying, sitting, standing, 
moving, "other" 

Median, 
MAD 

Comparison 
with preset 
ranges 

89.3% 

Bao & 
Intille 
(2004) 

10 Right ankle/ 
wrist and left 
thigh/arm/hip 
(v, s) 

Walking, sitting, standing, 
watching TV, running, 
stretching, scrubbing, folding 
laundry, brushing teeth, riding 
elevator, walking while 

Time series, 
spectral and 
correlation 
features 

Decision table 
(1) 
Nearest 
neighbour (2) 
C4.5 decision 

46.8% (1), 
82.7% (2), 
84.3% (3), 
52.4% (4) 
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carrying items, eating or 
drinking, working on PC, 
reading, bicycling, strength-
training, vacuuming, lying, 
climbing stairs, riding 
escalator

tree (3) 
Bayes 
classifier (4) 

Busser et al. 
(1997) (1), 
Uiterwaal et 
al. (1998) (2), 
“DynaPort 
ADL-
Monitor“ 

3 Left thigh (s), 
waist  
(v, s) 

Lying, sitting, standing, 
locomotion, playing  

Not 
specified 

Not  
specified 

73-91% 
(1);  
86-93% 
(2) 

Bussmann et 
al. (2001), 
“Activity 
Monitor” 

4 Both thighs (s), 
sternum (v, s) 

Lying, sitting, standing, 
walking, walking 
upstairs/downstairs, 
bicycling, noncyclic 
movement

Angles, 
mean, 
frequency 
features 

Determining 
distances to 
preset ranges 

81-93%

Foerster et 
al. (1999) 

4 Lower leg/ 
thigh (preferred 
leg) wrist 
(preferred arm), 
sternum (v) 

Lying, sitting, sitting and 
talking, working on PC, 
standing, walking, walking 
upstairs/downstairs, 
bicycling

Mean
 

Determining 
distances to 
individual 
reference 
values 

66.7- 
95.8% 

Kern et al. 
(2003) 

36 Left and right 
shoulder, 
elbow, wrist, 
hip, knee, ankle 
(v, s, h) 

Sitting, standing, walking, 
walking upstairs/downstairs, 
shaking hands, writing on a 
whiteboard, working on PC 

Running 
mean, SD 
 

Bayes 
classifier 

68-95%

Kiani et al. 
(1997) 
“AMMA-
System” 

4 Both thighs (s), 
sternum (v, h) 

Lying, sitting, standing, 
walking, transitions 

Mean, SD, 
vector 
magnitude 

Hierarchical 
decision tree  

98% 

Kiani et al. 
(1998) , 
“AMMA-
System” 

4 Both thighs (s), 
sternum (v, h) 

Lying, sitting, standing, 
walking, transitions 

- Probabilistic 
neural 
network 

95% 

Lyons et al. 
(2005) 

4 Right thigh 
(v, s), sternum 
(v, s) 

Lying, sitting, standing, 
moving 

Mean, SD, 
angles 

Comparison 
with preset 
ranges 

84-93%

Mäntyjärvi 
et al. (2001) 

6 Left and right 
hip (v, s, h) 

Walking, upstairs, 
downstairs 

PC/IC 
(wavelet 
transformed) 

Multilayer 
perceptron 

83-85%

Mathie, 
Celler et al. 
(2004) 

3 Hip (v, s, h) Lying, sitting, standing, falls, 
walking, transitions, "other" 

Not 
precisely 
specified 

Hierarchical 
decision tree 

97%  

Sherill et al. 
(2005) 

10 Left and right 
forearm/thigh 
(v, s), sternum 
(v, h) 

Treadmill, stationary bicycle, 
arm ergometer, walking 
(level/incline/stair), folding 
laundry, sweeping floor

Time series, 
spectral and 
correlation 
features; PC

Linear 
discriminant 
analysis 

- 

a Number of recording channels. 
b Measurement direction according to the body fixed coordinate frame: vertical, sagittal, horizontal. 
c MAD = mean absolute deviation, SD = standard deviation, PC/IC = principal/independent components. 
d Correct classification compared with observation or fixed activity sequences. 
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For data acquisition, the measuring systems use up to twelve acceleration sensors, attached to 
different parts of the body. The critical factor for the identification of the activity performed 
is a suitable procedure for data analysis. By now, different strategies have been used for 
automatic activity recognition. The range extends from simple, rule-based approaches, which, 
for example, perform simple threshold value comparisons, and various statistical methods 
(e.g., Bayes classifier or discriminant analysis) to the use of artificial neural networks for the 
classification of acceleration patterns. 
Looking at the classification results, no statement can be made on which type of data 
evaluation should be generally preferred. Due to considerable differences in the respective 
study goals (number and specificity of the activity classes being identified) and in the 
evaluated data (circumstances and duration of activity measurements, number and position of 
the accelerometers employed, number of test subjects, etc.), it is not possible to directly 
compare the performance of the systems presented. 
The mentioned systems originate from a very wide range of research fields, for example 
preventive and rehabilitation medicine, psychophysiology, biomedical technology and the 
wearable computing/context awareness field. In the following, we are presenting a motion 
analysis system which is used in ergonomics. Unlike the systems described above, the use of 
which has so far been reported in only a small number of studies, this measuring system has 
been regularly used for almost ten years in ergonomic studies (e.g., Ditchen, Ellegast, Herda, 
& Hoehne-Hückstädt, 2005; Ellegast, Herda, Hoehne-Hückstädt, Lesser, Kraus, & Schwan, 
2004; Glitsch, Ottersbach, Ellegast, Schaub, & Jäger, 2004; Hoehne-Hückstädt, Ellegast, & 
Ditchen, 2006). 
Among the systems presented, only two are commercially available (“Activity Monitor” and 
“DynaPort ADL-Monitor”). Operating with 3 to 4 recording channels, they offer limited 
discriminatory power. In addition, it is difficult to modify or further develop a “finished 
product”. The CUELA system provides the chance to connect different sensors and record up 
to 168 channels. The system is designed modularly, therefore hardware and software 
interfaces are open for application-specific adaptations. In its basic version, the CUELA 
system does not operate with acceleration sensors, but offers a variety of functions and 
opportunities in the field of data acquisition and data evaluation – including the automatic 
recognition of postures and activities – which are also of great benefit for activity analysis in 
everyday situations. 

The CUELA measuring system 

The CUELA system (Figure 1) is a mobile measuring system for the objective long-term 
measurement of loads on the musculoskeletal system. Using this measuring system, it is 
possible to effectively support the statutory accident insurance institutions in the 
identification of job-related health hazards and to supply specific information on the load 
situation, even at non-stationary workplaces. The basic version of the CUELA measuring 
system (Ellegast, 1998), under development at the BGIA since 1994, consists of the 
following components: 
 Potentiometers to measure knee and hip joint flexions 
 Gyroscopes and inclinometers and a digital rotary transducer to measure flexion/extension, 
lateral flexion and torsion of the trunk 

 Piezo-resistive pressure-sensitive insoles to measure foot pressure distribution (Paromed 
GmbH, Neubeuren, Germany). 
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The movement data are stored in a portable storage unit and can be subsequently read out at a 
PC and processed further. Among others, the associated CUELA software provides the 
following evaluation functions: 

• Display of body posture by means of a 3D computer-animated figure 
• Graphic representation of angle/time curves 
• Synchronous embedding of video, HR records, etc. 
• Automatic classification of walking and body postures in accordance with the OWAS 

method (Karhu, Kansi, & Kuorinka, 1977) 
• Recognition of load handling activities and determination of load weights 
• Calculation of statistics over the measurement period. 

   
Figure 1. Application of the CUELA measuring system on a carpenter’s and an electrician’s workplace. 

With its convenient graphical user interface the CUELA software offers movement analysis 
and animation which, in that way, have not been reported in any of the systems described 
above. Another advantage of the system arises from its modularity: Besides the basic version 
there are extensions and modifications of the CUELA system for special applications, for 
example 3D motion analysis of the upper limb, motion analysis for sedentary workplaces or 
an interface for a 3D hand force measurement device. 
Measurement instrumentation and evaluation software are in-house developed so that the 
interfaces are direct available. Thus, specific adaptations as well as enhancements are 
enabled. Due to continuous use, further development and inspection, the CUELA system 
provides hardware and software components proven in practice. By scaling down the sensor 
equipment by the use of accelerometers, we intended to develop a modified variant of the 
original system which is suitable for long-term everyday PA measurements. The “CUELA 
activity measuring system” shall integrate quantitative (PAI) as well as qualitative (activity 
recognition) PA examination. 

Development of the CUELA activity measuring system 

Requirements 
The original measuring instrumentation is to be modified by introducing accelerometers to 
meet the following requirements: 

• Reducing the equipment to a minimum (production of miniaturized sensors, using as few 
sensors as possible) 

• Using triaxial accelerometers to still take the 3D character of human movements into 
account 
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• Realization of adequate sensor attachment suitable for the new field of application (under the 
clothes, non-slip, no limitation of freedom of movement, simple to affix). 

The existing CUELA evaluation software has to be modified in order to adopt most of the 
original analysis functions for the accelerometer-based system. In addition, the 
implementation of a new function determining movement intensity is intended. Also, the 
automatic recognition shall be extended by further postures and activities, such as lying on 
the side or walking upstairs/downstairs. 
Measurement setup 
The hardware prototype of the CUELA activity system consists of a new configuration of 
eight triaxial acceleration sensors (Figure 2a), a sensor box for multiplexing the sensor 
signals and a data logger from the original CUELA system (Figure 2c). The system is set to a 
default sampling rate of 50 Hz and performs A/D conversion with a resolution of 10 bits. For 
acceleration measurement, the sensors ADXL103 (uniaxial) and ADXL203 (biaxial) from 
Analog Devices (Cambridge, USA) are employed. Both models operate on the principle of 
capacitive acceleration measurement. They are designed for an acceleration range of ±1.7 G 
and can measure both static and dynamic accelerations (e.g., inclination and vibration). To 
cover all three dimensions, the sensors are placed perpendicular to each other. In static cases, 
orientation is thus known in relation to the axis of gravitation. 

Figure 2. Sensor size (a), sensor attachment (b) and visible hardware components (data logger and sensor box) 
of the system worn under the clothes (c). 

The sensors are attached to upper and lower back, both wrists and upper and lower leg of 
both legs. The leg and wrist sensors are placed in the sagittal plane, whereas the back sensors 
are positioned in the frontal plane (Figure 2b). Using elasticated, tight-fitting functional 
sports underwear, a measuring suit has been produced, to which the leg and back sensors are 
fixed with Velcro-type elements. The arm sensors are fixed with elastic Velcro-type tapes 
around the wrists. Figure 2c demonstrates how the measuring system worn under the clothing 
finally looks. Data logger and sensor box are attached to an elastic hip belt. Alternatively, the 
logger can also be carried in a waist bag. The sensor box has metal clip on its back for 
attaching it to a belt or trouser waist band. 

a) b) c) 
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Data analysis 
The dimensionless digital values are imported into the analysis program and converted into 
acceleration data. The processing of the acceleration signals then branches. In one branch, 
calculations are performed to determine PAI. In the other branch, the body angles are 
calculated. These are required for automatic activity recognition and for animation of the 3D 
computer figure. 
Determining PAI 
Current PAI is calculated according to the approaches of above cited studies (e.g. Bouten et 
al., 1997; Sherill et al., 2005). For each body segment fitted by a sensor, PAI determination is 
performed into three steps: 
1. To encompass all three directions of movement, the vector magnitude VM of the 3D 

acceleration vector (ax, ay, az) at time t is determined: 
 

222
zyxtSegment aaaVM ++= .      (1) 

 
2. Subsequent high-pass filtering with a cut-off frequency of 0.1 Hz removes the constant 

signal portions, so that only the alternating portion – i.e., the signal representing actually 
movement – remains.  

3. To obtain the current movement intensity PAISegment a moving root mean square (RMS) is 
calculated for the high-pass filtered vector magnitudes (VMfilt): 

 

∫
+

−

=
2

2

2 )(1
Tt

Tt
SegmentSegment dttVMfilt

T
PAI tt .    (2) 

 
The RMS is calculated across T = 150 readings, which equals 3 s at a sampling rate of 50 
Hz. 

 
The segment activities determined in this way are combined to calculate PAI of different body 
parts as well as whole body PAI. According to the distribution of segment masses assumed in 
biomechanical models (e.g. Winter, 1990) the PAI values are merged using the factors 
presented in Figure 3:  
 

 
Figure 3. Weighting factors for merging the single segment PAIs (grey) to body part PAIs and whole body PAI. 

To present the PAI curves in a more informative way for measurement evaluation, PAI is 
graded into four levels: none, low, medium and high. The corresponding threshold values are 
presented in Table 2. Due to the fact that a comparable categorization has not been 
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implemented elsewhere, following existing thresholds was not possible. Considering the 
development of a prototype system, the levels were graded intuitively. The threshold values 
were generated experimentally based on available measurement data. 
Table 2. Threshold values of the PAI levels. 

Figure 4 shows the colour-coded representation of the classified PAI levels displayed at the 
graphical user interface of the evaluation program. Both, video and computer figure 
demonstrate, that the person is lying currently and thus not active, which is represented by the 
grey areas of the intensity bars.  

Figure 4 shows the colour-coded representation of the classified PAI levels displayed at the 
graphical user interface of the evaluation program. Both, video and computer figure 
demonstrate, that the person is lying currently and thus not active, which is represented by the 
grey areas of the intensity bars. 

Figure 4. Data representation with the CUELA software by video (right), animated figure (left) and selected data 
stream (below), in this case the colour code of activity intensity for whole body, trunk, arms 
and legs (     none,     low,     medium,     high). Note: The displayed figure and video always 
refers to the left margin of the data stream. 

Automatic activity recognition 
For automatic activity recognition with the developed BGIA activity/posture code, the body 
angles and coordinates of the 3D figure are adopted as features for classification. The 
recorded acceleration/time curves can also be used for feature generation. 
Feature generation: Computation of angles 
The body angles are determined by using the quaternion notation for representing orientations 
and rotations: 
1. First a quaternion is composed which describes the rotation of the gravitational vector (0, -

1, 0) to the acceleration vector (ax, ay, az). This quaternion contains a rotation around an 
arbitrary axis. 

 
Activity level 

None Low Medium High 
PAI < 0.05 G ≥ 0.05 G and < 0.3 G ≥ 0.3 G and < 0.5 G ≥ 0.5 G 
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2. To determine angles of flexion or lateral flexion, a quaternion, which describes the 
rotation around a certain axis (e.g. z-axis for flexion) is calculated out of the arbitrary 
quaternion. The interested angle can be read out from this quaternion. 

The 3D movement animation is based on the calculated angles. Together with the segment 
lengths determined on the basis of subject size and gender, these yield the coordinates of the 
figure in space. 
 
Feature generation: Acceleration features 
The following acceleration features are considered: 

• The acceleration signals (usually in the sagittal or horizontal plane) 
• The vector magnitude of the 3D acceleration vector 
• The frequency features of the acceleration curves. 

However, none of the cited features is employed in the current version (January 2007) of the 
recognition algorithm. At present, only body postures are identifiable, whose classification is 
based on the calculated body angles and the coordinates of the 3D figure. 
 
Classification: The BGIA activity/posture code 
The recognition algorithm evaluates all postures concurrently. The following postures and 
subpostures are available as options within the code: 

• Standing: with straight legs / with bent legs 
• Sitting: on a chair or similar / on the ground 
• Kneeling: on heels / upright on both legs / on one leg left/right 
• Lying: supine / prone / on right side / on left side 
• Crouching  

 
For each posture, a membership value is calculated ranging from 0 (not true) to 1 (true) using 
a fuzzy logic approach. The degree of membership (DOM) with one of the postures is 
determined based on the calculated coordinates and angles. Every posture has a set of crucial 
features, which are examined in the classification procedure. In the course of this, the DOM 
is determined for each feature. The respective basic variables are linearly mapped to the 
interval between 0 and 1. Within this interval the DOM is defined by the following nonlinear 
function: 
 

ωω
1

)1()( aac −= ,           [ ];1,0∈a  { }6,3∈ω     (3) 
 
The graph of the membership function differs in shape due to the characteristic of the 
predefined scope. For sitting on the ground, for example, the conditions below have to be 
met:  

• Maximum distance between ground and pelvis at 35 cm 
• Minimum distance between ground and thoracic spine at 35 cm 
• Maximum backward inclination of lumbar spine at 75° 
• Maximum lateral inclination of lumbar at 60° on either side. 

 
Depending on the nature of the respective scope, the membership function looks like one of 
the examples presented in Figure 5: 
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Figure 5. Exemplary membership functions for determining a feature’s degree of membership (DOM) with a 

posture. 

Either the scopes are characterized by having an upper or lower limit or they are limited both-
way. In addition, the membership function is determined by ω, which denotes the level of 
selectivity between 0 and 1. As in most cases, in the sample graphs of Figure 5 ω = 3 was 
selected. To attain stricter discrimination between two postures, in certain cases ω = 6 was 
set. For example, harder transition boundaries were necessary for the vertical knee position to 
separate crouching from kneeling, because the membership with crouching terminates just 
when one knee touches the ground. 
For every feature set the lowest of the determined values is considered as DOM with this 
posture. Of any postures the one with the highest DOM is classified finally as current 
activity. 
The definition of features and determination of the threshold values for the validity ranges of 
body postures is based on theoretical assumptions, existing knowledge (from existing 
automatic recognition), and data from test measurements. By now, only the above-mentioned 
postures are tested in this way. To recognize walking, an algorithm already available in the 
original code is used. The planned identification of other activities has not been implemented 
yet. However, some generated acceleration features seem to be promising recognition criteria. 
For example, the frequency content of the lower leg accelerations could discriminate between 
walking upstairs and downstairs. 
Just like PAI, the activity recognition is also illustrated by a colour code in the evaluation 
software. Both, the activity levels and the automatic recognition can be statistically evaluated 
(in absolute or relative terms) over the entire measurement period. 

Testing the system 

After development, the classification performance of the prototype measuring system was 
tested by performing a number of measurements with simultaneous video monitoring. To 
cover a broad range of activities, a standardized activity protocol was first carried out under 
controlled conditions, followed by longer measurements without specific instructions in the 
everyday environment. In order to get an estimation about PAI determination, HR records 
were consulted. Despite the known difficulties regarding the relationship between HR and 
PAI, HR measurement offered an easily realizable method for preliminary testings. 
 
Methods 
Classification testing (controlled conditions) 
Procedure: Four test subjects (3 females and 1 male, age: M = 29.9 years; SD = 4.6) 
performed a 10-minute posture and activity protocol which is listed in Table 3. Activities 
were recorded by the CUELA activity system and videotaped simultaneously. 
Evaluation: Classification of the video material (one of the recognizable activities was 
assigned by the video evaluator to each 1-s interval) and subsequent comparison for 
agreement with the automatic recognition of the BGIA activity/posture code. 
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Table 3: Activity protocol for testing the automatic recognition under controlled conditions. 

Station Activity Duration  Station Activity Duration 
1 Standing ~60 s  7 Lying supine ~30 s 
2 Sitting ~120 s  8 Lying on right side ~30 s 
3 Kneeling ~30 s  9 Lying prone ~30 s 
4 Crouching ~30 s  10 Lying on left side ~30 s 
5 Sitting on ground ~30 s  11 Walking ~60 s 
6 Walking ~100 s     

 

Classification testing (free-living conditions) 
Procedure: Everyday activities without specific instructions were performed for 1 hour in 
natural surroundings (subjects: 2 females, 33.3 and 36.5 years) and measured and videotaped, 
respectively. The measurements included various household activities, shopping, looking 
after children, coffee break, etc. 
Evaluation: With one exception the evaluation procedure was the same as in the first test. 
With regard to the total duration we adopted 15-s intervals for analysis. If multiple activities 
occurred in one interval, the activity which appeared dominantly was chosen. 
 
PAI testing 
Procedure: One subject (female, 25 years) performed a measurement of about 30 minutes, 
including several minutes of walking, cycling, standing and sitting as well as 30 s of running. 
In addition to activity measurement, HR was recorded (Polar® Vantage NV, Polar Electro Oy, 
Kempele, Finland). 
Evaluation: Graphical comparison of whole body PAI and HR curves. 
 
Results 
Classification testing (controlled conditions) 
The results of the comparison between video-aided classification and automatic activity 
recognition are listed in Table 4. Overall, 2341 of 2400 inspected intervals were correctly 
classified. The misclassification rate ranged from 2 to 3% for all test subjects. 
Table 4. Results of the comparison between automatic and video-aided classification. 

 Number of 
intervals 

Correctly classified Misclassified 
Absolute Relative [%] Absolute Relative [%] 

Subject 1 600 586 97.67% 14 2.33% 
Subject 2 600 586 97.67% 14 2.33% 
Subject 3 600 586 97.67% 14 2.33% 
Subject 4 600 583 97.17% 17 2.83% 

Total 2400 2341 97.54% 59 2.46% 

Classification testing (free-living conditions) 
The results of the classification test under free-living conditions are illustrated in Table 5. 
Concerning the total of 480 analyzed 15-s intervals, there was agreement in the classification 
of BGIA code and video evaluator in 475 cases. Divergent classifications occurred for about 
1% of the intervals. 
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Table 5. Results of the comparison between automatic and video-aided classification. 

 
Number of 
intervals 

Correctly classified Misclassified 
Absolute Relative [%] Absolute Relative [%] 

Subject 1 240 237 98.75% 3 1.25% 
Subject 2 240 238 99.17% 2 0.83% 

Total 480 475 98.96% 5 1.04% 

 

PAI testing 
The comparison between HR and whole body PAI is represented in Figure 6. The subject’s 
HR in rest (about 60 beats/min) was chosen as origin of the HR scale. For the most parts both 
graphs have a similar shape. During cycling and the following standing sequence both curves 
demonstrate a deviation, which is explained in the discussion. 

 
Figure 6. Whole body PAI compared with HR during different activities. 

Discussion 
By adapting the CUELA system an accelerometry based measuring system has been 
developed within a short period of time. Besides the quantification of movement intensity, 
the system is capable of classifying performed activity automatically. Due to the existing 
evaluation software and knowledge from many years of experience, a reliable recognition 
algorithm could easily be implemented. 
The investigation of classification performance based on video observation showed that the 
recognizable activities can be identified with excellent accuracy. In most cases 
misclassifications occurred when different activities appeared in one interval. Since the 
dominant activity had to be determined in this case, divergent outcomes resulted between 
video and code evaluation. These discrepancies appeared frequently during transitions, 
especially within the evaluation of 1s-intervals if changing from one posture to another lasted 
several intervals. Some misclassifications were caused by the subjectivity of the 
observational evaluation. Extremely back-leaned sitting on the ground, for example, was 
detected as lying supine, and during very slow walking extended support phases were deemed 
to be standing. 
There was no remarkable difference in the classification behaviour between the activity 
protocol and the field measurements. Compared to the laboratory setting Foerster et al. 
(1999) and Mathie, Celler et al. (2004) reported deterioration in classification performance 
using their measuring systems in the field. This discrepancy was not confirmed by our 
investigations. Measuring with 24 recording channels – unlike 3 or 4 in the two mentioned 
systems – might have been a benefit in the more complex free-living context. In addition, the 
possibility of disagreement in the field testings was reduced by analyzing 15s-intervals. By 
means of prolonged intervals, the problem of transitions lasting more than one interval was 
eliminated. 
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Considering the results listed in Table 1, the BGIA code yielded great classification accuracy. 
This may be attributed to the fact that the current algorithm detects predominantly static body 
postures. However walking is the only dynamic category by now. Therefore, the possible 
classification error is smaller than of those identifying more complicated, similar dynamic 
activities like walking upstairs and walking downstairs. 
The PAI quantification was preliminary checked by means of HR records. The comparison 
between HR and whole body PAI indicates that the determined PAI offers a rough estimation 
for physiological strain at least for certain activities. Both graphs show analogy during 
walking, running and sitting. The biggest difference occurres during cycling. While HR 
increases, the PAI remains relatively low. This probably originates from the missing contact 
between feet and ground during cycling. The high acceleration peaks during walking and 
running are mainly caused by these foot strikes. In addition, PAI of trunk and arms tends 
towards zero during cycling. Considering the weighting factors given in Figure 3, whole body 
PAI is thus lowered significantly. 
The following deviation between both curves during standing demonstrates the difficulty of 
using HR as reference for PAI. As consequence of the previous more intensive cycling phase, 
HR is still at a higher level, which does not correspond to the fact that during standing none 
or little activity was actually performed. 

Conclusions and future prospects 

The basic aim was to develop a sensor based measuring system which is suitable for 
quantitative and qualitative PA examination. This has been achieved by the modification of 
the existing system CUELA. Employing miniaturized accelerometers reduced the scale of the 
original sensor equipment to enable almost non-reactive measurements in everyday 
situations. It was considerable advantageous to modify available, field-tested hardware and 
software instead of developing a complete new system. For sensor attachment a measuring 
suit has been produced. By means of the modified sensor configuration, the existing analysis 
software can still be used. Further functions were implemented: Determining PAI in terms of 
activity levels as well as automatic activity recognition is performed. Preliminary testing of 
the classification accuracy revealed promising results (> 97 %). 
Making use of reliable hardware as well as comprehensive and user-friendly software, the 
present prototype offers a good deal of scope for further development. Additional 
instrumentation (e.g., measuring insoles or EMG module) or newly developed sensors can be 
connected. Optionally, external recordings like video or HR can be embedded in the analysis 
program. Existing software tools can be enhanced as well as new functions added. By now, 
eight triaxial accelerometers are employed for activity assessment. Differentiated information 
on the activity performed is thus available. For both intensity determination and automatic 
activity recognition, this represents a huge potential for application-related adaptation of the 
system. 
Primarily the identification of further dynamic activities like walking or running at different 
speeds, climbing stairs and cycling is planned. For this purpose we are currently developing a 
new type of sensor combining accelerometers and gyroscopes. By means of the additional 
information on the angular velocity, the determination of angles in dynamic states will 
become more precise. With the assistance of these sensors the discrimination between 
different types of dynamic activity may be facilitated. 
Supplementation of PAI determination by gyroscope data is also intended. Thereby, the 
accelerometry-induced dependency on the type of locomotion (with or without foot strike), 
for example, can be excluded. Due to the inability of movement sensors to directly reflect 
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static muscle work, they can not measure the increased physical strain during activities like 
lifting and carrying loads or static exercises. According to the approach of the Actiheart® 
device, integration of HR data into the computation of PAI is therefore conceivable. 
However, the PAI determination should first be validated by means of a suitable reference 
method (e.g. mobile spiroergometry). 
In order to allow very dynamic activities as running and to lower the reactiveness of the 
system, the hardware instrumentation has to be minimized further. In view of this, scaling 
down the data logger is indicated. Furthermore, a reduction in the number of sensors should 
be considered. 
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Abstract 
This paper aims at successful tracking of beach volleyball athletes during 
competition using only a single camera. Due to the wide range of possible 
motions and non-rigid shape changes, the tracking task becomes quite complex. 
We propose a novel method based on integral histograms, to use a high 
dimensional model for a particle filter without drastic increase in runtime. We 
extend integral histograms to handle rotated objects. Additionally to the tracking 
process, a segmentation of the lower body parts enables generating real world 
player positions from a single camera view. Comparisons to hand annotated 
position data revealed sufficient accuracy for classical sport scientific purposes. 
The paper focuses on beach volleyball but the proposed methods can be utilized 
in other sports and non sports applications. 

 

KEY WORDS: VISUAL TRACKING, BEACH VOLLEYBALL, TIME-MOTION 
ANALYSIS 

Introduction 

When analyzing sports games the main aspects of interest are the used techniques, the played 
tactics and the physiological demands of athletes. All three characteristics are important to 
quantify skills and shortcomings of athletes or teams and define requirements for training and 
competition.  
For the analysis of technique and tactics, video technology has become very common and is 
utilized in several ways to analyze these aspects. The simplest way is to use video recordings 
to provide feedback for athletes (Liebermann & Franks, 2004) or to study opponent teams 
during crucial game situations in replay. Beyond these attempts interactive video systems 
(Dartfish®, Fribourg, Switzerland or Statshot®, Graz, Austria) are used to gather further 
information e.g. by counting frequencies of special techniques and by evaluating the 
effectiveness of actions. Such an attempt was successfully used by Tilp, Koch, Stifter & 
Ruppert (2006) to generate video based statistics for the analysis and comparison of world 
class junior beach volleyball teams.  
The positions of actions in sports are often crucial for success or defeat and therefore an 
essential information to rate the quality of an action. In order to determine the playing 
position it became quite common to define relevant zones of the court and to estimate in 
which zone an action occurred (Hughes & Franks, 2004). Getting accurate information about 
positions is complicated due to several factors. A distortion caused by the perspective view, 
missing marks and the transitions from one zone to another often causes wrong rating 
decisions and errors. 
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Exact position information is furthermore required to calculate covered distances, velocities 
and accelerations of athletes with which the physiological demands can be estimated. The 
main advantage compared to classical methods like heart rate monitoring or lactate testing is 
that interaction with the athletes can be avoided. Different methods for such time-motion 
analyses have been used since the early 1970’s. Before adequate technology was available 
such analyses were made manually via observation (Reilly & Thomas, 1976) or via audio 
recording (Yamanaka, Haga, Shindo, Narita, Koseki, Matsuura & Eda, 1988). 
Due to accuracy reasons, methods based on video data followed by a manual computer 
supported analysis have become the preferred method in the last years (for review see 
Spencer, Bishop, Dawson & Goodman, 2005 or Bangsbo, Mohr & Krustrup, 2006). 
Determining positions during interesting game situations, ratio of action and recovery time or 
the amount of physically exhausting actions like sprints or jumps would require an annotation 
of nearly each frame of a video sequence. In order to obtain this information with a feasible 
amount of user interaction, an automatic system for position computation is needed. 
 

Commercial applications 
Existing commercial applications for more or less automated tracking and position estimation 
demonstrate the interest of teams and coaches in gathering such information. They can be 
roughly divided into two groups: systems using markers (active or passive) and markerless 
systems. Two representatives for the first group are Cairos® (Munich, Germany) and LPM® 
(Abatec AG, Regau, Austria). Both systems use a radio based method, where every tracked 
object is equipped with a transponder which position is measured by several base stations. 
This technique has the advantages that the 3D position is computed up to 1000 times per 
second with a high spatial accuracy and that the number of tracked objects can be high. A 
disadvantage of such systems is the possible influence of markers on the athlete’s behavior 
though this problem has improved remarkably by minimizing marker size. However, as most 
of the sport rules prohibit the wearing of markers during competition the use of these 
techniques is very limited in sport practice. 
 
Markerless systems are mainly based on video input. Their main advantages are that the 
influence on players during competition is zero and that also opponents can be observed. 
Furthermore, the obtained video data can also be used for feedback or tactical observations. 
One of the leading systems is Amisco Pro® (Nice, France). It is a commercial multi camera 
match analysis system (8 stable, synchronized and fixed camera orientations) approved by 
several European soccer clubs. Recently, the system has also been used scientifically to 
estimate covered distances and running velocities in international soccer as reported by 
Salvo, Baron, Tschan, Calderon Montero, Bachl & Pigozzi (2007). Although this system may 
provide interesting data the required technical and financial effort (especially for hardware) is 

Figure 1. The proposed method can handle characteristic player motions like jumps and digs, which 
occur frequently during tracking. 
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an excluding factor for most type of sports. Therefore, it would be necessary to improve 
vision based tracking software to get accurate results without an enormous amount of 
technical effort.  
 
Computer vision related work 
On the one hand one can see that computer vision and in particular tracking are increasingly 
important for digital game analysis. On the other hand many different games like soccer, 
hockey, tennis and other type of sports have been used as test data for new computer vision 
approaches.  
To handle the unpredictable behaviour of objects of interest during tracking sport games, e.g. 
athletes and ball, particle filter based methods have become common in that area. Since its 
introduction into the computer vision by Isard & Blake (1998), the particle filter has been 
used for various tasks and is a common method for player tracking in sports. The simplicity 
of the method, the ability to recover from uncertainties during tracking, and the possibility of 
fusing different information cues in one tracker are major advantages of this tracking method 
(see Perez, Vermaak & Ganget, 2002; Perez, Vermaak & Blake, 2004). 
For the analysis of handball and basketball games Kristan, Perš, Perše & Kovačič (2006) 
have developed an indoor tracking system. Due to ceiling mounted cameras, the mutual 
occlusions between players are minimized. The tracking method uses a color based particle 
filter, considering the player as an elliptical region. The position of an object is then 
estimated by the center of tracking ellipse. Okuma, Taleghani, De Freitas, Little & Lowe 
(2003) combined a particle filter tracker with the detection results of an offline trained 
classifier to track hockey players. The tracking region of a player was defined to be an 
upright rectangle. Although the tracking results were quite impressive, results on estimated 
ground positions were not published. A comprehensive framework for automatic annotation 
of tennis matches was made by the group of Joseph Kittler (Yan, Christmas & Kittler, 2005). 
The tracking of players was done by subtracting the current frame from a pre-computed 
background image and using a blob tracker on the results. In addition, a support vector 
machine is trained to detect tennis ball candidates and a particle filter is used to track the ball. 
 
Our approach 
This work presents our approach in beach volleyball for a vision based tracking system which 
can be used in practice by trainers and athletes without extensive technical effort.  
To achieve these goals, the tracking algorithm should be able to track athletes during 
competitions only by the use of a single camera and without complex calibrations. This has 
the positive side effect that already existing beach volleyball videos can be analyzed as well. 
Tracking information should then be used to compute real world coordinates which provide 
exact position and enable time-motion analysis. We assume an offline annotation and 
tracking scenario, where the whole game video is available. The tracking and position 
estimation process must not be fully autonomous. Therefore a small amount of user 
interaction for correction and re-initialization is acceptable. 
Due to the playing characteristics of beach volleyball (and most other game sports) and the 
constraints due to a single camera the tracking algorithms used have to handle rotations and 
scale changes of bodies, e.g. squatting during a receive action. Specifically for beach 
volleyball the tracking methods should provide position information to improve the rating of 
techniques as well as motion analysis to estimate physical load (e.g. by detecting jumping 
movements as seen in Fig. 1). 
Our approach consists of in three main parts: configuration, tracking and position estimation. 
In the configuration step, the transformation between video image and court coordinates is 
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calibrated. Furthermore color and scale references are predefined for each player, by marking 
them in a single image. A background model is created automatically from input video. A 
color based tracker which is computational efficient by using integral structures forms the 
second part. It allows rotations to follow players during all possible motions and estimates the 
size of a player using the data from the configuration step. The tracker is only applied on the 
upper part of a player, which stays more compact during motions. If player positions are 
needed an additional segmentation step, using a skin color classification which was trained 
beforehand, is applied. This segmentation is only performed within an area defined by the 
tracker, where the lower part of the body is assumed, and therefore the additional runtime is 
negligible. Real world coordinates are finally estimated using the calibration from the 
configuration step. Figure 2 visualizes the main parts and the work flow. 
 

 
Figure 2.Vizualization of the main processing steps. 

The remainder of the paper is organized as follows. First, the particle filter approach is 
summarized and the transition model used for tracking is explained. Furthermore, the 
computation of the color properties and the likelihood function of the particles for the single 
object tracker are described. Based on the tracking results, players are segmented from the 
background to allow the computation of real world coordinates. Experiments show an 
evaluation of tracking and position estimation results on manual annotated ground truth data. 
Finally, conclusion and summary are given at the end. 

Methods 

This section describes the tracking method used in this work. The particle filter concept is 
briefly explained in addition with the motion and appearance model used for player tracking. 
Object scale estimation and problems with position estimation from single view cameras are 
illustrated. In order to obtain real world coordinates, an additional segmentation step is 
performed.  
 
Tracking with particle filter 
The idea of the particle filter is to estimate the state xt of a tracked object by using a set of 
weighted particles (Isard & Blake 1998). Each particle simulates the behavior of the object 
using Monte-Carlo simulations, a motion model and a measurement. Given a state space 
model xt-1 at time t-1 and all measurements up to t-1 known as z1:t-1 the posterior p(xt | z1:t) 
can be estimated by the recursion of Equations 1 and 2 using the new measurement zt. 
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The required posterior density function p(xt | z1:t) of the new state can be approximated using 
sequential Monte Carlo simulations of a finite set of particles {xt

i}i=1…Np. From an initial 
state, the weights {wt

i}i=1...Np associated with the particles are computed by sampling from a 
proposal distribution q(xt | xt-1,zt) (see Equation 3).  
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Using the state transition model p(xt | xt-1) as proposal distribution leads to the bootstrap 
filter, where the weights are directly proportional to the observation model p(zt | xt). Finally, 
the posterior density can be approximated by ∑ =

≈ PN

i
i
t

i
ttt xwp

1:1 )|( zx . To avoid the degeneracy 
of the particle set, resampling of the weights is done if necessary (see Arulampalam, Maskell, 
Gordon & Clapp, 2002, for more details). 
 
State model used for players  
During the tracking process players are described with rectangles given by center 
coordinates, size and rotation angle. In image coordinates the state model of an player at time 
t is defined by xt = [xt, уt, υxt, υyt, φt] where (xt,yt) are the center coordinates of the 
rectangular window, (υxt, υyt) are the velocities and φt is the rotation angle of the player, see 
Figure 3. The size of a player (h,w) during tracking is computed directly, using the 
assumption of a fixed camera. The Homography H between image coordinates and real world 
court coordinates is determined with an initial manual calibration. If a player is annotated 
once as a reference, for example during initialization of the tracker, the scale parameters (h,w 
in Figure 3) for different court positions can be estimated using the Homography H. 
The real state of a player xt is estimated by a set of particles simulating possible states xi

t. 
Applying an autoregressive model with an constant velocity assumption, the transition 
probability p(xt | xt-1) can be represented by: 

ttt vAxx +=+1  (4) 

 
With this model the motion of particles is defined by a drift component defined in matrix A, 
equal for all particles of a player, and a random component in vt, which is assumed to be 
normally distributed for x, y and φ. 
 
Using the homography 
Assuming that image coordinates are given for each player, one would be interested in the 
real world coordinates. Reconstruction of full 3D coordinates of players or ball requires at 
least two cameras, which we do not have in our setup. However, under the assumption that 
the players are moving on a specified plane one can use a perspective mapping between two 
planes, defined by the Homography, to compute court positions of players (for details see 
Hartley & Zisserman, 2002).  
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Figure 3. Left: Object description for players by a rectangular patch. For approximation of rotation the 
tracker is divided into three sub-parts. Right: Image shows 3 possible states of 
particles with different positions and orientations in blue, green, and red. 
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Estimating the unknown Homography matrix H in Equation 5, requires at least 4 points in the 
image and in the target view, respectively. The linear transformation uses the homogenous 
coordinates of image points [x y 1]T to compute the transformation to the given target 
coordinates [x’ y’ z’]T. In the resulting rectified view perpendicular angles are reconstructed 
and, with the metric world coordinates given, one can reconstruct real world court 
coordinates (e.g. 8x16m for beach volleyball, visualization in Figure 4). 
 

 

Figure 4. Left: Projection of real world points to the image plane of a camera and the transformation to 
a virtual top view projection. Right: The known coordinates of the playfield corners 
are used for calibration of the setup. Screenshot shows the perspective camera view 
and the undistorted top view image. The differences of the resolution in depth are 
shown by the parallel lines in both views. 

 
With the world coordinates in meters and given the frame rate of the video stream, 
approximations of speed and acceleration can be calculated. The achievable accuracy of the 
field coordinates depends on the resolution of the camera as well as on the distance and 
orientation between player and camera. Players further away from the camera center have a 
lack of resolution, especially in the y-coordinates, and therefore less accurate positions can be 
calculated.  
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It has to be mentioned that the Homography transformation contains only the transformation 
between planes, as shown in Figure 4. Therefore, it only holds for points on the calibrated 
playfield. By tracking players who are not on the ground plane, the projected position would 
be wrong (see Figure 5).  
 

Figure 5. During jumps players are off the calibrated ground plane. The estimated positions contain an 
error especially in their y-coordinates, due to the assumed projection onto the ground 
plane.    

Color tracking 
To evaluate the set of particles, a measurement function has to be defined to see how good a 
particle fits to the real state of a player. Color information is a simple but powerful method to 
describe an object of interest. In contrast to shape description methods, which have also been 
used with particle filters, color information is less vulnerable to clutter. In particular, the 
intensive and distinct team colors in sports support the use of color histograms for our model 
description. 
Using the HSV color space, an object is described with 3 independent NB-bins histograms for 
the hue, saturation and value channel. An object, in our case a player, is initialized with three 
reference histograms [hH

ref, hS
ref, hV

ref] for the color channels. To compare candidate 
histograms [hH

P, hS
P, hV

P] sampled from a particle estimation with the reference histograms, 
the Bhattacharrya similarity coefficient D(hP, href) is used. Combining the color channels the 
likelihood model p(zC | x) is finally assumed as exponentially distributed with a weighting 
constant λ as shown in  Perez et al. (2002). 
Histogram creation for each particle is a very time consuming task. Moreover, the particles 
overlap most of the time, so that many image areas are described several times. Porikli (2005) 
computed the histogram information of an image using the integral image approach, which 
leads to a drastic speed up. Additionally, the integral structure is only needed for the image 
area covered by particles, which is usually much smaller than the whole image. 
Once the integral histogram is computed for an image, the histogram information of particles 
can be obtained using only three operations independent from position and scale of the 
particle. The disadvantage of using the integral structure is that it cannot be rotated. Lienhart 
& Maydt (2002), proposed a method to compute 45° rotations in the integral image which is 
not sufficient for our aims. Barczak, Johnson & Messom (2006) extended the set of possible 
rotations to any angle by approximating from pre-computed rotated images. Applying such 
an approach to a huge set of particles with different rotations would diminish the speed up 
achieved by the integral approach.  
We decided to use an approximation approach similar to Grabner et al. (2006). The original 
tracking rectangle is divided into NS subparts to approximate the rotation in the integral 
image (see Figure 3). Assuming that the subparts are independent, the color likelihood for a 
particle with state x and consisting of NS subparts is finally computed by: 
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The improper approximation of the object due to the rotated subparts is compensated by the 
high number of available particles. In addition, a spatial relation is integrated into the 
likelihood computation of the particles, which was also shown by Perez et al. (2002). This 
leads to more stable tracking results. Furthermore, the number of subparts and their spatial 
relation can be changed.  
 
Including information about background 
Usually, kernel or mask functions are applied to take into account that some background 
pixels are always included in the tracking window. To measure the influence of background 
pixels in our integral approach, a background probability p(zB | x) is included in the 
formulation of the measurement likelihood of the particles. Because of the static camera, the 
background image can be computed in a preprocessing step. Using Equation 6 also for the 
background similarity, the final observation model for a particle is given by: 
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For every particle i with state xi

t at time-step t, the background similarity D(hi
j,P, hi

j,B) is 
measured for each subpart j. The histogram hi

j,P is sampled from the actual frame and hi
j,B is 

computed for the same area in the background image. The integral structure for the 
background has to be computed only once beforehand (see Figure 6). Integrating the 
background probability prevents the tracker from drifting into background regions during 
mutual occlusions of the players.  
 

 
Figure 6. Top-row: Left: Actual input frame, where the green rectangle marks the patch used for the 

reference color histogram. Middle: Probabilities of pixels being the tracked object, 
using only color information. Similar colored objects in the background cause errors. 
Right: Pre-calculated background image. Bottom-row: Left: Probability of areas to be 
background. Right: Combined probabilities where background areas with colors 
similar to the tracked players, like advertisement spaces, are less likely now. 
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Segmentation and position estimation 
Based on the obtained tracking results which are valid for the upper part of the athletes, the 
computation of the real field position is bounded on a smaller area. Knowing the position of 
the player, the rotation-angle of its body and an estimated scale, an area for segmentation is 
defined in the video frame.  
The similarity between skin colored and sand colored pixels makes it hard to segment the 
patch in player and background. We chose to transform the RGB pixel into the YCbCr color 
space, which has shown good performance for face or skin segmentation tasks (Phung, 
Bouzerdoum & Chai, 2005). Using about 2 millions of skin, sand and background training 
pixels, a mixture of Gaussian models have been computed in an offline process to describe 
the different classes in the YCbCr color space (Figure 7 shows some segmentation results). 
 

Figure 7. Left: Original input video frame. Middle: Segmented sand-colored pixel. Right: Skin 
segmentation can be used to create more accurate information about player positions. 

 
Using the segmentation results of skin colored pixels and pixels containing to the player, 
known from tracking, the image can now be divided into player and background regions. 
Morphological operations are used to filter out small segmentation errors. The final 
segmentation result, which can be seen as an example in Figure 8, is a combination of the 
biggest segmented regions.  
The estimated ground position in image coordinates (x,y) of a player is computed by the 
mean of all x-coordinates of the segmentation and the maximum y-coordinate. This is 
motivated by the fact that the mean represents the center of gravity of the region, respectively 
the player. The maximum y-coordinate is taken because of the used projection from image 
coordinates to real world coordinates. 
One can see that the combination of tracking and segmentation results leads to more accurate 
results. Assuming a fixed size for the lower part of the player, or using only a rectangular 
window, would only be valid for players standing upright. 

Evaluation experiments and first results 

The following section contains an evaluation of the proposed tracker. The method is 
compared to manual annotations in terms of overlaps on players and estimated field positions. 
Therefore, a set of 12 test-sequences, each consisting of several hundred frames was used. All 
sequences, including male and female rallies, have been annotated manually at every third 
frame. Additional results for multi-object tracking in sport applications can be seen in 
Mauthner & Bischof (2007). 
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Figure 8. Segmentation of patches into player and background regions. Size and position of the 

segmented region are derived from the tracker result. Estimated positions are 
indicated by arrows.  

Verification of tracker results 
The reference ground-truth was manually annotated by experts familiar with beach 
volleyball. A rotated rectangle was placed over the upper part of the player by the annotators 
in every third frame of the test videos.  
An overlap factor is computed from the shared area between the manual reference and the 
tracking result in relation to the total area of both rectangles (Figures 9 and 10). Total overlap 
of reference annotation and tracking result in an overlap factor of 1 and no overlap leads to a 
factor of 0. 
 

 

Figure 9. Left: Progression of the overlap factor during tracking of two players during sequence 1. 
Right: Manual annotation (blue rectangle) and tracking result (red dashed rectangle) 
for frame 346 in sequence 1. Both players are fully covered by their trackers, but 
according to the bending of player 1 the overlap factor is about 0.4, and lower than 
for player 2.  

As described in the method section, the result of the tracker is computed over a weighted sum 
of the particles. The size of each particle is estimated from its position, and therefore, the size 
of the tracker result is always a combination of different scales. Additionally, the size of a 



International Journal of Computer Science in Sport – Volume 6/Edition 2 www.iacss.org 
   

 

31 

torso is assumed to be fixed, which is not true, in image coordinates, if the players bend or 
crouch during the game. These mentioned difficulties do not exist if annotation is performed 
by a human, and therefore experts always scaled their reference rectangles to the visible part 
of the upper body. Low overlap values during such frames can be traced back on the 
differences between human perception and automatic computation (see Figure 9 and Figure 
10).  
 

  

Figure 10. Left: Tracker overlaps on all test sequences, given by mean values and standard deviations. The 
sequences 2 - 6 belong to female games for which automatic tracking is less accurate due 
to the smaller amount of specific colors and the similarity between sand and skin color. 
Right: Manual annotation and tracking result for frame 133 of sequence 1. 

 
A notable difference between sequences extracted from male and female games can be seen 
in Figure 10. Sequences from 2 to 6 are taken from female games, while sequence 1 and 
sequences 7 to 12 are from male competitions. This effect can be explained by the different 
appearances of the athletes. Male athletes wear shirts which, most of the time, are 
distinguishable from the background due to specific team colors. Because of the similarity 
between skin and sand color, the appearance of female athletes is not that precise during 
tracking which makes it harder to estimate the correct scale of a player. Nevertheless, the 
overall performance is balanced over the sequences. Considering the example frames given 
for sequence 1, an overlap factor of 0.45 still means an acceptable tracking result. Please note 
that no manual interaction was needed during the 12 test scenes.  
 
Estimation of field positions 
Similar to the tracker evaluation the reference position data consists of manual annotations. 
For every third frame of the test sequences, an image coordinate per player was defined as the 
reference position. The difference between manual reference and automatic position result is 
given as the Euclidian distance in image and real world coordinates. 
Results of estimated positions are directly compared with the manual ground truth, without 
any additional filtering. The variance in the results could be reduced, if situations like jumps 
and occlusions between players would be excluded or corrected manually. Note that even 
varying human annotations can result in different position results. Figure 11 shows a visual 
comparison between estimated positions and reference annotations. Trajectories of one team 
during a rally are show individually in two separate top-view projections. 
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Figure 11. Comparision between manual annotation and results of our method. Positions are shown for 

every third frame only. Left and right images show the manually in comparison with 
automatically generated trajectories of two different players during a rally. Note left 
image: Projection causes a wrong position estimation into the opponent field during a 
jump movement (left side of the field). After the landing the player position was 
estimated correctly again.  

As previously observed, several problems may occur when computing an exact athlete 
position from a single camera view. Depending on the point which is projected to real world 
field coordinates, the position can vary. Even the distance between both legs can be around 
half a meter. Additionally, the accuracy of the projection depends on the geometric resolution 
per pixel. In the used test sequences, the resolution varies between 3 cm/pixel and 10 
cm/pixel, depending on the distance to the camera. Considering this fact, the results shown in 
Figure 12 are satisfying. Compared to the tracking results no difference between male and 
female games is observed. This effect can be led back to our special skin segmentation step.  
Nevertheless, the results are accurate enough to answer several sport scientific questions and 
can be used for further analysis. Based on this position data, other parameters such as 
velocity and acceleration can be derived. Using the projected coordinates of the tracker, the 
resulting speed during jumps is not realistic due to projection errors (see Figure 11). 
Furthermore, a characteristic motion occurs, consisting of acceleration away from the camera 
followed by the inverse motion back towards the camera. The whole jump motion takes place 
in a maximum timeslot of about 30 frames. Such a shaped pattern can easily be found in the 
provided velocity data of each player and therefore could be exploited to detect jumps.  

Conclusion and further work 

A simple and yet effective method has been presented for tracking multiple objects within the 
scope of sport applications. The presented approach aims at obtaining position and motion 
information using the video input of a single camera, as this is the typical situation in sports 
practice. This aim could be achieved by combining several computer vision methods. By 
dividing the tracker window into subparts, the approximation of rotations in the integral 
histogram is possible. Therefore, sport specific motions can be followed with almost no 
additional runtime compared to using only an upright rectangle. Tracking results and 
segmentation of skin colored regions are combined to estimate real world court positions of 



International Journal of Computer Science in Sport – Volume 6/Edition 2 www.iacss.org 
   

 

33 

athletes. Together with the possibilities of using the calibration for scale estimation during 
tracking and computation of real world coordinates, we are able to create useful tracking and 
position results for beach volleyball games. 
 

 

Figure 12. Comparison of manual annotated positions and the results of the automatic method in image 
and real-world coordinates.  

The main advantages compared to existing methods are the rotation sensitivity, which 
delivers tracking results more similar to human annotation, and the combination of tracking 
and segmentation. As shown in the results, our methods deliver more information to analyze 
player positions than common rectangular or elliptical shaped trackers. We believe that the 
presented methods, together with a reasonable amount of manual interaction, are sufficient 
for motion analysis and the evaluation of physical demands in beach volleyball. Preliminary 
results indicate that it will be possible to detect frequency of jumping movements 
automatically in future. Furthermore, position data can be used to improve accuracy of action 
annotations and tactical analyses. The presented results are valid for beach volleyball but can 
be principally transferred to similar outdoor sports where fixed multiple camera systems are 
not available. A successful application of the presented method would be a great relief for the 
annotation process in several types of sports. 
The integration of the proposed methods into existing game analysis software is the next step. 
Tracking and position data should be combined with expert annotations about player 
behaviour and used techniques. 
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Introduction 

The notion of relative phases plays an important role in synergetic approaches to movement 
science. Coordinative patterns between the movements of several limbs within a person 
(Kelso, 1995) for example, can be characterized by means of the relative phase. Additionally, 
there are various successful attempts to utilize the cognition of dynamical systems to analyse 
coordinated interpersonal behaviour (Schmidt, et al. 1990). It is a broadly accepted fact that 
the theory of dynamical systems helps to deal with the degrees of freedom (Bernstein) 
problem and that the notion of relative phase is fit to describe and explain the patterns that 
emerge from coordinated behaviour. But, as all the variables of a complex system are being 
reduced to one essential - collective – variable (i.e. order parameter), which constitutes its’ 
behaviour, one has to be very precise with the choice of this variable. This paper wants to 
shed light on the potential - but also on the challenges - of a dynamical system’s analysis with 
relative phase measurement of interaction phenomena in (dyadic) game sports. 

Theoretical Background 

Oscillations consist of multiple phases (one period of an oscillation from trough to crest to 
trough) (Figure 1). The position of an oscillating object within a phase can be measured in 
degrees from 0° phase angle (trough) to 360°, indicating the final turning point (trough) of a 
phase and the beginning of a new one. relative-phase measurement determines the objects` 
position within their cycles and sets them into relation: the relative-phase is the difference of 
the objects’ position in their cycles. In other words, the relative-phase is able to quantify 
degree and order of interaction of two oscillating objects. 
According to the theory of dynamical systems, coordinated behaviour is a result of the 
interaction between two or more microscopic components of any complex system; the 
components self-organize to form a stable macroscopic pattern. This theory of pattern 
formation in complex systems was found to be accurate for various phenomena, even if the 
components of a complex system are not physically coupled. Even light photons obey to the 
principle of self-organization (Haken, 1978) or pattern-formation: If confined, they begin to 
interact and organize to homogeneous laser light. In sports, the relative phase is applicable to 
numerous examples of − intra (see Kelso, 1995)- and interpersonal − pattern formation. 
While in an intra-personal coordination task the components of the complex system “human 
body” are coupled via the central nervous system, the components of a system in which 
interaction takes place inter-personally (for example in tennis) act in a coordinated manner on 
basis of common, shared information. This information could for example be acoustic, like a 



International Journal of Computer Science in Sport – Volume 6/Edition 2 www.iacss.org 
   

 

36 

rhythm that is commonly perceived and shared by the components (e.g. paired canoe) or a 
visual, for example, the commonly perceived position of a ball (tennis, squash, soccer …). 
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Figure 1. Oscillations and phases of Tennis players (Lateral Displacement) 

The Relative Phase − an Example from Sports Behaviour 
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Figure 2. Paired canoe time-force curves (fictional data) 

The actions of a sprint-canoe pair are a simple example for interpersonal coordination: The 
pattern of their behaviour (namely “pulling”) determines position and velocity of the canoe 
and can be seen as the collective-variable (i.e. Order Parameter). The optimum state for this 
variable would theoretically be perfect synchronicity. The calculation of relative phase for 
these canoeists on the basis of their time-force curves is a straightforward thing − the cyclical 
structure of their movements is apparent. The relative phase sets the two canoeists’ actions 
into relation and identifies periods of stable interaction (i.e. Attractors); it quantifies these 
attractors on a scale from 0 to 360 degrees. Also, fluctuations of synchronisation can be 
identified, quantified and attributed to one of the athletes. Figure 2 shows a force-time plot of 
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two canoeists (the data is fictional). Pulling with a frequency of 0,4 Hz, the two athletes’ 
force plots are congruent – they are in a state of perfect synchronisation. The corresponding 
value of the relative phase is 0º, In-Phase. When changing the rate of strokes, the formerly 
stable phase-relation becomes imbalanced. The relative phase displays value of about 90º. 
This fluctuation from a stable state cannot be a liveable condition of the system (i.e. 
Perturbation). From the direction the value changes, one can tell who of the two athletes 
caused the perturbation: a positive fluctuation identifies athlete 1; he leads distinctly for a 
moment in relation to athlete 2. After this short fluctuation, the two fictional athletes find 
back into a stable coordinated behaviour but still athlete 1 is slightly in arrears to athlete 2. 
And again, the positive value means that athlete 1 is now beating the time in this example (or 
“leading the rally”,” putting pressure on his opponent”, “being the actor instead of being the 
reactor”, in other examples…). The system “paired canoe” showed two stable patterns, 
quantified with relative phase values of 0° and approx. 15° in this instance. A system can 
have various preferred states (Attractor). An Attractor is also a state of the system in which it 
could persist indefinitely. Apart from that, there are variations of the relative phase that do 
not indicate transitions between attractors, but report intolerable changes to the systems’ 
stability. If the system does not manage to settle back into any Attractor-state immediately, 
these perturbations usually result in the breakdown of the interaction (or the rally).  

The Relative Phase and Dyadic Game-Sports 

The behaviour of players of dyadic game sports is also synchronised or, in other words, 
coupled: action and reaction are interdependent. If a reaction does not match the action prior, 
the formerly stable action-reaction pattern becomes imbalanced: one player is “ahead” of the 
other and controls the rally by imposing pressure on the other player. The major problems in 
the theoretical approach to game sports are:  
 

• to find an appropriate description for the characteristic patterns of these sports 
• to quantify their most essential property, namely the interaction process between the 

players  
 
(a.) Many game sports – first and foremost the dyadic racket sports Squash (see Figure 3), 
Tennis (see Figure 5), Badminton, Table Tennis, etc. – show quite distinct patterns for the 
interaction of the players: they perform a “dance” around a central position on the court they 
aim to defend. On the other hand, they try to force their opponent to leave his centre-position 
and to make it impossible for him to return in time: the pattern can generally be described as 
oscillation to and from one central point on court.  
(b.) From a dynamical systems view, these spatial interactions can be described by means of 
relative phase (Mc Garry, et al., 2005; Palut & Zanone, 2005; Lames & Walter, 2006). 
 
The ability to quantify stable patterns, but also to detect critical situations by means of the 
relative phase (RP) was examined at the instances of squash and tennis. 

Methods 

For squash (see also McGarry et al, 2005), 47 rallies from the quarter finals of a world cup 
tournament – for tennis (see also Lames & Walter, 2006), 25 rallies of matches of the 2005 
US Open tournament were selected for analysis. The two-dimensional positions of the two 
players were tracked at a frequency of 10 Hz for squash and at 25Hz for tennis.  
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Squash 
The pattern of movement of the squash players is a regular, two-dimensional oscillation 
around the central T-position on the court – the centre of the pattern is static. Both 
longitudinal and lateral motion have the same amplitude. Therefore, radial displacement data 
was used for relative phase analysis. 
 
Tennis 
The tennis pattern is different from the squash pattern: tennis players do take and leave a 
certain position on court, but this position changes dynamically from stroke to stroke (see 
Discussion). To cope with this lack of a central reference point, velocity data (2D-speed: the 
sum of lateral and longitudinal movements per time unit) was chosen for analysis.  
The relative phase was calculated on these signals using the Hilbert Transformation (see 
McGarry et al., 2005 for details of calculation)  

Results 

Squash 
The radial displacement of the players from the T-position on the court is a good source for 
the essential tempo-spatial information required. It corresponds to the pattern the squash 
players adopt. Therefore the, pattern is clearly represented in the data: there is a significant 
tendency towards Anti-Phase in the oscillations of the players throughout all 47 rallies 
analysed (Figure 4). An overall distribution of all the data collected displays only one 
attractor state for radial displacement. Taking a look at the data of single rallies (Figure 3), a 
deviation from this stable state can be regarded as an indication of the existence of pressure 
or a role allocation (initiator/responder). These deviations can be identified, quantified and 
allocated to one of the players with the relative phase. 
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Figure 3. Squash: displacement-data of players and the respective relative phase  
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Figure 4. Squash: Histogram of the distribution of relative phase values 

Tennis 
Cross-play returns RP-values of approx. 180 degrees. For long-line-play, relative phase 
values of 0 degrees or 360 degrees are obtained. Those two values represent the two stable 
states/patterns of tennis: anti- and in-phase. Changes between the two stable patterns of tennis 
play can consequently be identified by the relative phase and are indicated by transitions 
between In- and Anti-Phase (Figure 5/Figure 6). Beyond that, the relative phase is capable to 
identify the initiator of a transition: the down-shift of the RP signal identifies the server as 
initiator and vice versa. Likewise, instable periods, deviations from one of the attractor states, 
which occur for example as a result of the creation of “pressure”, can be identified, quantified 
and allocated to one of the players. 
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Figure 5. Tennis: Velocity-data of players and the respective relative phase 
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Figure 6. Tennis: Histogram of the distribution of relative phase values 

Discussion  

The relative phase has turned out to be a promising tool for the analysis of sports behaviour. 
Indeed it is one of the few, if not the only method that is able to quantify what is the essential 
basis for performance in all game sports, namely the interaction with a partner and/or an 
opponent. The most important prerequisite for a dynamical systems analysis of interaction 
phenomena with the relative phase, is to choose the right collective variable; if this choice is 
made carefully, an analysis with dynamical system’s methods is possible: There is sports 
behaviour with clear and almost static patterns like rowing or canoeing, when interaction is 
simply a matter of synchronisation and the choice of the collective variable is straightforward 
(syncronication/rythm in rowing, etc.). But there is also more complexly patterned behaviour 
in sports that requires some effort to identify a order parameter For example : "What is the 
pattern of soccer?". Whoever is able to answer this question is a rich person. – Finding a 
precise definition of the pattern of soccer is likely to be a very challenging endeavour, but 
that does not mean that there is none to be found: Humans tend to have a very accurate 
intuition on patterns. Who does not know the feeling that one has from time to time, when 
you are watching a soccer game and for some reason you could literally feel that team X 
would be about to score – and a few seconds later they really do. Some information in the 
spatio-temporal movement of the teams or maybe just of a few players of one or the other 
team, conveyed to the watcher that the stability of attacking and defending has become out of 
balance, that the stable pattern is perturbated and something (a goal) is likely to happen, as a 
result. Tim McGarry (2005) did some very interesting research on the human capability to 
identify patterns. Human common sense could indeed do a great deal of help in the definition 
of control variables.  
What makes things a bit easier also is that sports games do generally have oscillating 
characteristics. As mentioned before, there is always action and reaction – and these spatial 
interactions of the two players finally incorporate what is essential to the game.  
For more complex sport game there will definitively no static pattern, no spatial oscillation 
around a fixed centre to be found. It is more likely that the search has to be for oscillations 
around a dynamical probabilistic centre: An example: In tennis, this centre of probability is 
located in dependence on a player’s shot and on the opponent’s possible reaction: "What 
situation am I possibly creating with my action? What is the possible reaction I have to 
expect? AND: Where is the place from which I am best prepared for this?" This scenario can 
be anticipated by a player and has to be updated for every phase of the rally. In other words, 
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the centre of a pattern can be considered the dynamical centre of a (symmetrical) "room" of 
possible states of the system.  
 

Excursus tennis: Centre of Movement (COM)  
The moment a player places a shot, he estimates 
the position where the opponent reaches the balls 
and which range of possible answers he has to 
expect from this position. According to this 
knowledge, he positions himself in the centre of 
this spectrum – he anticipates the shot. For Tennis, 
this probability-centre is generally assumed to be 
the bisector(α ) of the shooting players range of 
possible shots. (see Fig. 7) Furthermore, one has to 
take velocity into account: As a result, the centre is 
shifted from the bisector towards that side where 
the opponent could hit a faster ball. 

Figure 7. Centre of Movement (Tennis) 

In dyadic sports like tennis, squash, badminton, etc., this position is the location where a 
player is best able to react, and this centre is to be defended. If both players always managed 
to return to this point, the rally would go on indefinitely: The oscillation relative to this point 
can be regarded as the order parameter or collective variable of tennis and other game sports. 
Generally, a good understanding of the the very nature − the pattern − of the discipline that is 
to be analysed is indispensable. If this collective variable of a sports game is being chosen 
conscientiously and precisely, interaction phenomena can extensively and precisely be 
analysed by means of the relative phase. Coaches’ or athletes’ expertise is a good source to 
obtain or affirm a choice on this essential information; likewise is significant agreement of 
human common-sense on a pattern.  
Studying dyadic game sports as a dynamic system using relative phases provides a 
methodological approach to previously hardly measurable, but essential aspects: creating and 
recovering from pressure, dominating a rally and preparing the winning stroke. It may be 
expected that this new approach will be of great practical impact. 
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Abstract 
Previous research has interpreted the patterned relations produced from the space-
time interactions of squash players as a dynamical system. Importantly, the 
theoretical basis for pattern formation within dynamical systems is predicated 
upon the shared information exchanges among the parts that comprise them. 
Thus, the patterned dynamics of a squash rally are the supposed product of shared 
information (meaningful interactions) of the squash dyad instead of the random 
interactions that might otherwise be expected to occur from the happenstance 
pairing of two independent squash players. To investigate the squash dyad for this 
essential feature of a dynamical system, four data sets of 47 trials were created. 
Each trial within a data set comprised the individual movements of a number of 
independent squash players, or distracters (N = 2, 2, 4 and 6 for the four data sets, 
respectively), as well as the individual movements of two squash players taken 
from the same squash rally. Thus, a trial within a given data set comprised of a 
number of distracters (two, four or six) as well as a squash dyad (two players). 
The question of interest was whether the squash dyad could be identified from the 
trial using dynamical analysis techniques. To this end, all pair-wise comparisons 
for all trials were subjected to dynamical analyses and the subsequent outputs 
were then used to identify the squash dyads using predetermined criteria. The 
results demonstrated that the outputs from the dynamical analyses were 
successful in identifying the squash dyad from the distracters well beyond chance 
expectations for all data sets. These findings were interpreted as compelling 
evidence that the dynamical features of the squash dyad, as reported in previous 
research, are indeed the result of shared information exchanges among the players 
as consistent with dynamical systems theory. 

 
KEYWORDS: DYNAMICAL SYSTEM, PATTERN RECOGNITION, SQUASH 

Introduction 

From earlier investigations that searched for patterns of play in squash, we offered the 
possibility that squash – and the other racket sports too – be considered in terms of a 
dynamical system (McGarry, Anderson, Wallace, Hughes & Franks, 2002). The reader is 
referred to Kelso (1995) for a general introduction to the underlying principles of dynamical 
systems, and, as such, we present only a brief account of what the main features of a 
dynamical system are as they pertain to our interest in racket sports. To this end, the main 
ingredients of a dynamical system are as follows: First, a dynamical system is comprised of 
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two, or more, parts with each part demonstrating rhythmic, oscillating, tendencies about some 
point, and; second, the system parts share information with each other – and it is these 
information exchanges among the system parts that produce the self-organizing, and 
sometimes selfreorganizing, patterns of behaviour that typify a dynamical system. 
Interestingly, each of the racket sports exhibits these two ingredients for a dynamical system, 
as identified, leading to the proposition that the racket sports might usefully be considered in 
terms of a dynamical system (see McGarry et al., 2002, for additional considerations). 
Indeed, some of the trademark features of a dynamical system, for example the rapid 
transition between two different stable patterns following system reorganization, were 
subsequently reported for tennis when the lateral (side-to-side) velocities of a pair of players 
exchanging baseline shots were subjected to dynamical analysis (see Palut & Zanone, 2005, 
for additional details). The two different stable patterns of behaviour were reported as inphase 
(observed when the lateral movements of both players were in the same direction at the same 
instant) and antiphase (observed when the lateral movements of both players were in opposite 
directions at the same instant). Similar findings were likewise reported for the lateral (side-to-
side) and longitudinal (forward-backward) velocities of squash players (McGarry, Walter & 
Franks, in review), suggesting a common dynamical description for these different racket 
sports as hypothesized. Using radial velocities instead of lateral and/or longitudinal 
velocities, however, resulted in a mono-stable pattern with the anti-phase relation providing 
the single attractor for the dynamical system (McGarry et al., in review). Once again, the 
anti-phase relation was observed when the radial movements of both players were in opposite 
directions at the same instant, meaning that the squash players moved from and to the T-
position – approximately, centre court – in alternating sequence. This latter finding is of 
particular importance for this experiment as the strong tendencies of the squash dyad to anti-
phase, evidenced when the radial velocities were subjected to dynamical analysis, constitute 
the basis for pattern detection reported herein.  
Since shared information among the system parts provides the basis for pattern formation 
within a dynamical system, we posit that the information exchanges within the sports dyad 
produces the dynamical behaviours reported previously for baseline tennis (Palut & Zanone, 
2005) as well as squash (McGarry et al., in review). This said, the nature of squash (and the 
other racket sports) is for both players to oscillate in alternating fashion as each makes shots 
in sequence within the rally, leading to the formal possibility that the dynamical tendencies 
identified in the data thus far are the simple product of chance (i.e., the combined outcome of 
what individual squash players do without particular regard for the opponent) rather than the 
self-organized behaviour of the squash dyad as a direct result of information exchange, as 
proposed. Following this line of thought, we demonstrated in recent work that unique 
information within the squash dyad indeed exists on which the space-time patterns are 
predicated (McGarry, 2006). Such demonstration was obtained from experimental trials that 
used point-lights to represent the space-time movements of the squash players (imagine 
looking down at a squash game from a position above the T with the x-y movements of each 
player on the squash court represented as a single point-light), the experimental task being to 
identify using human observation the squash dyad from two distracters that were likewise 
presented in the same visual display. In one experimental task, the distracters comprised the 
movements of squash players other than those that formed the squash dyad, and in the other 
experimental task, the distracters comprised the movements (from other rallies) of the same 
players as those of the squash dyad. The two distracters were not permitted to constitute a 
squash dyad themselves under any circumstance. That human observers identified 
successfully the squash dyad from the distracters well beyond chance expectations for both 
experimental conditions provided unequivocal evidence that the space-time dynamics of the 
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squash dyad are unique and subject to detection using human perception. The information 
embedded within the space-time dynamics of the squash dyad that affords pattern detection, 
however, remains unknown at present and awaits further investigation. Therefore, the aim of 
this experiment is to examine whether such information contained within the squash dyad is 
dynamical in nature, as hypothesized, and whether a dynamical analysis of these data is thus 
sufficiently discriminatory for pattern detection as predicted. 

Method 

Eight squash players from various squash rallies were selected for analysis of movement 
patterns from video records of four quarter-final matches. These same video records were 
used in previous experiments from which a description of shot selection behaviours using 
probability measures yielded unsatisfactory results. The reader is referred to McGarry and 
Franks (1996) for further details.  
Twelve squash rallies from each quarter final were selected at random from the data set, thus 
yielding 48 squash rallies for analysis. (In fact, 47 rallies instead of 48 rallies were available 
for analysis because of experimenter oversight in data collection.) Using a graphics tablet (12 
inches by 8 inches), the movements of each squash player in each rally was transcribed from 
the video records by the experimenter as follows. First, the dimensions of a squash court were 
laid onto the surface of the graphics tablet. The image of the graphics tablet obtained from a 
video camera pointed at the graphics tablet was then superimposed onto the video data by 
mixing the signals from the video camera with those from the video recorder. In this way, a 
dual image was created and displayed on a television monitor. The superimposed image was 
arranged such that the squash court dimensions on the graphics tablet were matched with 
those squash court markings evidenced in the video records. The movements of each squash 
player were then tracked by the experimenter on a trial-by-trial basis using the stylus pen of 
the graphics tablet. Touchdown of the stylus marked the onset of data collection, as 
determined from the instant that the squash racket of the server first made contact with the 
ball. Thereafter, the experimenter tracked in real time the centre of gravity of the player as 
perceived, with visual feedback of the stylus and the player in the mixed video image being 
available at all times. Following data tracking of both players in a squash rally, the data were 
time-locked to each other using the start of each rally. The x-y data were sampled from the 
graphics tablet at 10 Hz. 
 
Intra-rater reliability 
The experimenter performed as many tracking tasks (trials) for a given squash player in a 
given squash rally as deemed necessary for that data to be considered as satisfactory. For 
reliability assessment, at least two satisfactory trials were recorded for each squash player 
from all squash rallies from the first and second quarter-final data. In the third and fourth 
quarter-finals, however, only the data from a single trial considered as satisfactory was 
collected except when the data from the squash rally was considered as being particularly 
difficult to record. In these instances, at least two satisfactory trials were collected as before. 
Intra-rater reliability was assessed from the repeat trial data using the Pearson product 
moment correlation coefficient. The results demonstrated a high level of reliability in data 
collection as evidenced in the mean correlation coefficients of 0.977, 0.956, and 0.939 for the 
lateral (x), longitudinal (y), and radial (√(x2 + y2)) data, respectively. 
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Data Preparation 
The radial displacement data (i.e., the distance from the T) were used to obtain estimates of 
the radial velocities of the squash players. To standardize the information content within the 
data set, and thus within each trial (see experimental design), the radial velocity data were 
truncated to 10 seconds information (from the start of the third second of data collection 
through to the end of the twelfth second). The radial velocity data were then subjected to 
Hilbert transformation (see McGarry et al., in review, for further details on this procedure) 
for purposes of relative phase analysis and subsequent identification of the squash dyad. 
 
Relative Phase 
The relative phase is a measure of where a squash player is in his/her movement cycle with 
respect to the other player. For example, if a movement cycle is defined from the T (say, from 
when a player leaves the T to retrieve a shot to when the player returns to the T to await the 
next shot) then an anti-phase relation (180°) indicates that as one player is at the start of 
his/her cycle the other player is exactly half-way through his/her cycle. Thus, an antiphase 
relation would be evidenced if one player were at the T and the other player at the point of 
shot retrieval, and so furthest from the T in his/her movement cycle, as well as vice versa and 
likewise for any intermediate points. 
Similarly, if both players in the squash rally were at the same point within their respective 
movement cycles then an in-phase relation (0° or 360°) would be evidenced. Other phase 
relations between the two players from 0-360° may likewise be evidenced depending on 
where each player is in his/her movement cycle with respect to the other at any instant. In this 
article, we are interested primarily in the anti-phase relation, as it is the principal measure that 
will be used to try to identify the space-time patterns that are known to be unique to the 
squash dyad (McGarry, 2006). 
One more point. Since the phase relations are measured using circular statistics, the phase 
relations are always expressed within 0-360° values, or multiples of 360° thereof. Thus, just 
as -360°, 0° and 360° and so on represent a given pattern (in-phase), so too does -180°, 180° 
and 540° and the like represent a given pattern (anti-phase) also. 
The same comment likewise applies to all the other phase relations (from 0-360°) and their 
360° multiples. 
 
Experimental design: Part 1 
For ease of explanation, we report the experimental design in two parts. In the first part, two 
experimental conditions were used to investigate the usefulness of the anti-phase relation as a 
discriminator for pattern detection based on the space-time dynamics of the squash dyad. The 
Squash-Unrelated condition comprised of two squash players from the same squash rally 
(i.e., the squash dyad) and two distracters taken at random, with counterbalancing, from the 
remaining data. For example, if the data from the four quarter-finals are represented as A1-12 - 
B1-12, C1-12 - D1-12, E1-12 - F1-12 and G1-12 - H1-12, respectively, and if Aj - Bj constitutes the squash 
dyad for a given trial, where j is any integer from 1 through 12, then the two distracters were 
drawn at random from the remaining data (i.e., C1-12 through H1-12), making certain that the 
distracters did not happen to constitute a squash dyad themselves. Similarly, the Squash-
Related condition likewise comprised of a squash dyad and two distracters, the difference 
being that the distracters in this condition were drawn at random, with counterbalancing, 
from the same data as those of the squash dyad. Thus, if Aj - Bj once more constitutes the 
squash dyad for a given trial, then the two distracters were drawn from the A1-12 - B1-12 data 
(one distracter was drawn from A1-12 and the other distracter from B1-12, excluding Aj and Bj of 
course), once again making certain that the distracters themselves did not form a squash dyad 
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by chance selection. Each experimental condition contained 47 trials with each trial 
consisting of a squash dyad and two distracters selected as described. For distinction, we will 
refer to the two experimental conditions as Squash-Unrelated-2 and Squash-Related-2, 
respectively, the suffix integer 2 denoting the number of distracters used per trial. 
 
Experimental design: Part 2 
In the second part of the experimental design, two additional experimental conditions were 
used to investigate further the usefulness of the anti-phase relation for discriminating the 
squash dyad. Using the Squash-Unrelated condition, the number of distracters per trial was 
increased from two (as used in the first part of the experimental design) to four and six 
distracters for the two experimental conditions, respectively. Once again, the distracters were 
drawn at random, with counterbalancing, from the remaining data sets. In keeping with our 
earlier nomenclature, we will refer to the two additional experimental conditions as Squash-
Unrelated-4 and Squash-Unrelated-6, respectively. 

Results and discussion 

The experimental task in each condition is to identify the squash dyad from the distracters 
using relative phase analysis. In an experimental condition that contains two distracters, there 
are six combinations of pairs per experimental trial with only one of the six comprising the 
squash dyad. Unsurprisingly, the number of combinations in an experimental condition 
increases as the number of distracters increases. Thus, four distracters yield 15 combinations 
of pairs per experimental trial and six distracters produce 28 combinations. 
Figure 1 presents relative phase data from a trial from the Squash-Unrelated-2 condition with 
the results from each of the six combinations presented in separate panels. The different 
combinations are identified by the number one through six located in the upper right corner 
of each panel. Since the combination order was randomized for each trial, the relative phase 
data presented for consideration with a view to identifying the squash dyad might be located 
in any place within the combination sequence with equal probability. Thus, only the relative 
phase data contain information that might be useful for detecting the squash dyad from the 
six combinations of data pairs. 
In each panel (Figure 1), the relative phase data obtained from Hilbert transformation on the 
radial velocity data are presented as a solid black line. For ease of data interpretation, the 
dotted line in some of the panels represents the anti-phase relation. On the experimental 
hypothesis that the anti-phase relation might be a good discriminator for detecting the squash 
dyad, visual inspection of the data (Figure 1) suggest the second and fourth combinations as 
the most likely candidates for the squash dyad. To automate the process of selection, we used 
absolute (unsigned) error from the anti-phase relation as our measure for pattern detection, 
with the least error reported among the six combinations being selected as the most promising 
candidate for the squash dyad. Using this criterion for selection, the automated process 
identified the second combination in this example as the squash dyad. Subsequent 
examination of the data for this particular trial indicated that the automated process was 
correct in this particular instance. 
The number of correct identifications of the squash dyad made by the automated detection 
process for each of the experimental conditions is documented in Table 1. The data 
demonstrate that the search process worked well beyond chance expectations regardless of 
the make-up of the distracter set, each distracter set seemingly being of equal difficulty for 
pattern detection (see Table 1, Part 1). This finding offers good evidence that the space-time 
interaction of the squash dyad on which pattern detection is founded is unique to the squash 
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dyad, a finding that is consistent with the earlier result using human perception as the 
mechanism for pattern recognition. Thus, the squash dyad acts as a unified system whose 
patterned behaviours demonstrate strong tendencies to anti-phase, as reported previously 
(McGarry et al., in review). Importantly, these findings are predicated on the interactions of 
the squash dyad, as consistent with dynamical principles for reasons outlined below. 
 
Table 1. Number of correct identifications of the squash dyad per experimental condition using the automated 

process for pattern detection. 

 

Increasing the number of distracters in the data set, and thus the number of squash pairs for 
comparison, reduced the number of correct identifications, as expected (see Table 1, Part 2). 
That said, the success rate of the anti-phase relation as a predictor of the squash dyad is 
impressive, particularly when one considers that we are reporting on its efficacy using the 
most stringent measure possible – that is, the squash dyad is identified as successful or 
unsuccessful without consideration in the latter instance of where the squash dyad placed in 
the prediction ranking. For example, while it would seem reasonable to consider the squash 
dyad when ranked second (of 28, for example) as a good assessment, as compared to a 
ranking of nineteen for instance, no such considerations were accounted for in our measure of 
efficacy. Nonetheless, the anti-phase relation presents itself as an excellent (and simple) 
predictor for detecting the squash dyad from its space-time patterns. The results from both 
parts of the experiment furthermore lend unequivocal evidence that the movement patterns of 
the squash dyad can be described usefully in terms of a dynamical system, since it must only 
be the shared information within the squash dyad (i.e., the shared information among the 
squash players) that is responsible for the self-organizing tendencies towards the anti-phase 
pattern that characterize it. Of course, there is no possibility of a meaningful sharing of 
information in any of the distracter pairs, and any appearance of such sharing (Figure 1, panel 
4 for example) is the product of happenstance. That the squash dyad is well discriminated 
from the distracter pairs therefore excludes chance as a possible explanation for the strong 
anti-phase coupling of radial velocities that for the most part typifies the space-time relations 
of the squash dyad. 

Conclusions 

In this report, we extended previous considerations of the space-time patterns of squash 
players as a dynamical system by seeking to address whether the measure of relative phase, 
specifically anti-phase, might be used as a useful discriminator for pattern detection. The data 
demonstrated that the anti-phase relation indeed discriminates the squash dyad from other 
distracter pairs at a degree of efficacy that well exceeds chance expectations. These findings 
provide unequivocal support for the contention that the movement patterns of the squash 
dyad subscribe to dynamical principles, since it is the shared information between the two 
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players that form the squash dyad that produces the patterned behaviours – the anti-phase 
relation – in keeping with dynamical systems theory. 
 

 
Figure 1. Relative phases obtained using Hilbert analysis of the radial velocities of each (6) combination pairs 

contained in an example trial. Panel 2 contains the squash dyad as evidenced in the least error 
from the anti- phase (180) relation. See text for further details. 
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Abstract 
The purpose of this study was to find efficacy values in playing microsituations in 
numerical equality with or without ball possession and to analyze the relation between 
these and the condition of winner or loser. The matches of the X World Championship 
of Water polo which did not end in a draw were analysed. Playing microsituations in 
numerical equality were evaluated by means of coefficients in order to obtain efficacy 
values. Some differences were revealed, in male category, in the following coefficients 
with possession: concretion, definition, resolution, accuracy and blocked shots received 
(p<.001) and precision (p=.001). Without possession: concretion, definition, resolution, 
accuracy and blocked shots made (p<.001) and precision (p=.001). In female category 
with the following coefficients with possession: concretion, definition and precision 
(p<.001), resolution (p=.001), possibility (p=.005) and accuracy (p=.017). Without 
possession: concretion, definition and precision (p<.001), resolution (p=.001), 
possibility (p=.005) and accuracy (p=.017); taking as a reference a value of p<.05. To 
conclude, it can be said that in twelve out of the fourteen efficacy coefficients proposed 
for evaluating the playing microsituations in numerical equality with or without ball 
possession in male and female water polo there are significant differences between the 
condition of winner or loser. 
 

KEY WORDS: WATER POLO, EFFICACY, WINNER, LOSER, NUMERICAL 
EQUALITY. 

Introduction 

This study is about water polo. Although nowadays this water sport is popular and played 
everywhere, it is a young sport. According to Majoni (1954) it appeared in the second half of 
the 19th century in Great Britain as a result of the Industrial Revolution. Water polo, which is 
played in a limited pool by two teams of seven field players (six players and the goalkeeper) 
who try to introduce the ball in the opponent´s goal post (Lloret, 1994), is an aquatic team 
sport, institutionalized and subject to some rules. This author proposed to define water polo 
as (1995): regulated sport of cooperation and opposition, which strategically communicates 
through the execution of some playing actions in the water environment. 

The intrinsic goal of the sports practice channelled towards competition is the success in 
itself, that is, the attainment of the best possible results and the beating of the other 
contenders. Sports training has become a traditional practice to improve the preparation and, 
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thus, to be able to obtain better results in the competition. An intense physical activity linked 
to the sports discipline at issue could make the sportsmen competitive. However, the sports 
success has become tremendously difficult, nowadays. The preparation, which a sportsman 
and/or a team needs to be competitive at a high-level, has been becoming tremendously 
complex and sophisticated. It is therefore evident that the evolution of the sports training has 
been one of the key factors, which has contributed to the mentioned increase in sports 
performance.   
 
If we want to assess the tactics of water polo teams in training or in a competition, it would 
be very complicated to face it as a whole. Therefore, it is necessary to divide the playing 
situation into microsituations, which maintain the structure of the sports modality. Thus, we 
may face several differentiated units, which make their quantification, valuation and action 
much easier. The context in which each microsituation develops is called situational 
framework, defined as the set of present motor behaviours in the playing dynamics in team 
sports, determined by the following factors: symmetry of the teams, organization of the 
tactical playing systems and ball possession. In the specific case of water polo we can 
distinguish four factors: a) numerical equality, b) transitional, c) numerical inequality and d) 
penalty.  
 
The first one, that is, the numerical equality framework in water polo, object of this study, is 
a playing microsituation developed from the organization and structuring of the tactical 
playing system, with or without possession, to the loss or recovery of the ball possession, 
where all the components of both teams are present in the playing field and can coincide in 
the pool at the same time according to the regulation: six players and a goalkeeper per team. 
Besides, we can differentiate the fact of having or having not the ball. Then, the numerical 
equality with possession in water polo is a playing microsituation developed from the 
moment of the organization and structuring of the tactical playing system, with ball 
possession, to the loss of the same one, where all the components of both teams are present in 
the playing field and can coincide in the pool at the same time according to the regulation, six 
players per team, and whose main objective is to maintain the possession obtaining a goal. In 
turn, the numerical equality without possession in water polo is a playing microsituation 
developed from the moment of the organization and structuring of the tactical playing system, 
without ball possession, to the recovery of the same one, where all the components of both 
teams are present in the playing field and can coincide in the pool at the same time according 
to the regulation, six players per team, and whose main objective is to get back ball 
possession without taking a goal (Argudo, 2005). 
 
When a water polo match ends, could we know the reasons for victory or defeat?  If we take 
into account the results obtained by the quantification of the playing actions, we can value 
their efficacy from some coefficients (Argudo, 2002). According to Gayoso (1983) efficacy 
can be considered as a result of the correctly executed actions inside a number of attempts or 
trials. This same author thinks that the measurements and evaluations of the behaviours both 
alive and in vitro are very important. 
 
Particularly in water polo, we can mention studies of conceptualization, elaboration of 
evaluation instruments, and first studies of efficacy values (Argudo, 2000; Argudo & Lloret, 
2006; Argudo & Ruiz, 2006a, b; Canossa, Garganta & Lloret, 2001; Dopsaj & Matkovic, 
1999; Enomoto, 2004; Lloret, 1994, 1999; Platanou, 2001, 2004; Sarmento, 1991; Sarmento 
& Magalhaes, 1991) that show some formulae to clarify and to justify the level of offensive 
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and defensive work in the matches of this water sport. Thus, an efficacy coefficient is a 
mathematical formula that determines a numerical value, which results from the relation 
among the actions, the individual tactics, or the tactical procedures, the group tactics; or the 
tactical playing systems, the collective tactics, the executed and the amount of attempts 
carried out in the different playing microsituations. As a result of it, we would have a value of 
efficacy, which is a performance numerical indicator that reveals us the necessary 
information to continue or to modify the planning or programme of the tactical content in the 
training or in the competition (Argudo, 2005). 
 
Currently, the need has been realised to do an analysis in which the most important 
performance indicators are registered, to know the sequences of play, own and adversaries, to 
collective and individual level.  
 
The goals of this study were: a) to find out efficacy values in the playing microsituations in 
numerical equality with or without ball possession and b) to analyze the relation between 
these efficacy values and the winner or loser condition in water polo at the end of the match 
both in the male and female modality. The hypothesis of this study was that the winning 
teams obtain higher efficacy values than the losing ones. 

Methods 

Participants 
The sample studied has been extracted from the X World Championship in Barcelona 2003. 
32 national teams, which show a great level of homogeneity were studied, being disputed 96 
matches; though only 46 male and 47 female matches whose final result was not a draw were 
selected. 
 
Tools 
All the matches selected have been analyzed with the Polo analysis v 1.0 direct software 
(Argudo, Alonso and Fuentes, 2005), a tool developed for the quantitative tactical evaluation 
in water polo in real time (see Figures 1 and 2). 
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Figure 1. Screen to register the actions in the playing microsituations, in numerical equality with or without 

possession. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Screen of the different collective and individual efficacy values of both teams. 
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This was the first software created to capture microsituations during a match in real time. It 
incorporates the functionality to obtain in real time efficacy and significance values, besides 
graphic representations of the match. All this permits to receive direct information about 
players, teams and situations. 
 
The variables studied have been the condition of winner or loser at the end of the match and 
the efficacy values obtained from the coefficients proposed to evaluate this playing 
microsituation, which is developed subsequently: 
 

1. Coefficient of shots possibility in numerical equality with possession. Mathematical 
formula that determines a numerical value of the relation between the shots carried 
out and the playing microsituations with possession. 
CSPNEP = Σ shots carried out x 100 / Σ microsituations with possession. 

2. Coefficient of shots concretion in numerical equality with possession. Mathematical 
formula that determines a numerical value of the relation between the shots scored 
and the playing microsituations with possession. 
CSCNEP = Σ shots scored x 100 / Σ microsituations with possession. 

3. Coefficient of shots definition in numerical equality with possession. Mathematical 
formula that determines a numerical value of the relation between the shots scored 
and the shots carried out. 
CSDNEP = Σ shots scored x 100 / Σ shots carried out. 

4. Coefficient of shots resolution in numerical equality with possession. Mathematical 
formula that determines a numerical value of the relation between the shots scored 
and the shots to goal posts. 
CSRNEP = Σ shots scored x 100 / Σ shots carried out – (Σ shots out + Σ shots blocked 
+ Σ shots posts). 

5. Coefficient of shots precision in numerical equality with possession. Mathematical 
formula that determines a numerical value of the relation between the shots to goal 
posts and the playing microsituations with possession. 
CSPRNEP = [Σ shots carried out – (Σ shots out + Σ shots blocked + Σ shots posts)] x 
100 / Σ microsituations with possession. 

6. Coefficient of shots accuracy in numerical equality with possession. Mathematical 
formula that determines a numerical value of the relation between the shots to goal 
posts and the shots carried out. 
CSANEP = [Σ shots carried out – (Σ shots out + Σ shots blocked + Σ shots posts)] x 
100 / Σ shots carried out. 

 
The higher these coefficients’ numerical value, the greater is the efficacy. Besides, a 
series of relations is established among them: 

 
1. CSDNEP should approach or be equal to CSANEP. 
2. CSCNEP should approach or be equal to CSPRNEP. 
3. CSCNEP should approach or be equal to CSPNEP. 
4. CSPRNEP should approach or be equal to CSPNEP. 

 
7. Coefficient of shots possibility in numerical equality without possession. 

Mathematical formula that determines a numerical value of the relation between the 
shots received and the playing microsituations without possession. 
CSPNEWP = Σ shots received x 100 / Σ microsituations without possession. 
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8. Coefficient of shots concretion in numerical equality without possession. 
Mathematical formula that determines a numerical value of the relation between the 
shots inserted and the playing microsituations without possession. 
CSCNEWP = Σ shots inserted x 100 / Σ microsituations without possession. 

9. Coefficient of shots definition in numerical equality without possession. Mathematical 
formula that determines a numerical value of the relation between the shots inserted 
and the shots received. 
CSDNEWP = Σ shots inserted x 100 / Σ shots received. 

10. Coefficient of shots resolution in numerical equality without possession. 
Mathematical formula that determines a numerical value of the relation between the 
shots inserted and the shots to goal posts. 
CSRNEWP = Σ shots inserted x 100 / Σ shots received – (Σ shots out + Σ shots 
blocked + Σ shots posts). 

11. Coefficient of shots precision in numerical equality without possession. Mathematical 
formula that determines a numerical value of the relation between the shots to goal 
posts and the playing microsituations without possession. 
CSPRNEWP = [Σ shots received – (Σ shots out + Σ shots blocked + Σ shots posts)] x 
100 / Σ microsituations without possession. 

12. Coefficient of shots accuracy in numerical equality without possession. Mathematical 
formula that determines a numerical value of the relation between the shots to goal 
posts and the shots received. 
CSANEWP = [Σ shots received – (Σ shots out + Σ shots blocked + Σ shots posts)] x 
100 / Σ shots received. 

 
The lower these coefficients’ numerical value, the greater is the efficacy. Besides, a 
series of relations is established among them: 

 
1. CSDNEWP should approach or be equal to CSANEWP. 
2. CSCNEWP should approach or be equal to CSPRNEWP. 
3. CSCNEWP should approach or be equal to CSPNEWP. 
4. CSPRNEWP should approach or be equal to CSPNEWP. 

 
13. Coefficient of shots blocked received in numerical equality. Mathematical formula 

that determines a numerical value of the relation between the shots blocked received 
and the shots carried out. 
CSBRNE = Σ shots blocked received x 100 / Σ shots carried out. 

14. Coefficient of shots blocked made in numerical equality. Mathematical formula that 
determines a numerical value of the relation between the shots blocked made and the 
shots received. 
CSBMNE = Σ shots blocked made x 100 / Σ shots received. 

 
While in the first small coefficients indicate greater efficacy, in the second it is 
contrary. Besides, a relation is established between them: 

 
1. CSBMNE should surpass CSBRNE. 
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Procedure 
The method of recording started from the initial approach to the midfield, so that once any of 
the two teams had the ball, it would carry out a sweeping technique centring the image in the 
midfield where the playing action is developed. The observation of the matches was carried 
out agreed by consensus between two trained specialists, Anguera et al. (2000) and Anguera 
(2003). 
 
Statistical analysis 
We calculated the variance homogeneity tests through Levene’s statistical tool. Later on, an 
ANOVA of a single factor was carried out; then by the Tukey test, the analysis of the 
statistically significant differences among the efficacy values in the numerical equality and 
the condition of winner or loser at the end of the match was carried out. All the statistical 
analyses mentioned were carried out with the SPSS 12.0 statistical package with a level of 
confidence of 95% and an error probability of 5% (meaning level of .05). 

Results 

After applying the statistical analysis, the comparison among the efficacy values obtained in 
the playing microsituations in numerical equality with and without possession has provided 
the following results, which are shown in Tables 1 and 2. 
Table 1. Values of significance of the efficacy values in numerical equality with or without possession between 

male teams winners and losers. 

winners – losers 
CSPNEP .200 
CSCNEP .000* 
CSDEP .000* 

CSRNEP .000* 
CSPRNEP .001* 
CSANEP .000* 
CSBRNE .000* 

CSPNEWP .201 
CSCNEWP .000* 
CSDNEWP .000* 
CSRNEWP .000* 

CSPRNEWP .001* 
CSANEWP .000* 
CSBMNE .000* 

* Denote significant differences (p<.05) between winners and 
losers. 

These results show that the winning male teams do not have significant differences p=.200 
and p=.201 respectively in the CSPNEP and in the CSPNEWP as opposed to the losing 
teams. On the contrary the efficacy values obtained by the winning teams do show significant 
differences p<.001 in the CSCNEP, in the CSDEP, in the CSRNEP, in the CSANEP, in the 
CSBRNE, in the CSCNEWP, in the CSDNEWP, in the CSRNEWP, in the CSANEWP and 
in the CSBMNE. Also, the efficacy values obtained by the winning teams as opposed to the 
losing teams show significant differences p=.001 in the CSPRNEP and in the CSPRNEWP.   
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Table 2. Values of significance of the efficacy values in numerical equality with or without possession between 
female teams winners and losers. 

winners – losers 
CSPNEP .005* 
CSCNEP .000* 
CSDEP .000* 

CSRNEP .001* 
CSPRNEP .000* 
CSANEP .017* 
CSBRNE .564 

CSPNEWP .005* 
CSCNEWP .000* 
CSDNEWP .000* 
CSRNEWP .001* 

CSPRNEWP .000* 
CSANEWP .017* 
CSBMNE .564 

* Denote significant differences (p<.05) between winners and 
losers. 

 
On the hand, the winning female teams do not show significant differences p=.564 in the 
CSBRNE and in the CSBMNE as opposed to the losing teams. However, the efficacy values 
obtained by the winning teams as opposed to the losing teams do show significant differences 
p<.001 in the CSCNEP, in the CSDEP, in the CSPRNEP, in the CSCNEWP, in the 
CSDNEWP and in the CSPRNEWP. Also, the efficacy values obtained by the winning teams 
as opposed to the losing teams show significant differences p=.001 in the CSPNEP and in the 
CSPNEWP. At the same time the winning teams as opposed to the losing teams obtained 
efficacy values showing significant differences p=.005 in the CSRNEP. and p=.017 in the 
CSANEP and in the CSANEWP.   

Discussion and Conclusions 

If we compare the data obtained in this study with previous studies by Argudo (2000), we 
have the possibility to note that among the male teams with the condition of winner or loser, 
there are coincidences in the CSCNEP p=.129, in the CSDEP p=.742, in the CSCNEWP 
p=.129 and in the CSDNEWP p=.742. Likewise, among the female teams with the condition 
of winner or loser there are coincidences in the CSCNEP p=.022 and in the CSCNEWP 
p=.050. However, we noticed the opposite in the CSDEP p=.281 and in the CSDNEWP 
p=.551. 
 
As the main conclusion of the quantitative tactical evaluation of the playing microsituations 
in numerical equality with and without ball possession in the X World Championship of 
Water polo of 2003, carried out in the male matches, we can infer that, in twelve out of 
fourteen efficacy coefficients there are significant differences between the condition of 
winner or loser, that is why the hypothesis raised comes true in the CSCNEP, in the 
CSRNEP, in the CSANEP, in the CSBRNE, in the CSCNEWP, in the CSDNEWP, in the 
CSRNEWP, in the CSANEWP, in the CSBMNE, in the CSPRNEP and in the CSPRNEWP.  
 
In turn, we can infer from the female matches that in twelve out of fourteen efficacy 
coefficients there are significant differences between the condition of winner or loser, that is 
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why the hypothesis raised comes true in the CSCNEP, in the CSDEP, in the CSPRNEP, in 
the CSPNEP, in the CSRNEP, in the CSANEP, in the CSCNEWP, in the CSDNEWP, in the 
CSPRNEWP, in the CSPNEWP, in the CSRNEWP and in the CSANEWP. 
 
If we want to make a transfer from the conclusions we have reached, to the training of the 
playing microsituations in numerical equality in male water polo, we should keep in mind, on 
planning the sessions and the matches, that there are not going to be any differences between 
both teams as for the shot possibilities, that is why we will have to plan some tasks whose 
main objective is that a player can shot in the best conditions to obtain the greatest efficacy. 
Since it is very difficult to move around in water polo, the way to obtain that profitable 
situation should be through simple and coordinated actions among few players, which lead to 
a momentary numerical imbalance in a specific space, where the benefited player can shot 
from with the greatest possibilities of success. That is why the coaches must demand the 
maximum concentration and success in the decision-taking process when shooting. We must 
make each player aware of the great importance and significance that the simple fact of 
shooting to the goalpost has. And on the contrary, other tasks whose main objective is to stop 
any shot by means of individualized pressure and anticipation in order to avoid those 
strategically dangerous spaces that are created. In the case of female water polo, besides the 
importance of being accurate when shooting, the training of blocking these shots should be 
increased, since it can allow the players to improve the possibilities of victory.   
 
In future studies we could tackle the analysis of the same variables with a greater number of 
matches, if we study different games from different championships and the time of ball 
possession permitted, especially with the regulation modifications proposed by the FINA for 
the 2005-09 period, and if we compare the data obtained with this study.   
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