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Editorial 

Arnold Baca 

Department of Biomechanics, Kinesiology and Applied Computer Science, 

ZSU, University of Vienna 

 

 

Dear readers: 
 

Welcome to the winter issue 2015 of the International Journal of Computer Science in 

Sport (IJCSS). 
 
The issue contains three research papers and two project reports.  
 
Hall used a two-tiered hierarchical linear modeling design that combined a number of 
specific on-court and off-court factors to assess both player and team performance at the 
NBA. The results show some statistically significant factors, including players’ ages, entropy, 
and compensation. 
  
Knudsen and Andersen introduce a method to detect gaps in a team’s defence in soccer. 
Results showed that there is a critical passing speed, from which on gaps can occur in a 
soccer defence which cannot be defended anymore. 
 
In their scientific report Ting et al. propose a novel lossless compact view invariant 
compression technique with a dynamic time warping algorithm which provides a badminton 
movement recognition and analysis framework.  
 
The scientific report by Thomas establishes a predictive model capable of simulating and 
predicting the outcome of the 6th Rugby Sevens World Cup. 
 
Finally, I would like to publicly announce that the IJCSS will become an open access journal. 
Starting with the summer issue 2016 (volume 15, issue 1) it will be published at de Gruyter 
Open. There still will be two issues per year, one in June and one in December. The 
submission and reviewing process will stay the same and will be organized on my part.  
De Gruyter provides the publication platform and helps us improving the visibility of the 
IJCSS and, amongst others, applying for an impact factor. Authors who get an article 
accepted and published in IJCSS do not have to pay any publication fees. 
The former IJCSS volumes will stay on the IACSS server and will be accessible as so far. 
 
If you have any questions, comments, suggestions and points of criticism, please send them 
to me.  
 

Arnold Baca, Editor in Chief 
University of Vienna, arnold.baca@univie.ac.at  
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A Hierarchical Linear Modeling Approach to 
Assessing NBA Player and Team Performance 

Hall, Jr., O. P. 

School of Business and Management, Pepperdine University 

 

Abstract 

With teams’ annual payrolls nearing $100 million and valuations for some teams 
exceeding $2 billion, the National Basketball Association is big business. That 
being the case, many pro-basketball general managers are turning to analytics to 
discover ways to improve organizational performance. The purpose of this paper 
was to highlight the results of an analytics-based assessment of both player and 
team performance, using data from the regular 2012-2013 NBA season. The 
analytical paradigm described in this paper consisted of a two-tiered hierarchical 
linear modeling design that combined a number of specific on-court and off-court 
factors. The analysis also introduced a relatively new sports performance 
metric—entropy, which can be used to measure the degree of disorder at both the 
player and the team level. The target variable was Hollinger’s Player Efficiency 
Rating. The results of the analysis revealed that a number of factors were 
statistically significant, including players’ ages, entropy, and compensation. NBA 
general managers can use this modeling approach to evaluate both trade and draft 
opportunities. 

KEYWORDS:  NBA; ANALYTICS; HIERARCHICAL LINEAR MODELING; TEAM 
PERFORMANCE; PLAYER TRADING AND DRAFTING; ENTROPY 

Introduction 

The use of analytics throughout the sports universe is growing rapidly (Colemann, 2013; 
Davenport, 2014). This development is being driven by the continued economic growth of 
spectator sports both domestically and on a worldwide basis. For example, annual revenues for 
the 2012-2013 NBA season were estimated at $5 billion (Stern, 2012). To that end, analyses of 
individual and team achievements continue to receive attention in both popular and academic 
literature (Berri, 2010; Justin, 2007). Regression techniques, in particular, have found favor 
among analysts for evaluating a variety of basketball challenges, including arbitration, contract 
length, and competitive balance (Omidiran, 2013; Schouten, 2012). Not surprisingly, well-
informed basketball prognosticators are turning to these more powerful statistical models that 
allow for the inclusion of many complex predictor variables. The NBA is particularly well 
suited for analytics use because player performance across different positions can be measured 
with the same set of statistics, unlike in the NFL or MLB, where different positions are 
measured using different metrics. For example, in MLB, pitchers are evaluated based on their 
earned run average, while the designated hitter is assessed using statistics like on-base 
percentage and slugging average. Analytics is the science of discovering and communicating 
meaningful patterns in data and developing actionable plans (Cooper, 2012).  Typically, 



International Journal of Computer Science in Sport – Volume 14/2015/Edition 2 www.iacss.org 

   

 

5 

 

analytics can be divided into three broad categories: descriptive, predictive and prescriptive. 
Descriptive analytics is all about providing insights into what has already happened (e.g., 
player injury assessment). Predictive analytics focuses on generating forecasts about the future 
(e.g., player performance). Prescriptive analytics builds on both descriptive and predictive 
analytics to help identify solutions to specific problems and decision-making applications (e.g., 
drafting and trading).  The predictive analytics category is replete with a wide range of models 
including those that are designed to examine hierarchical data structures. 

Hierarchical linear modeling (HLM) allows for the analysis of complex nested data structures 
like those associated with organizations such as the NBA. One of the early applications of 
HLM involved educational research wherein students were nested within classrooms, 
classrooms were nested within schools, and schools were nested within districts (Ma, 2000; 
Schagen, 2003). The basic idea behind HLM, sometimes referred to as multi-level linear 
modeling, is that individuals associated with a particular cluster, such as a sports team, are 
likely to exhibit some degree of association with the other members of the cluster, namely their 
teammates. This behavior violates the classic assumption that each data observation is 
independent. HLM provides a vehicle to better examine relationships, which in turn should 
improve the resultant insights, enabling NBA management to make better player choices based 
on dependent, cluster data variables. 

Obtaining the most talented and productive players on the team is perhaps the 

most important decision that NBA teams make. Constructing a team that can 

reach its full potential requires more than just acquiring talented players; 

these players have to fit well together (Ayer, 2012, p. 6). 

 
One of the basic goals of applying the analytics paradigm to sports in general and the NBA in 
particular, then, is to improve the decision-making process underpinning player acquisition and 
utilization. This paper is organized as follows: 1) a review of the relevant literature, 2) an 
analysis of the data on the regular 2012-2013 NBA season, and 3) a discussion on the 
application of the developed model for the purpose of improving team performance. This 
article’s primary contribution to sports management is the introduction of a new sports 
performance metric— entropy—and the application of ensemble modeling featuring a 
hierarchical linear archetype. 

Review of Literature 

The nature of interaction between players and teams is both complex and dynamic. To capture 
the essence of these relationships calls for a comprehensive modeling approach. Typically, a 
number of broad factors are needed to explain both player and team performance, including: 1) 
economic, 2) management, and 3) system factors. In fact, sports analysts have taken a page 
from the equity market’s play book by introducing compound factors like Hollinger’s Player 
Efficiency Rating – PER (Sisneros, 2014). Hollinger’s PER equation consists of a large 
number of metrics with a heavy emphasis on a player’s offensive performance. To support this 
complex-factor approach, this paper introduces a performance variable called entropy, which is 
a measure of the randomness and disorder of a system that can be applied to both players and 
teams.  

Entropy 

Entropy is a relatively new concept in sports analytics (Couceiro, 2014; Fewell,2012). The first 
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study examined player performance variability using entropy as a basis for developing an 
enhanced training plan. In the second study the findings suggest that team ball movement 
unpredictability, as measured by entropy, has a strong positive association with making the 
NBA playoff.  Entropy has seen widespread use in the financial markets (Pincus, 2008; Zhou, 
2013). Specific financial entropy applications include portfolio selection, asset pricing, and 
investor satisfaction. The basic idea with respect to equity markets is that more volatile 
securities are in a greater state of uncertainty than more stable securities. Continuing with the 
financial analogy, teams can be viewed as the broader markets while players are the individual 
stocks. As applied to the NBA, entropy can provide a measure of disorder based on a variety of 
performance metrics (e.g., point production at both the player and team levels). Two 
fundamentally different phenomena exist in which time-based data, like scoring patterns over 
the 82-game season, deviate from constancy in that they: 1) Exhibit larger standard deviations, 
and 2) Appear highly irregular.  

These two phenomena are not mutually exclusive and as such, both can be used to characterize 
the uncertainty associated with fluctuations in a variety of performance-based time series data 
(e.g., point production).  The standard deviation measures the extent of deviation from 
centrality, while entropy provides a metric to delineate the extent of the data set’s irregularity 
or complexity. Two different time series can have the same standard deviation, yet 
significantly different entropy values. A time series containing many repetitive patterns will 
have a relatively small entropy value, while a less predictable process will produce higher 
values. Evaluating the subtle but complex shifts in series data is a primary prerequisite for 
exploiting the potential information contained therein. The related literature posits that entropy 
(ApEn) is both robust to outliers and can be applied to relatively small times series sequences 
with good reproducibility (Chen, 2009). However, with sample sizes under 200, approximating 
entropy can lead to bias since the ApEn-based process counts each sequence as a match for 
itself (Yentes, 2012). A second measure of system complexity that is often used to address this 
issue is called sample entropy (Maasoumi, 2009; Thuraisingham, 2006). Both approximate 
entropy and sample entropy utilize the following three inputs: 1) Time series, 2) Matching 
template length (M), and 3) Matching tolerance level (r). 

For this study, the matching template length (M) utilized was two, which was predicated on the 
relatively short length of the time series (number of games = 82). The matching tolerance (r) 
was based on 20 percent of the standard deviation, which has been used in a variety of serial 
studies (Liu, 2011). Alternatively, it has been suggested that the selection of the tolerance level 
(r) should be based on the value that maximizes entropy (Lu, 2008). The computational 
process behind ApEn and SaEn is somewhat similar to the statistical non-parametric sign test. 
Smaller entropy estimates suggest that similar patterns will be followed by similar patterns 
(i.e., show more structured behavior). If the time series is highly irregular, then subsequent 
patterns will not mimic current patterns and the entropy metric will be larger (i.e., exhibit 
greater serial randomness). This information should provide useful insights regarding the 
future direction and behavior of the relevant time series, such as the scoring consistency of 
players and competitive team balance (Borooaha, 2012). 

Hierarchical Linear Modeling 

Like corporate management teams, sports teams are hierarchical in nature. Unfortunately, most 
classical analytic techniques (e.g., OLS) are based on the assumption of independent 
observations. This assumption is violated, however, when dealing with nested data structures 
like professional basketball. Typically, players drawn from a given team will be more 
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homogeneous than players sampled from the NBA. Players from the same team tend to exhibit 
similar characteristics, suggesting that the observations are not fully independent. Therefore, 
using ordinary least squares regression in these cases tends to generate standard errors that are 
too small. This leads to a higher probability of concluding that relationships exist between the 
predictor variables and target variable, compared with the case involving independent 
observations.  

Two classic approaches to addressing nested data are disaggregation and aggregation. In the 
former case (disaggregation), team performance data (Level 2) is assigned to each player 
(Level 1). Unfortunately, this results in violating the independent observation assumption since 
all players would be assigned team performance scores. In the latter approach (aggregation), 
average player characteristics are assigned to the team. This assignment results in two 
potentially serious problems (Bryk, 1992): 1) Upward of 90 percent of individual variability on 
the target variable is lost; and 2) The target variable can change significantly from individual 
achievement to average team achievement. Furthermore, both analytical strategies limit the 
researcher’s ability to separate out the effects of players and the team on the target variable. To 
further illustrate the challenge at hand, consider a basketball team wherein the primary interest 
of each player is minimizing his own performance variance, while the focus of the coach is 
minimizing performance variance between team members. Hierarchical linear modeling 
(HLM) is specifically designed to address problems involving organizational nesting (Pan, 
2008). Many HLM applications consist of a two-level arrangement such as the one found in 
this study. However, three- and four-level configurations are also possible. At Level 1, the 
parameters (intercept and slopes) representing the relationship between the Level 1 predictors 
and target variable are estimated (within). At Level 2, the intercepts and slopes for each Level 
1 parameter are specified (between). The Level 2 process is analogous to the cross-level main 
effects model.  A solution to the HLM framework was obtained by combining the two sets of 
equations (Level 1 and Level 2) into a single mixed model. HLM offers three distinct 
advantages over the use of traditional OLS in analyzing nested data structures: 1) separates out 
the target variable variance into within and between components. Therefore, the error terms are 
not systematically biased, 2) maximizes the use of the available information, and 3) permits 
testing for cross-level effects.  

HLM is seeing increased applications in the study of sports team performance (Chen, 2010; 
Todd, 2005). The first study explored spectator satisfaction based on both service quality and 
win-loss performance. Specific questions of interest included: a) how many variances in 
spectator satisfaction existed at the spectator level and the game level, b) how many variances 
in spectator satisfaction could be explained by service quality and win-loss, respectively, and 
c) whether and to what extent the win-loss percentage damages or enhances the relationship 
between service quality and spectator satisfaction. In a similar way, the second study assessed 
player salaries as a function of player experience and performance (Level 1) and team talent 
and league (Level 2). The results indicated that the intercept and both of the slopes varied 
substantially across teams, which allowed for team-level explanations of those differences. 
These two studies provided the contextual framework for the present analysis. 

Ensemble Modeling 

 This investigation specifically focused on explaining individual player performance, as 
measured by Hollinger’s Player Efficiency Rating (PER), as a function of both team and 
individual player factors. PER embodies a large number of players’ performance 
characteristics into a single compound metric (e.g., minutes played, assists). PER, which is not 
without its critics, is only one of a variety of possible player performance metrics (Fearnhead, 
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2011; Rosenbaum, 2007). The NBA’s large variable set suggested the need for a multi-stage or 
ensemble modeling approach to examine the relationship between teams, players, and 
outcomes. Ensemble modeling refers to techniques wherein the predictions of a group of base 
models are combined to generate more accurate composite predictions (Moreira, 2007). The 
ensemble modeling paradigm consists of the following two steps: 1) Constructing an ensemble 
of base learners from training data, and 2) Combining predictions of the ensemble members 
into a composite prediction.  

Ensemble forecasting has now become an established technique in medium-

range prediction. The real value of ensemble prediction systems are not the 

probability forecasts, per se, but their ability to influence decisions across a 

range of applications sectors. However, as operational ensemble prediction 

continues to develop, so specific examples of the value of ensemble prediction 

for decision making will increase. Such specific examples will most likely arise 

when a specific application model is coupled to each individual member of the 

ensemble prediction system (Leutbecher, 2008, p. 3537). 

 
The first stage of the modeling process involved screening a large number of candidate 
explanatory variables using neural net analysis. Neural nets (NN) are seeing increased use in 
sports performance analysis (Loeelholz, 2009; Shamsoddini, 2012). Results from the first 
study revealed that that the NN outperformed so-called experts in predicting NBA game 
outcomes. NNs use complex network relationships to mimic the connections between sets of 
data. Among other things, NNs have the advantage of not requiring prior assumptions about 
the data or about possible relationships within the data, as is often the case with traditional 
analysis methods, such as regression. Once a more manageable and parsimonious set of 
promising explanatory variables were identified, the second stage utilized HLM as outlined 
above. The parsimonious principle, which states that the among competing models that predict 
equally well, the one with the fewest variables should be used, formed the basis for designing 
the final model (Vandekerckhove, 2015).  

Results Analysis 

The ensemble modeling approach outline in the previous section was used to explore player 
and team performance data for the regular 2012-2013 NBA season. Table 1 presents summary 
descriptive statistics for the assembled database. The overall player sample size was 326 
(Level 1 = 326, Level 2 = 30). This study utilized approximate entropy, which was calculated 
for both players and teams based on point-scoring performance. It is interesting to note that the 
mean player entropy was less than the team entropy, which may appear somewhat 
counterintuitive. However, the player sample size is over ten times larger than the team sample 
size. A more helpful metric in this regard is standard deviation. To illustrate some possible 
Level-1 relationships, consider Figure 1. This graphic presents a plot of player salary versus 
PER. The resultant correlation coefficient of 0.55 suggests a moderate positive association 
between compensation and overall player performance. This relationship was also explored 
using the natural logarithm of salary, which revealed approximately the same degree of 
association. Figure 2 presents a plot of coaching experience with the current team versus the 
team-winning percentage (i.e., team-level variable). Notice that there is a moderately strong 
linear association, as highlighted by the correlation coefficient of 0.46.  
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Table 1 - Selected Descriptive Statistics (2012-2013 NBA Season) 

Variable Mean Median Min Max S.D. 

Player Age 26.58  26.00  19.00  39.00  4.22  
Player Salary ($MM) 5.19  3.50  0.28  27.85  4.77  

Coach Exp. (yrs.) 3.17 2.00 1.00 17.00 3.25 
GM Exp. (yrs.) 5.57 4.00 1.00 19.00 5.01 

Attendance (000) 709.84 713.06 563.74 896.94 82.54 
Team Entropy (Ap)1 0.63 0.65 0.32 0.81 0.13 
Player Entropy (Ap)1 0.56 0.59 0.02 1.01 0.21 

PER2 14.53 14.16 5.95 31.67 4.08 

1) Ap = Approximate Entropy, 2) PER = Hollinger Player Efficiency Rating (15 
average) 

 

Figure 1 - Player’s Salary versus PER (N=326) 

 

Figure 2 - Coaching Experience versus Team Winning Percentage (N=30) 

A neural net model was used to prune the original candidate database down to a more 
manageable and parsimonious subset (Ward’s Neuroshell predictor). The neural net model 
consisted of one input, one hidden layer, and one output layer. At the player level, examples of 
the variables that were pruned included personnel fouls per minute. The resultant dataset was 
then processed using HLM6 by Scientific Software International, Inc. The candidate HLM 
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model is presented below. At Level 1, the target variable (PER) is described as a function of 
player age, entropy, and salary. The coefficients of the Level 1 model are described in turn by 
the coach’s experience (years with the present team), the draft value, team entropy level, 
disciplinary actions, general manager’s experience (years with the present team), and team 
payroll. The variable “Discipline” is defined as league or team disciplinary action taken during 
the regular season. There were a total of 59 disciplinary actions taken during the 2012-2013 
season all of which were counted equally in this study. This assumption can be empirically 
tested with the model. 

Negative media coverage is another potential factor that might be considered in this regard. 
There is a considerable body of literature on the relationship between negative media coverage 
and organizational performance, which includes specific metrics (Bednar, 2012). The variable 
“Draft Value” was estimated using an exponential decay model for first-round draft selection 
(Barzilai, 2009). For those teams without a first-round draft selection, a zero was assigned as 
the draft value. In the cases where teams had multiple first-round draft choices, the draft values 
were added. Ultimately, the best approach to addressing this issue was conducting an 
examination of the various accounting options. The resultant candidate Level 2 factors were 
those that management has either direct or partially direct control over. One example of the 
latter would be the team imposing discipline on a player. Another would be attendance, which 
can be influenced by yield management (dynamic ticket pricing) practices (Nufer, 2013). 

Level-1 Model (Player) 
 

Y (PER) = B0 + B1 * (Age) + B2 * (Player Entropy) + B3 * (Salary) 
 

Level-2 Model (Team) 
 

B0 = G00 

 
  B1 = G10 + G11 * (Coach Exp.) + G12 * (Team Entropy) 

 
   B2 = G20 + G21 * (Attendance) + G22 * (Discipline) 

 
B3 = G30 + G31 * (GM Exp.) + G32 * (Draft Value) 

 

A graphical rendering of these hierarchical relationships is highlighted in Figure 3. Each of the 
team-level factors falls within the prevue of management either directly or indirectly. 

 

Figure 3 - Graphical Rendering of the Hierarchical Model 
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A comparison of the results from an OLS-Stepwise analysis (aggregate and disaggregate) and a 
candidate HLM is highlighted in Table 2. The data reports slopes and p-values for the three 
modeling approaches to the statistically significant variables. It is interesting to note that there 
was no variable overlap between the aggregate and disaggregate results. One of the challenges 
in interpreting the overall performance results of an HLM analysis is the lack of an appropriate 
R-square. In HLM analysis, the determination of an R-square is confounded by the presence of 
multiple variance components. Typically, in a standard step-wise OLS analysis, the final 
variable combination is based on maximizing R-square while minimizing collinearity. In the 
present analysis, there were a number of possible HLM representations. Again, the approach 
taken in this research was to develop a parsimonious HLM with only statistically significant 
variates that minimized overall deviance. A standard Student’s t-test was used to compare the 
individual intercepts and variable slopes across the three classes of models (OLS Aggregate, 
OLS Disaggregate, and HLM). The *** in Table 2 indicate whether the intercepts and slopes, 
for a given row, resulted in a p < 0.05. For example, the computed slopes for player entropy for 
the OLD-disaggregate and HLM models were statistically different at the 0.05 level. The 
intercepts for all three models were near the league PER average of 15. The HLM modeling 
results for player entropy, for example, reported a slope over three times as large as the 
Disaggregate-OLS results. The overall statistics presented in Table 2 underscore the value of 
nested data analysis. The relatively low R-squares for both OLS schemes simply illuminate 
their limitations in addressing nest data applications. Specifically, HLM allows for random 
variation in both the intercepts and slopes at multiple levels, which in turn can yield more 
accurate coefficients. The negative HLM attendance coefficient suggests that as attendance 
increases, player entropy (performance variability) decreases.  

Table 2 - Comparison of OLS and HLM Results 

 

 OLS 

Aggregate* 

OLS 
Disaggregate** 

HLM 

Factor B-Coeff. p-value B-Coeff. p-value B-Coeff. p-value 

Intercept 14.123 0.000 15.295 0.000 15.789 0.000 

Player Age - - -0.174 0.000 -0.209 0.000 

Player Entropy*** - - 2.130 0.015 7.445 0.007 

Player Salary - - 0.511 0.000 0.587 0.000 

Coach Exp.*** 0.137 0.000 - - 0.004 0.007 

Attendance - - - - -0.007 0.035 

Draft Value - - - - -0.002 0.002 

*R-square = 0.219 (Aggregate), **R-square = 0.339 (Disaggregate), *** p< 0.05 
 
Interestingly, the sign of the entropy coefficient was positive. A somewhat irregular pattern of 
point production for those high-scoring players appears to make sense, since it would be 
difficult to maintain consistency at the high end of point production game after game. Figure 4 
compares the point-game production time series for Lebron James (MVP winner) and 
Courtney Lee (representing an average NBA player) for the 2012-2013 season. The data 



International Journal of Computer Science in Sport – Volume 14/2015/Edition 2 www.iacss.org 

   

 

12 

 

pattern for James showed a higher degree of irregularity than the one for Lee. This is reflected 
in James’ larger entropy level compared with Lee’s, as reported in Table 4. While the standard 
deviations for both players were similar, James’ state of entropy over the season was nearly 
three times as large as Lee’s. To this end, team management can use player entropy to support 
both trade and draft decisions. Team entropy could be used in a similar manner, and also by the 
league, to detect the presence of tanking as the season draws to a close. 

 

Figure 4 - Time Series of Points/Games for James and Lee (2012-2013) 

Table 3 - Points/Game Descriptive Statistics Comparison for James and Lee 

Statistic James Lee 

Average 26.8 7.7 

S.D. 5.8 4.7 

Entropy 0.65 0.23 

Table 4 - Inter-Level Correlations 

Level 2/ Level 1 Age Salary Entropy 

Coach Exp. 0.005 -0.063 -0.117 

Attendance -0.052 0.108 -0.158 

Draft Value 0.170 -0.202 -0.113 

 
Table 4 presents the inter-level correlations for the predictor variables. The relatively small 
correlation coefficients between Level 1 and Level 2 variates were a good indicator that multi-
collinearity had been minimized. 

The HLM methodology allows for the exploration of a number of candidate hierarchical 
relations, including alternative target variables (e.g., Player Value Added (VA)—the estimated 
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number of points a player adds to a team’s season total above a replacement player). The 
developed model framework can also be used to examine specific player performance factors, 
such as three-point field goals and rebounding. The results gleaned from the current study are 
consistent with those reported in the literature (Piette, 2011; Torre-Ruiza, 2012). Specifically, 
the first study found that current team members’ past performance can have a negative impact 
on the initial performance of new recruits. This was comparable to the findings that age was 
statistically significant with respect to PER. The methodology in the second study was 
designed to search for players that are under-utilized. The specific goal was to look for players 
whose centrality score was small, but who over-performed statistically in one of the efficiency 
categories. Both of these findings can be further explored using the methodology outlined in 
this paper. The HLM results showed a positive correlation between player salary and player 
performance, as measured by PER.  

We predicted that, in addition to performance mean, performance trend and 

variability would also affect compensation decisions. Results revealed that 

performance mean and trend, but not variability, were significantly and 

positively related to changes in compensation levels of NBA players. Moreover, 

trend (but not mean or variability) predicted compensation when controlling for 

future performance, suggesting that organizations over-weighted trend in their 

compensation decisions (Barnes, 2012, p. 3). 

 
Figure 5 illustrates how the proposed methodology could be used to assist management in 
improving overall team performance, such as the team’s number of wins. The basic goal of this 
paradigm was to integrate all phases of basketball operations into one coherent decision-
making process. Performance outcomes on the court, for example, will impact managerial 
decisions, which in turn affect player personnel decisions and thus on-field performance. This 
analytics-based management decision-making system was designed to minimize the impact of 
short-sided trading and drafting decisions. This decision-making paradigm provides a template 
to ensure a team’s long-term success in an ever-increasing competitive environment. This 
approach was predicated on the Enterprise Resource Planning (ERP) paradigm, which is 
beginning to receive widespread consideration throughout the world of professional sports 
(Kartakoullis, 2013). Specifically, the proposal is to integrate all propositions of the enterprise 
into a unified, holistic, and values-centered organization, linking on-field performance 
variables to off-field metrics. 

We look at a player’s value in terms of not only what they do on the field ... 

but also how many more ticket sales can they generate, how many more hot 

dogs are they going to sell, how many more beers are fans going to buy, how 

many more jerseys (Goodfellow, 2015). 
 

To support the analytics process, the NBA has dramatically enhanced its data collection 
capabilities, such as by deploying SportsUV cameras at each stadium. The resulting 
performance tracking data is now available to the general public (Goldich, 2013). This 
development alone will greatly increase opportunities to employ advanced analysis techniques, 
such as HLM. While reliance on data analysis alone in making hiring and trading decisions can 
lead to problematic outcomes, the combination of analytics and human judgment will usher in 
a new era in sports management decision making (Mondello, 2014). 
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Figure 5 - Analytics-Based Performance Decision-Making Paradigm 

Conclusion 

Basketball’s general managers are under growing pressure to field cost-effective teams as a 
result of enormous team payrolls and continuing fan demand to produce winners. One or two 
poor hiring decisions can not only cripple a team financially, but can also impact its 
performance on the court. Basketball teams are examples of hierarchical structures consisting 
of individual players, team management, and the league. The structural nature of interaction 
between players and the organization is both complex and dynamic and, as such, calls for a 
more sophisticated analytics approach.  

The purpose of this paper was to highlight the results of a hierarchical linear modeling (HLM) 
analysis of player and team performance using data from the regular 2012-2013 NBA season. 
More specifically, the task was to identify specific determinates at both the player level and the 
team level that are related to overall player performance, as measured by PER. The target 
variable PER is only one of many possible candidates and was selected to illustrate the 
proposed HLM methodology. The HLM yielded a larger number of statistically significant 
factors than either the OLS-Aggregate or OLS-Disaggregate models. In addition, the modest 
R-squares associated with the OLS models simply accentuated the limitations of these 
schemes. The HLM results showed that players’ ages, levels of entropy, and compensation are 
statistically related to player performance and that coaches’ experience, attendance, and draft 
value are significant at the team level. The HLM modeling approach better reflects the reality 
of the hierarchical nature of the NBA in particular and many sport franchises in general. Team 
and player entropy represent a relatively new metric for both explaining and assessing both 
team and player performance. To that end, consideration should be given to expanding to a 
multi-year data assessment, since 82 games represents a lower limit to the minimum technical 
requirements for calculating entropy. Team entropy could also be used by the league to detect 
tanking, a notion that is receiving considerable attention throughout the NBA universe. 
Furthermore, a variety of additional performance factors, beyond point production, should be 
explored as candidates for entropy measurement. 

The modeling approach presented in this paper can also be used to predict specific player 
performance attributes. For example, a team could be interested in adding a three-point 
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shooter. In this case, the target variable would be players’ three-point percentage. The pool of 
three-point shooters could be assessed using hold-out analysis. The study of NBA team 
outcomes using ensemble modeling can be expanded into a variety of areas, including the use 
of CART (Classification Analysis Regression Trees) for the purpose of classifying players 
based on a set of decision criteria. In its simplest form, candidate players could be classified 
using a binary format, which would significantly reduce the number of finalists for 
consideration in terms of either drafting or trading. In summary, the analytics-based approach 
outlined in this article can be used by NBA general managers to better align player trading and 
drafting with expectations of team performance.  
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Abstract 

The purpose of the present study was to create a methodology which can provide 
information about gaps in an opposing team’s defence. To illustrate the 
methodology, a defence was tracked during a game in the danish Superliga using 
ZXY radio tracking and analysed using the methodology. Results showed that at 
certain passing speeds, an opposing defence is well coordinated with no gaps, but 
if the passing speed is changed, gaps can occur that the defence is unable to 
defend. Even though the used methodology at time being is based on some crude 
approximations, it can at a later point be used to identify gaps in a defence for the 
offence to take advantage of.   

KEYWORDS: RADIO TRACKING, COVERAGE, TACTIC, SOCCER 

Introduction  

In soccer, defence is of great importance for both the defending and attacking team. For the 
defending team, a well structured defence will prevent the attacking team in scoring, thus 
enhancing the chances for the defending team to win. On the other hand, the attacking team 
will try to find weaknesses in the defence of the opposing team utilizing these to try to score. 
In either case, the defence is ought to cover space for the attacking team in an attempt to 
capture the ball (Mitchell, 1996). Furthermore, the organization and thereby the tactic of the 
defence is of great importance in regards to a team’s success.  

Some studies define the covered area at the area spanned by the players of a defending team 
(Moura et al., 2012; Okihara et al., 2004). However, this is of limited tactical use of the coach, 
since the spanned area of the players gives little information about their ability to defend the 
spanned area and is independent of the motions of the individuals on the defending team.  

A more useful study of the defence coverage area by Gréhaigne et al. (1997) uses the 
momentary velocity of the players to define and create sectors of play, which are areas the 
player can reach within 1 second. This gives a more realistic model for the area defended by 
the individual player, but lacks the ability to determine a player’s ability to actually cover the 
defined area in time to e.g. intercept a pass through the sector. The sectors gives information of 
where a player can be within 1 second, but not where in the sector he can be at a certain point 
in time to intercept the ball. Accordingly, their study provides an overview of the defensive 
coverage capabilities, but lacks the ability to determine holes in the formations. 

Other studies define the covered area as the dominant region of the defending team 
(Gudmundsson & Wolle, 2014; Taki et. al. 1996) dividing the field into areas the defending 
can reach before the attacking team. Though this method gives information about the 
defending team’s ability to reach certain areas of the field, passes can still be made through the 
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defended area without the chance of interception, if it is made to a dominant region of the 
attacking team.  

To the best of our knowledge, no study has provided a methodology to determine areas on the 
field of play, which no defensive player can reach in time to intercept a pass being made into 
the area, so called gaps in the defence. This study wishes to create a methodology which can, 
based on the positions and velocities of the players and the position and pass velocity of a 
passer, give an insight of these gaps, where to passes can be made without the possibility of a 
defensive interception, and illustrate it by examples from professional soccer matches.   

Methods 

Data collecting 

The data used is collected from a match in the danish Superliga played between FCM and 
Hobro on the 21st of March 2015. Each player on the home team is wearing a ZXY Sport 
Chip™  transmitting radio signals at 20 Hz. Using ten receiving sensors measuring the strength 
of the signal it is possible to triangulate the players, finding their position and velocity on the 
field at a given time during the match. 

Defining the coverable area of players 

For a player at a position on the field ��� = ��, �	 and with an initial velocity 
����, �	 at angle 

� = �������, �	, the player will be able to reach and cover a certain point on the field 

��,������� = ���, ��	 if he can reach this in the same time, T, it takes for the ball to be passed there. 

For an opponent with the ball at ��, �	 passing with a velocity 
���	, which changes 

throughout the flight due to drag and friction, T will satisfy ��� − �	� + �� − �	� =
� 
���	��
 
! . 

For simplicity, the velocity curve used in this paper is given by 
��	 = �!
"
∗ atan	��	, thus 

giving the player a maximum speed of 10 m/s (36 km/h). For a given initial speed (���( the 

player will be able to change his speed parallel to his velocity according to 
��	 starting at 

�� = tan	� "
�!
∗ (���(	 and ending at �) = �� ± + depending on whether the player is accelerating 

or decelerating. The player can also change his speed perpendicular to the velocity in a similar 

manner, starting at ��, = 0 and ending at �), = + . Thus, a player can in the time T move a 

maximal distance of �. = � 
��	��/01 
/0

 parallel to his motion if he accelerates,  

�2 = � 
��	��/03 
/0

 parallel to his motion if he decelerates and �4 = � 
��	�� 
!  perpendicular to 

his motion to either side.  

The initial coverable area of the player within the time, T, will thus be spanned by an ellipse 

with the semiaxes � = 25126
�

 parallel to the players motion and 7 = �4 perpendicular to the 

motion with center of the ellipse being placed at � = �	∗819:;�<	∗2539:;�<	∗26
�

,� =
�	∗=1;>?�<	∗253;>?�<	∗26

�
. However, to ensure that the player never exceeds his maximal speed or 

acceleration according to �, one must also create a circle with radius @ = �. - the maximal 
possible displacement of the person in any direction.  
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Thus, the actual coverable area of the player is the intersection of both the ellipse and the circle 
defined. The development of the coverable area defined by this method can below be seen 
visualised as 1) a function of the time available to run and 2) as a function of the initial 
velocity:  

 

Figure 1. Plot of the development of the coverable area over time, with a initial velocity of 5 m/s and starting 
point at (0,0). Notice, that the starting point first can be covered after 2 seconds 

To investigate whether ��,������� is covered, one simply checks if this point is inside the coverable 

area of the player. If this is the case, let the point  ��,������� get the value A�,� = 1, otherwise let  

A�,� == 0. 

To investigate the total covered area of the player, one simply let the method run through all 
the points on the field, from C = 1: 65 and G = 1: 120 (creating a heatmap of 1 × 1m squares). 
This gives a 120 × 65 matrix for z, consisting of 1 and 0. For the total team, one just adds the 
z-matrices of all the players together, creating a heatmap showing a) which parts of the field is 
covered/uncovered and b) how many players are covering certain areas of the field. 
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Figure 2. Plot of the coverable area after 1 s as function of initial velocity with starting point at (0,0).  

Results 

In order to illustrate the kind of results the mentioned methodology can provide, the 2nd minute 
of the match between FCM and Hobro has been analysed with regards to the positions and 
velocities of only the defending team, FCM, since no data was collected on the attacking team. 
The results are as follows: 
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Figure 3. Plot of the defending players (blue circles), their velocities (blue vectors) and the area they cover 
(shade from blue to yellow). Note that the passer (red circle) has been placed on the field 
manually since there was no data on the opposing team in order to present the described 
methodology. In figure 3A the passing velocity has been set to 20 m/s, in figure 3B the passing 
velocity has been set to 25 m/s, 

In figure 3, the defence seems to be well distributed across the defending half of the field. In 
figure 3A, with a passing velocity of 20 m/s, the defence looks rather compact with no gaps in 
the defence and some smaller areas of overlapping coverage. Note the far corners from the 
passer being yellow, resulting from the ball not being able to reach these areas with the chosen 
drag coefficient, friction and passing velocity. In figure 3B, the pass is made with 25 m/s, and 
at this passing velocity a gap appears between the midfielders and the defensive backs, where 
no player on the defending team can reach in time to intercept the ball. In both cases, a 
quadratic drag with drag coefficient J2 = 0.12 (Asai et. al. 2013) and a constant friction of 
0.86 N (Hanson et. al.) is acting on the ball in opposite direction of the ball velocity. Figure 3 
shows that, according to the passing velocity, gaps can form in the defence that the attacking 
and/or defending team might be unaware of. 

Discussion 

As the used methodology for this paper is a prototype, some approximations were made, which 
not necessarily are appropriate. Mainly the use of the antisymmetric atan-based velocity curve 
and the separation of the ability to change velocity tangential and parallel to the direction of 
motion to create figures 1 and 2 are crude approximations used in lack of actual velocity and 
change-of-direction profiles of the soccer players.  
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Although the work of Hader et. al. (2015) can indicate a velocity curve parallel to the direction 
of the motion to be approximated to an atan curve; they also show that the change of velocity 
tangential to the direction of the motion is dependent of the parallel speed of the player. The 
ability to change direction while maintaining some of the speed has not been included in the 
proposed methodology and would result in the defending players being better at defending 
laterally. An even better way to determine the coverable area would be to base them on actual 
measurements of the players, as proposed by Gudmundsson and Wolle (2014) and Fujimura 
and Sugihara (2005). 

In addition, the change of speed of the ball due to drag is an approximation, and does not take 
into account that the drag coefficient of the ball has been shown to change as the velocity of 
the ball drops (Asai & Seo, 2013). The change of speed due to friction has in this model been 
added as a constant deceleration and implies that the passes are made so the ball does not leave 
the ground, which during normal game is highly unlikely to be the case. In addition, this also 
implies the friction coefficient being constant, which has been shown to be nonlinear 
(Weizman et. al. 2013). 

The results from the presented methodology does at the time being not include the possibility 
of a pass being intercepted midways towards the undefended area as well as it only describes 
the field of play, the pass and the players as two-dimensional in the plane of the field. Thus, 
the results must be interpreted in such way that, if a player can make the pass to the presented 
gaps without the ball being intercepted, either by curving the ball around the opponents or by 
passing the ball over the defenders, the gap will be undefended. This interpretation does 
however not justify the approximation with the constant friction since a curveball will 
experience more friction due to a longer path, and passing over the defence makes the ball 
leave the ground thus not experiencing any friction at all. These issues must be corrected in 
future work. 

The presented idea to discover holes in the defence is only half of the story, since for the 
attacking team to take advantage of the presented gaps they must have a player in position to 
receive the ball in the gap in time of arrival and a player in position to make the pass. The 
presented methodology can, in time, provide these data but the current data provided by ZXY 
only contained the defending team. Thus, it is not possible to show in this paper using the 
presented methodology a) whether the defending team is covering the opposing team’s players 
and b) if a player on the opposing team is able to get in position to receive the pass in the gaps. 
In addition, a further investigation should aim to include both teams as well as the third 
dimension in order to determine true passable and usable gaps in the defence and, in time, give 
an estimate of the difficulty of the pass in terms of pass angle and velocity intervals. 

Conclusion 

This study has presented a methodology to provide information about a defending team’s 
ability to cover the field in relation to their positions and velocities and in relation to a passing 
player’s position and passing velocity. Although this methodology at present state only gives a 
crude estimate of the coverable area it can, in time, assist coaches in finding gaps in an 
opposing team’s defence or identifying weaknesses in their own defence or be used as a 
coaching tool to visualize tactical aspects to the players. 
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Abstract 

In sports science, two widely used approaches to perform movement recognition 
and analysis are through manual annotation of sports video and physical body 
marker attached to athlete’s body. The use of physical body markers, however, 
requires expertise on visual annotation which is obviously time-consuming and 
inconvenient for the athletes. Badminton is one of Malaysia’s most popular sports 
but there is still a lack of scientific research on movement recognition and 
analysis focusing on this sport. Therefore, in this paper, a novel lossless compact 
view invariant compression technique with a dynamic time warping algorithm is 
proposed to cater for both badminton movement recognition and analysis 
frameworks. Our experimental dataset of depth map sequences composed of 10 
types of badminton movements with a total of 600 samples performed by 20 
badminton players. The dataset varies in terms of viewpoints, human body size, 
clothes, speed, and gender. Experimental results revealed that nearly 95% of 
average recognition accuracy was accomplished for badminton movement 
recognition framework. In addition, badminton movement can be analyzed in 
detail and compared by using the movement analysis framework. The present 
research will be beneficial to sport scientists, badminton coaches, and potentially 
useful in enhancing the performance of badminton players. 

KEYWORDS: BADMINTON, MOVEMENT RECOGNITION, MOVEMENT ANALYSIS, 
DTW, KINECT 

Introduction 

The roots of the sport badminton has can be traced back to the ancient civilization of Europe 
and Asia more than 2000 years ago. Badminton, in ancient time was known as battledore and 
shuttlecock, which was prevalent in India, China, Japan, and Greece where a paddle was used 
to hit the shuttlecock back and forth (Guillain, 2004). Later, British military officers 
revolutionized the game with an added net, namely Poona in British garrison town Poona (now 
Pune) in mid-18th century British India (Connors et al., 1991). Today, badminton is one of the 
most popular racquet sports in Malaysia and in many other countries. It is played within a 
center netted rectangular court by two opposing players in a singles match or opposing pairs in 
a doubles match. In addition, it is the fastest racquet sport in terms of shuttlecock velocity 
along with tennis (Tsai and Chang, 1998). Although badminton is one of the most popular 
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racquet sports in the world, there is still lack of scientific research on this sport as compared to 
other racquet sports such as tennis. 

In sports science, a common method for analyzing performance based on body movements is 
to film the athletes and manually annotate the footage offline using a video digitization system. 
It is a popular method in many sports but requires expertise from the system operator to 
annotate the videos in order to highlight important components of the video contents. An 
alternative way is to use a motion tracking system that can extract a skeleton model of the 
athlete automatically using physical body markers and perform manual analysis later in an 
offline mode. This method produces a more accurate representation of the human body but 
requires cumbersome placement of body markers. Furthermore, such a method is time-
consuming and inconvenient, especially to the athlete. Within the last two decades, 
biomechanical analyses of sports motions were mostly of qualitative nature. However, due to 
the recent technological advancements regarding input acquisition sensors and computer 
hardware, computerized motion recognition and analyses for athletes are becoming more 
prevalent. Recently, several studies have been conducted to analyze the movement of a 
badminton player, such as smashing (Salim et al., 2010; Hussain and Bari, 2011; Nagasawa et 

al., 2012; Ning, 2013), service (Yoshikawa et al., 2010; Hussain et al., 2011; Teng and 
Paramesran, 2011), and swing (Liu et al., 2014). Most of the literature above, however, analyze 
badminton movements based on spatiotemporal (x-y-t) information without depth information, 
which leads to discriminative performance degradation. In fact, human body movements are 
four dimensional (x-y-z-t) in the real world. Additionally, the placement of physical body 
markers tends to affect the performance of a badminton player. 

Due to the emergence of inexpensive, reliable and robust algorithms to capture the depth 
information, human motion tracking using the Microsoft Kinect sensor is becoming more 
prevalent. The Microsoft Kinect sensor was originally released with the intention to improve 
human computer interaction in gaming for the Xbox 360 game console. Despite being targeted 
mainly for the entertainment market, the sensor has gained enormous interests within the 
vision and robotics research community for its broad applications (Goles, 2010). Since then 
numerous human activity recognition studies with the Kinect sensor were published. 
Generally, there are two main approaches in depth-based human activity recognition, space-
time and skeletal tracking-based approaches. The space-time approach represents each depth 
sequence as a 3-dimensional (3D) volume along spatiotemporal axes. The depth sequences can 
be processed either as a whole (Ni et al., 2011; Wu et al., 2012) or as a bag of local feature 
points (Li et al., 2010; Zhang and Parker, 2011; Malgireddy et al., 2012). These methods are, 
however, suitable for simple human activities, such as clapping, waving, walking, and running. 
Due to the limitations of the space-time approach a skeletal tracking-based approach was 
proposed where 3D human body parts tracking has become feasible for high-level recognition 
tasks. Shotton et al. (2011) developed a new method to predict 3D positions of body joints 
from a single depth image rapidly and accurately. This 3D body joints information brings 
benefit to human centric computer vision tasks. Basically, feature extraction modes in the 
skeletal tracking-based approach can be classified into two major groups which are point-based 
and orientation-based. The point-based feature extraction (Reyes et al., 2011; Lin et al., 2012; 
Wu et al., 2013) might be affected by rotation and scale factors. In contrast, orientation-based 
feature extraction (Raptis et al., 2011; Sempena et al., 2011; Miranda et al. 2012) is invariant 
to rotation and scale factors. However, most of them adopted lossy compression techniques in 
order to reduce the dimensionality of data before a human activity is classified. As such, the 
loss of information reveals in time domain and deteriorates the accuracy of recognition. 
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In this paper, a cost-efficient Microsoft Kinect sensor with a novel lossless compact view 
invariant compression technique using dynamic time warping algorithm is proposed for 
badminton movement recognition and analysis. Moreover, badminton movements are chosen 
because they represent significant movement of arms, torso, legs, and their combinations. 
Furthermore, the study is an extension of the paper (Ting et al., 2014) where the proposed 
technique is refined and implemented for badminton movement recognition. Additionally,a 
technical badminton movement analysis without consideration of the amount of force being 
exerted by players are presented and discussed. Moreover, the proposed system enables 
badminton players to benchmark their performances either by themselves or together with 
experts. Therefore, the present research will be beneficial to sports scientists, badminton 
coaches, and badminton players. 

Methods 

Figure 1 illustrates an overview of our proposed system, which consists of movement 
recognition and analysis frameworks. Generally, both badminton reference and sample 
movements are acquired by Microsoft Kinect sensor and skeletal joints are estimated 
subsequently. Then, the tracked joints coordinates are mapped to range of movement index. 
Finally, recognition and analysis results are obtained by mapping two time-series data using 
dynamic time warping algorithm. 

 

Figure 1. An overview of the proposed system. 

Skeletal Model 

In real-time, the Microsoft Kinect sensor generates depth map sequences which provide the 
human body silhouette. From the body silhouette, the body joints are estimated using the 
method from Shotton et al. (2011) and the skeletal model is constructed subsequently. The 
skeletal model, also known as “stick model”, encompasses 20 body joints as illustrated in 
Figure 2. The 3D coordinates of these 20 body joints are tracked in real-time. Moreover, the 
skeletal model is quite robust to variations in shape and size of human body, the color and 
texture of clothing, and background. In this research, however, we have excluded head joint 
during the feature extraction process due to insignificant contribution. 
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Figure 2. Skeletal model. 

Range of Movement Index 

In this section, we propose a novel lossless compact viewpoint invariant compression 
technique, namely range of movement index (RoMI). From the tracked skeletal frame, three 
axes (orthogonal) are defined at the spine joint where the Y axis lays on the spine bone as 
presented in Figure 3(a). Then, eight distinctive ranges based on the axes signs are determined 
as shown in Figure 3(b). The construction of the range of movement serves as a platform to 
locate the body joint respective to the spine joint. The label of the range corresponding to the 
signs of the axes is shown in Table 1. 

 

 

(a) (b) 



International Journal of Computer Science in Sport – Volume 14/2015/Edition 2 www.iacss.org 

   

 

29 

 

 
(c) 

Figure 3. (a) Defined axes centered at spine joint, (b) eight distinctive ranges based on the axes signs, and (c) 
spherical coordinate system of body joint respective to spine joint. 

Table 1. The label of range corresponding to signs of axes. 

X-axis sign Y-axis sign Z-axis sign Label, R 

+ + + 0 

+ + - 1 

- + - 2 

- + + 3 

+ - + 4 

+ - - 5 

- - - 6 

- - + 7 

 

In each range a spherical coordinate system is constructed to describe the radius, the 
inclination, and the azimuth angles of a body joint with respect to the spine joint as displayed 
in Figure 3(c). Equations (1) to (3) denote the radius (r), theta (inclination), and phi (azimuth) 
angles in spherical coordinate system, respectively. 

2 2 2  ; 0r x y z r= + + ≥  (1) 

arccos( ) 
y

r
θ =  (2) 

arctan( ) 
x

φ
z

=  (3) 

where x, y, and z are the 3D human body joint coordinates. In our research, we regard the range 
of the theta angle for the frontal position from 0 to 180 degrees and for the back position from 
0 to -180 degrees. On the other hand, we set the range of the phi angle for the right position 
from 0 to 180 degrees and the left position from 0 to -180 degrees. 

In order to represent the spherical coordinate in a specific range more compactly, RoMI is 
formed. The RoMI I is denoted as  

max max max( ) ( )I r φ φ φθ θ= × × + × +  (4) 
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where maxθ  and maxφ  is the maximum angle of inclination and azimuth in each range 

respectively. Then, the RoMI is normalized and added with the label R which is shown in 
equation (5) to provide a distinctive representation of the RoMI in each range for each joint. 

{ }M R normalized I= +  (5) 

Thus, a normalized RoMI body pose descriptor, G=(M1,…,M19)∈ℝ
19 is formed. 

Furthermore, the RoMI is a lossless compression technique where radius, theta, and phi angles 
can be retrieved using equations (6) to (8), respectively. 

max max

I
r

φθ
=

×
 (6) 

max

max

( ) mod  
I

φθ
θ

=  (7) 

max mod φ I θ=  (8) 

Dynamic Time Warping 

In this research, the extracted features from a badminton sample movement are required to map 
to a reference movement. Since both, the badminton sample and the reference movement, are 
of arbitrary length, dynamic time warping (DTW) is proposed. DTW is a well-known 
algorithm in many areas, particularly in speech recognition. Moreover, the algorithm is popular 
due to its efficiency in time-series similarity measurement which minimizes the effects of 
shifting and distortion in time by creating a warping path to detect similar points with different 
phases (Senin, 2008). 

In our framework, we denote the time-series normalized RoMI for both the badminton 
reference and the sample movements as displayed in equations (9) and (10), respectively. 

1 2[ , ,..., ]r r rnR G G G=  (9) 

1 2[ , ,..., ]s s smS G G G=  (10) 

To align two sequences R and S, we define an m × n cost matrix; the cost associated with time 
instant (i, j) is given by: 

cost(R
i
,S

j
) = || R

G
p,i

− S
G

p, j

||
p=1

d

∑  (11) 

where d = 19 body joints and ||.|| is the Euclidean distance between d pairs of corresponding 
joints in the skeletal model. 

In order to find the alignment between R and S, the path cost is defined as follows: 

1{ ,..., };   max( , ) 1TP p p m n T m n= ≤ < + +  (12) 

The warping path is defined as a set of “contiguous” matrix elements that construct a mapping 
between R and S. The warping path between R and S is typically subjected to several 
constraints: 

1. Boundary conditions: The starting and ending observation points are aligned to each 
other for the reference and the sample actions. 
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1 (1,1) and ( , )Tp p m n= =  (13) 

2. Continuity: No observation points for the reference and the sample actions are to be 
skipped. 

1Given ( ', ');  ( , );

' 1  and  ' 1

t tp a b p a b

a a b b

−
= =

− ≤ − ≤

 (14) 

3. Monotonicity: The observation points are monotonically spaced in time. 

1Given ( ', ');  ( , );

'   and  '

t tp a b p a b

a a b b

−
= =

≤ ≤

 (15) 

In particular, the optimal alignment between R and S is the path that minimizes the warping 
cost given by: 

DTW(R,S) = min( p
k

k=1

T

∑ )  (16) 

where pk are the elements in a warping path P that represents a mapping between R and S. For 
the badminton movement recognition, the costs between a sample movement and all reference 
movements are obtained. Obviously, the smaller the cost is, the more similar the sample and 
the reference movements are. Therefore, the least cost is determined in order to find the 
movement label for the current sample movement. 

During the alignment procedure for two time-series badminton movements there are several 
segments where one to many (shorter sequence maps to longer sequence) or many to one 
mapping (longer sequence maps to shorter sequence) occur. In order to make the mapping 
results more presentable to  badminton coaches or players, the system will perform a second 
stage of mapping, which is also known as segment mapping to align the length of the sample 
sequence to the reference sequence. If the sample sequence is longer than thereference 
sequence, the shortest distance in the segment (where many to one mapping is going to occur) 
of the sample sequence is selected. On the other hand, if the sample sequence is shorter than 
the reference sequence, the one to many mapping scenario is usually executed during the DTW 
stage. That particular single value is then appended in the segment in order to make the sample 
sequence longer. 

Let Qr and Qs denote the reference and sample vectors respectively after the segment mapping 
is executed. Thus, similarity index in percentage between reference and sample movements is 
computed using: 

D
RS

=
Q

r
.Q

s

||Q
r

||||Q
s
||

×100  (17) 

Results and Discussion 

Dataset and Setup 

To-date there is no publically available badminton movement datasets in the form of depth 
map sequences for result benchmarking. In order to put the algorithm to test, we collected a 
dataset that contains ten essential and basic badminton movements needed by badminton 
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players at all levels. The movements are: backhand lift, backhand lob, backhand net, backhand 

serve, forehand lift, forehand net, forehand serve, forehand side, forehand lob, and overhead 

forehand clear from 20 right-handed female and male badminton players for each movement. 
In this experiment, a Microsoft Kinect sensor with a maximum depth range of 5m and depth 
resolution of 25mm at three meters (Khoshelham and Elberink, 2012) was utilized to measure 
the movements. The depth map sequences were acquired with 30 frames per second by the 
Microsoft Kinect sensor with a dimension of 640 × 480. Each player performed the predefined 
badminton movements three times, about three meters from the sensor with three different 
views (Figure 4). The badminton players varied in terms of skin color, clothes, height, weight, 
and speed. Moreover, the same badminton movements were acquired from the coach as 
benchmark movements for the recognition framework. Looking into the dataset, there are 
certain aspects  that are important to highlight. These aspects add up to the existing challenge 
in classifying the movements. The first being small visually perceived inter-class variations 
between two classes. Some obvious examples would be forehand lift and forehand side; 
forehand lob and overhead forehand clear. The second aspect is the existence of different 
views for a single movement such as frontal, left, and right views to highlight our 
representation as presented in Figure 4(a), 4(b), and 4(c) respectively. 

   

(a) (b) (c) 

Figure 4. Three different skeletal views. (a) Frontal view, (b) left view, and (c) right view. 

Badminton Movement Recognition 

In this experiment, there were 600 badminton movements in total to be classified. Basically, 
the framework generates cost values between the compared sample and reference movements. 
Subsequently, the smallest cost value is determined in order to assign a label to the sample 
movement. Figure 5 demonstrates the recognition accuracy confusion matrix for the proposed 
framework. According to Figure 5 forehand side achieves the lowest recognition accuracy in 
this experiment. 15% of forehand side movements were misclassified as forehand lift. The 
major reason for such result is that both movements have similar patterns except the right arm 
segment shows a different pattern. A full arm swing is required for the forehand lift movement 
in order to hit the shuttlecock up high and all the way back to the baseline. In contrast,the  
forehand side movement is mainly focusing on the wrist segment. In addition, some of the 
overhead forehand clear movements were categorized as forehand lob movement because of 
the small variation between the two movements. The major difference between the two 
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movements involves the forearm merely “brushing” the top of player’s head before 
straightening the arm for the overhead forehand clear while the forehand lob is rather 
performing a throwing ball movement. Overall, the proposed framework attains average 
recognition accuracy of 94.5%. 

However, instability of the joints localization was discovered in this experiment, particularly in 
the left skeletal view of badminton movements. This mainly occurs due to self-occlusion. The 
most obvious case in this experiment is the forehand side movement where the right arm 
segment might be occluded by the torso or other body parts when the movement is captured 
from the left view of a right-handed badminton player. Therefore, instability of the joints 
localization might be one of the factors leading to the high misclassification rates. Moreover, 
research from Obdrzalek et al. (2012) concluded that the Microsoft Kinect skeleton tracking 
framework struggles with occluding body parts or objects in the scene. Additionally, Wei et al. 
(2015) reported that tracking results would be more valuable for side view acquisition when 
the body parts are closer to the Microsoft Kinect sensor. 

 

Figure 5. Badminton movement recognition accuracy confusion matrix. 

Badminton Movement Analysis 

In this section, the results of two complex badminton movements namely forehand lift and 
overhead forehand clear (Figures 6 and 7) which were performed by badminton coaches are 
further analyzed and discussed. Although the algorithm is able to track up to 20 body joints, 
we only focus on the right hand joint movement in our study. Generally, results shown in 
Figure 6(a) and Figure 7(a) are generated using equation (5) in order to identify the location of 
the movement range for the right hand joint relative to the spine joint for forehand lift and 
overhead forehand clear, respectively. The right hand and spine joints were tracked in real-
time to compute spherical coordinates (equations (1) to (3)) over frames and converted to 
RoMI subsequently. The interval scale of Y axis indicates the location of the range. In addition, 
Figure 6(b) and Figure 7(b) show the results of the inverse RoMI (using equations (6) to (8)) 
from Figure 6(a) and Figure 7(a), respectively. Besides, Figure 8 demonstrates the 
effectiveness of the lossless compression technique with a badminton movement using the 
right hand joint. The solid and dotted lines in Figure 8(a) indicate the temporal features of the 
original movement and the reconstructed features using the RoMI from Figure 8(b), 
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respectively. We can clearly observe that the difference between original and reconstructed 
features is zero. The reconstruction of temporal features from RoMI is particularly useful when 
badminton coaches or players want to further examine the execution. 

The badminton movement forehand lift is analyzed as illustrated in Figure 6. The transition of 
movement range for forehand lift movement is: 4-0-3-7-4. Such a transition of movement 
range states that the right hand joint is raised and executes a diagonal top left swinging motion. 
Then, the right hand joint returns back to the original position. In addition, the details of the 
movement in terms of spherical coordinates can be seen in Figure 6(b). Generally, there are 
three main stages, which are preparation, execution, and recovery. From the spherical 
coordinates graph, we can observe that the preparation and recovery stage almost have a 
similar pattern. During the execution stage, the theta angle relative to the Y axis of the spine 
joint is starting to decrease, indicating an elevation of the right hand joint. Moreover, when the 
phi angle encounters a drastic drop, the normalized radial distance almost hits its peak. This 
pattern demonstrates that badminton players perform a big swing motion to the left in order to 
hit the shuttlecock up high and all the way back to the baseline. After that, the right hand joint 
returns to the original position. 

Figure 7 illustrates the badminton movement analysis for overhead forehand clear. Obviously, 
the movement demonstrates higher complexity as compared to forehand lift. In Figure 7(a), the 
transition of movement range for overhead forehand clear is: 4-0-1-0-4-7-4. The core 
movement of the skill is to execute an overhead full arm swing. Such an execution can be 
visualized from the first five ranges of transition. Basically, the right hand joint is raised 
“brushing” over the head (phi angle is reaching nearly zero degree) and performs a full swing 
motion to clear the shuttlecock to the baseline. Such overhead full swing motion can also be 
observed in detail as shown in Figure 7(b) where the theta angle rapidly decreases and 
increases within a small frame interval. Furthermore, the normalized radial distance reaches its 
peak in order to take the shuttlecock at the highest point. 
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(a) 

 
(b) 

Figure 6. Badminton movement analysis for forehand lift that was performed by a badminton coach. (a) Right 
hand joint normalized RoMI graph and (b) spherical coordinates graph. 
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(a) 

 
(b) 

Figure 7. Badminton movement analysis for overhead forehand clear that was performed by a badminton coach. 
(a) Right hand joint normalized RoMI graph and (b) spherical coordinates graph. 
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(a) 

 
(b) 

Figure 8. (a) Comparison of temporal features for original movement (solid line) and reconstructed movement 
(dotted line) from (b) normalized RoMI. 

Benchmarking 

Two different levels of badminton players which are elite and amateur perceived as expert 
players and intermediate players from the training group were selected to benchmark 
movements with a badminton coach. This module  serves as a template for the badminton 
coach to compare and differentiate the movement of badminton players quantitatively. 
Moreover, the coach would be able to provide insightful feedback or rectification steps to the 
badminton players by referring to the benchmarked results. The benchmarking module is 
essential to prevent badminton players from developing “bad habits” in their technical 
approach to the game. Generally, time-series movements from the coach and a player are 
aligned using the DTW algorithm and the similarity index (SI) between two movements is 
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computed using equation (17). 

Figure 9 presents the benchmarking results for overhead forehand clear between the 
badminton coach and the players. In Figure 9(a), the expert player performed an almost 
identical movement as the coach and accounted for by an SI of 98.87% while the intermediate 
player achieved an SI of 81.33% from the normalized RoMI graph. Furthermore, the 
intermediate player had the same theta angle for a while after the shuttlecock was hit by the 
racquet (frame 65) (see Figure 9(b)). Also, the phi angle for the amateur player in Figure 9(c) 
significantly declines after the shuttlecock contact, which further justifies the transition range 
of movement for the right hand joint (from 0 to 3) in Figure 9(a). Figure 9(d) depicts that the 
expert and intermediate players strike the shuttlecock at the maximum radial distance. Thus, 
the possible feedback from the coach to amateur players is to execute an overhead straight 
swinging motion for overhead forehand clear. Moreover, badminton players can use the 
system to measure the consistency of movement by self-benchmarking. 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 9. Badminton skill levels benchmarking results between badminton coach and players for overhead 
forehand clear. Comparison skill levels for (a) normalized RoMI, (b) theta angle, (c) phi angle, 
and (d) normalized radial distance. 

Conclusion 

In this paper, we present an approach to analyze and recognize badminton movements using 
depth map sequences acquired by the Microsoft Kinect sensor. A novel lossless compact view 
invariant compression technique with the dynamic time warping algorithm is proposed in order 
to cater for both recognition and analysis frameworks. The movement recognition framework 
was validated with a dataset which varies in terms of viewpoints, human body size, clothes, 
speed, and gender with a total of 600 samples from 20 badminton players. Experimental results 
have clearly shown the promising performance of the movement recognition framework with 
an average recognition accuracy of 94.5%. In addition, the system is capable to perform 
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movement analysis in detail using the movement analysis framework. The proposed system 
also enables badminton players to periodically benchmark their performances either by 
themselves or with an expert. As such, feedback can be obtained in order to enhance their 
performance. Therefore, as a tool for performance analysis, the proposed system can be 
beneficial to sports scientists, badminton coaches and most importantly the players themselves. 
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Abstract 

The purpose of this study was to establish a predictive model capable of 
simulating and predicting the outcome of the 6th Rugby Sevens World Cup, held 
in Moscow on the 28th to the 30th June 2013. 

Following a review of predictive modelling approaches in sport, a multivariate 
regression model was attempted, using International Rugby Board (IRB) ranking 
points and various travel effect descriptors (relative time zone, altitude, average 
temperature, estimated flight time and circadian rhythm offsets) to predict points-
difference of international Rugby Sevens matches. A whole database approach 
was used to generate the model, based on the outcomes of all IRB Series matches 
dating from 2004 to the fifth round of 2013 (n = 3240). A step wise approach to 
establishing a model was attempted, though none of the travel effects tested 
correlated, with only IRB ranking difference between teams improving the model. 
Accordingly a bivariate model was used in simulating the tournament structure. 
The model correctly predicted New Zealand as tournament winners, as well as six 
of the eight cup quarterfinalists, which is in line with the tournament seeding. 
Half of the tournament final standings were within +/- 1sd of the prediction. 

The current research establishes that international Rugby Sevens match outcomes 
are dominated by difference in relative strength demonstrated over previous 
ranking events, and are largely insensitive to the travel effects estimated in this 
study. Meanwhile analysis of the input dataset revealed a 24.7% upset frequency 
in the period 2004-2013, which is higher than that presented in other texts for 
fifteen a side Rugby Union. 

 

KEYWORDS: REGRESSION, TRAVEL EFFECTS, RUGBY SEVENS 

Introduction 

Modelling has been applied widely with the intention of advancing the knowledge of various 
sports (profiling) in order that future performance can be predicted with a reasonable degree of 
confidence (Reed, et al., 2005). Various methodologies have been applied, with varying 
success in (for example) football (O’Donoghue et al., 2003), tennis (O’Donoghue, et al., 
2010), rowing (Mikulic, et al., 2009) and rugby union (O’Donoghue et al., 2004; O’Donoghue, 
2013). 

One of the more popular approaches is regression modelling, which can be thought of as a 
methodology for determining the extent to which one or more independent variables are able to 
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describe a dependent variable, by using varying coefficients to minimise the combined size of 
residuals. A strength of regression modelling is the ability to output results in terms of points 
difference (Reed et al., 2005) rather than just Boolean win-loss outcomes. This allows actual 
tournament rules to be applied, in events where pool standings and seedings are influenced by 
measures of points scored and conceded, and in doing so more fully capture the element of 
chance within a particular event. Furthermore, they are able to incorporate opposition effects 
by using the relative strength of the opposition as an independent variable (O’Donoghue, et al., 
2011). The flexibility of the number of additional variables that can be included as part of a 
multivariate approach means that sophistication of the model can be improved in light of 
correlation with additional independent variables. Meanwhile, they have tended to perform 
better as an input to tournament modelling than in Neural Network approaches (O’Donoghue, 
2003), which demand a large database (Reed et al., 2005), and are conceptually challenging. 

The following assumptions are outlined as pre-requisites of the application of regression 
analysis. Firstly there must be no outliers in the independent variables or residuals, although it 
has been argued that outliers in sport are in fact valid inclusions to the model, as they relate to 
events which have already happened, rather than measurement error (O’Donoghue et al., 
2011).  Secondly residuals should be independent, homosecedastic and normally distributed 
(O’Donoghue, 2012). Finally there should be no correlation between independent variables. 
However, it has been demonstrated in several texts that violating these assumptions may 
actually lead to an improved prediction (O’Donoghue, et al., 2011). 

The size of the data set is of interest, with too large a sample being seen as inflexible and 
insensitive to form (Hughes, et al., 2001), and too little being unlikely to satisfy the key 
regression assumptions (Ntoumatis, 2001). However, the creation of a large dataset allows for 
later refinement of a model (Reed, et al., 2005). Similarly, a larger sample population may 
reduce the requirement to extrapolate beyond the dataset, which is cautioned against in certain 
texts (O’Donoghue, 2012), while demonstrated as wholly inappropriate in others (Heazlewood, 
2006; Berthelot et al., 2008; Thibault et al., 2010). A review of this literature underlines the 
importance of applying a model that successfully reflects the mechanics of the relationship, 
rather than approximating it over a small portion of the population. It may also be the case that 
greater belief in the model and subsequent predictions can be found in developing it from a 
larger database. 

The 6th Rugby Sevens World Cup held in Moscow in July, 2013 presented an interesting 
opportunity to assess the relative strengths of competing nations, as well as the seeding 
procedures adopted by tournament designers. The pan global nature of Sevens, with between 
16 and 24 nations competing at each of the 9 stages of the HSBC IRB Sevens Series, held at 
venues spanning four continents over the course of each season, presents an opportunity to 
review the sensitivity to travel effects, that is often cited by coaches as justification of 
underperformance (Friday, 2013; www.irbsevens.com, 2013). A multivariate regression 
approach was selected, as a means of understanding the relative sensitivity of performance in 
Sevens to various travel effects, and founding the prediction of likely outcomes of the 2013 
Sevens Rugby World Cup (RWC), in keeping with the aims of predictive modelling as 
described above. As data collection was required, the entire online dataset was collated for 
examination, with the intention of subsequent refinement as required (Reed, et al., 2005). 

This study is particularly pertinent in light of the increase in media coverage and available 
funding made available to competing nations since the sport’s inclusion into the Olympic 
program (Pengelly, 2013, in press). Furthermore, Rugby Sevens is hitherto an under-
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researched area, with research to date centring on physiological demands (Van Rooyen et al., 
2008; Suarez-Arrones et al., 2012) and match patterns (Hughes et al., 2005). 

Method 

The seedings for the 2013 Sevens Rugby World Cup are determined based on the number of 
tournament points accrued by each of the competing nations during the Hong Kong and 
Shanghai Banking Corporation (HSBC) IRB Sevens Series over the 2010-2011 and 2011-2012 
series, as well as the first five rounds of the 2012-2013 series (www.rwcsevens.com, 2013) as 
presented in Table 1. The justification for using the 25 previous tournaments to determine 
RWC seedings was examined, and is discussed in the next section. 

Table 1 - RWC Sevens Seeds and ranking points (www.rwcsevens.com, 2013) 

Tournament 

Seed Team Points 

Tournament 

Seed Team Points 

1 New Zealand 429 13 Canada 77 

2 Fiji 349 14 Portugal 49 

3 South Africa 338 15 Spain 42 

4 Samoa 324 16 Russia 19 

5 England 304 17 Tonga 19 

6 Australia 227 18 Zimbabwe 12 

7 Wales 197 19 Japan 10 

8 Argentina 183 20 Hong Kong 5 

9 France 144 21 Georgia 0 

10 Kenya 113 22 Tunisia 0 

11 Scotland 93 23 Philippines 0 

12 USA 79 24 Uruguay 0 

 

In all cases independent variables were examined in terms of their ability to influence the 
dependent variable, Points Difference (PD) between the two teams, as defined by the equation 
1: 

PD = Points for Team A - Points for Team B        (1) 

where Team A and Team B are the first and second teams listed in the match schedule by 
www.IRBSevens.com, respectively. Thus, a victory for Team A would result in a positive 
value for PD. All independent variables were expressed as differences between Team A and 
Team B in the same manner. One of the prime tenets of interacting performance theory is that 
the relative strength of the opposition is a key affecting variant in sports performance 
(O’Donoghue, 2009). Accordingly, the difference between ranking points of the two teams, 
RankDiff25, was used to assess the relative strength of the teams, and is given by Equation 2. 
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RankDiff25 = (#Tournament Points for Team A in the previous 25 tournaments) - 

(#Tournament Points for Team B in the previous 25 tournaments                     (2) 

RankDiff25 was selected in preference to seeding position, as it was assumed to contain a 
better reflection of the relative strength of two teams, and is consistent with previous studies in 
the field of Rugby Union (O’Donoghue, 2013). However, the assumption of improved 
correlation was not statistically tested in this study.  

Travel effects are often cited in the press as reasons for varying sports performance, with 
altitude,  environmental differences and training disruption (Youngstedt et al., 1999), general 
travel disruption (McGukin et al., 2012) and in particular Jet Lag (du Preez et al., 2007; 
Forbes-Robertson, et al., 2012) presented as contributing factors. Distance Penalty was 
assessed as the point to point distance between capital cities of competing nations and the 
venue, the hypothesis being that any travel effects would be a proportional to the distance 
travelled (O’Donoghue, 2003). The variable Distance Penalty is given by Equation 3. Data was 
downloaded from http://www.worldweatheronline.com/. 

DistancePenalty = ABS(Distance from Team A capital city to Tournament Venue) - 

ABS(Distance from Team B capital city to Tournament Venue)    -       (3) 

The effect of flight time was also examined, under the hypothesis that the dehydration, blood 
pressure, and training disruption effects of air travel (Auger et al., 2009) are more likely to be a 
function of time in the air than distance travelled. FlightPenalty is given by Equation 4. The 
minimum flight time used was the fastest route that could be found from www.skyscanner.net 
between each team’s capital city and the airport nearest to the tournament venue, in lieu of 
detailed travel plan information which would have been prohibitively difficult to gather in 
study of such sample size. 

FlightPenalty = ABS(Minimum flight time from Team A capital city to Tournament Venue) - 

ABS(Minimum flight time from Team B capital city to Tournament Venue) -       (4) 

Two dependent variables were used to assess the effects of jet lag. Firstly, the number of time 
zones difference between each team’s capital city and the tournament venue was compared, as 
Equation 5. However, circadian disruption follows a sinusoidal, rather than linear, model 
(Forbes-Robertson, et al., 2012), and so a variable representing a broadly sinusoidal 
relationship between circadian disruption and pan time zone travel was considered for analysis, 
developed under the assumption that the relative disruption could be determined by 
superimposition of circadian waveforms. The adopted model is described given in Equation 6. 
Figures 1 and 2 explain the development of this model, using the example of Fiji v England, in 
the final of the 2004 Dubai Sevens, played at 18:40pm local time. 

UTCPenalty = ABS(time zone offset between Team A capital city and tournament venue) - 

ABS(time zone offset between Team B capital city and tournament venue) -       (5) 
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Figure 1 – Sinusoidal Curves used to simulate circadian rhythms 

 

Figure 2 – Superimposition of circadian rhythms  

CircDisruption = Abs{sin((Local time – 12 – TeamA Home City Time Zone)/24) – sin((Local 
time – 12 – Venue Time Zone)/24)}- Abs{sin((Local time – 12 – TeamB Home City Time 
Zone)/24) – sin((Local time – 12 – Venue Time Zone)/24)}   -       (6) 

Time zone offsets were expressed in terms of Coordinated Universal Time, UTC, and were 
downloaded from http://en.wikipedia.org/wiki/List_of_UTC_time_offsets. Altitude were 
defined similarly, with the temperature being the average monthly temperature for the month 
that the tournament was played in. Data was obtained from 
http://en.wikipedia.org/wiki/List_of_capital_cities_by_altitude (altitude) and 
http://www.worldweatheronline.com/ (temperature). These variables are presented in 
Equations 7 and 8. 
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AltitudePenalty = ABS(Difference in altitude between Team A capital city and Tournament 
Venue) - ABS(Difference in altitude between Team B capital city and Tournament Venue)  (7) 

TemperaturePenalty = ABS(Difference in average temperature between Team A capital city 
and Tournament Venue) - ABS(Difference in average temperature between Team B capital 
city and Tournament Venue)         -       (8) 

Recovery time between games was not assessed. However, the database created in the current 
study lends itself to subsequent analysis of this variable in future studies. The reliability of the 
selected regression model was tested by modelling a tournament which had already been 
played at the time of writing, yet occurred after the tournament seedings were determined, 
hence had not been included in the dataset used to generate the model. Predicted results for 
pool standings and overall winners were then compared to the actual data. Finally, confidence 
in the results was assessed using a convergence statistic, to ensure that the simulation had been 
run enough times for the results to stabilize, a method borrowed from Finite Element Analysis 
programs used in Mechanical Engineering. The convergence statistic chosen was stability of 
chance of each country winning the cup, plate and bowl competitions of the tournament. 

Data Processing and Analysis 

Initially the ability of tournament points to predict match results was assessed, in an attempt to 
validate the number of tournaments included in the RWC Sevens Seeding process, the initial 
hypothesis being that the ranking system is over-damped, or un-reactive to changes in form. 
Match data from all tournaments (2004-2013) (n = 3240) and tournaments points that were 
achieved by all teams (2002-2013) was downloaded from www.irbsevens.com and copied to 
Microsoft Excel. Data cleaning subroutines were written in Visual Basic for Applications 
(VBA), to standardize the data (e.g.: “NZ” rather than “New Zealand”) and to extract the 
match scores for each team. Kick off times were extracted formulaically within Excel. A 
function was written to assign what would have been the relative tournament ranking points for 
each team in all matches in the dataset, accessed from preceding tournament information. The 
function looped, to assign ranking points for different numbers of tournaments, from 1:25. 
Formulae were applied in Excel to determine consistency of ranking point disparity between 
sides and actual results, as the number of upsets versus ranking points. Upsets were calculated 
as follows by Equation (9), where if the signs of the two variables differ, the lower ranked side 
unexpectedly scored more than the higher side. Where the ranking difference was not equal to 
zero, draws were also treated as upsets. 

If RankDifference(A,B) * PointsDifference(A,B) < 0 then Upset  -       (9) 

Increasing the number of tournaments included in the model showed greater prediction of 
results, with 25 tournaments performing best across all seasons, as shown in Figure 3. As a 
result, the 25 preceding tournaments were included in the independent variable RankDiff25, 
and the choice of tournaments included in the seeding process adopted in the RWC Sevens can 
be considered valid. 
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Figure 3 – Tournament Points Prediction of Match Results. 

RankDiff25 values were again assigned on an individual match basis, along with travel and 
environmental independent variables. A programmatic approach was adopted (VBA) for 
simplicity and runtime issues, in response to the computational demands of including volatile 
Excel lookup functions in a large dataset. The dataset was imported into Matlab once teams 
that would not compete in the 2013 RWC had been excluded (n = 2478). Each variable was 
assessed for correlation with PD, with R2 values and linear regression coefficients returned. 
Correlation to the residual values of the linear model of RankDiff25 and PD was subsequently 
examined for all other independent variables. These values are presented in Table 2. 
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Table 2 – Regression coefficients of independent variables to PD 

 Correlation to PD 

Correlation to residuals of 

RankDiff25 vs PD 

R² gradient intercept R² gradient Intercept 

RankDiff25 0.294 0.059 2.130 - - - 

Altitude 0.000 0.000 8.060 0.000 0.000 -0.009 

DistancePenalty 0.004 0.000 7.912 0.000 0.000 0.005 

FlightPenalty 0.005 -0.002 7.909 0.000 0.000 0.015 

TempPenalty 0.009 0.187 7.913 0.001 -0.055 0.047 

UTCPenalty 0.015 -0.334 7.713 0.000 -0.036 -0.039 

RelativeDisruption 0.000 0.375 8.068 0.000 0.132 -0.001 

 

Matlab’s stepwise regression tool was used in an attempt to produce a multivariate model, 
though no variable improved the model beyond the influence of RankDiff25, and so the 
multivariate approach was abandoned in favour of a bivariate model, given by Equation 10 and 
illustrated in Figure 4. Note that the positive bias of the dataset is indicative of the tendency of 
tournament organisers’ tendency to list the higher ranked team first in the fixture list. 

TeamAPD = 0.0588 * RankDiff25 + 2.1305    -                 (10) 

 

 

Figure 4 – Matlab Output of Linear Regression Model of RankDiff25 and TeamApd 

Each competing nation’s performance against the regression model was expressed in terms of 
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mean and standard deviation of the residuals of actual results, and were extracted in Matlab 
along with the number of games featuring each side, and are presented in Table 3. 

Table 3 – Distribution of residuals against bivariate model of PD v RankDiff25. 

Team µ sd n 

Argentina -1.90 14.08 325 

Australia -0.36 14.40 553 

Canada -0.22 14.27 263 

England -0.56 14.90 605 

Fiji 0.14 14.75 342 

France -0.69 14.54 311 

Georgia 11.90 19.42 35 

Hong 1.29 14.07 327 

Japan 4.56 16.04 87 

Kenya -0.13 15.02 321 

New 
Zealand 0.72 14.10 610 

Philippines 0.00 14.79 0 

Portugal -0.03 13.50 217 

Russia 3.68 15.93 110 

Samoa -1.89 13.72 334 

Scotland -0.10 14.80 523 

South 
Africa 0.55 14.21 519 

Spain -2.79 13.75 81 

Tonga -2.14 15.62 118 

Tunisia 5.27 15.39 68 

Uruguay 6.70 15.28 39 

USA -0.68 13.71 535 

Wales -0.24 14.09 274 

Zimbabwe 2.28 14.66 100 

 

The validity of the assumption that each team had a significantly different data set was tested 
with a one way ANOVA, using Excel’s statistical analysis add-in, returning a P-value of 0.21 
which is reasonable given the size of the database and the large number of subsets. The 
requirement for normality of residuals was tested with Anderson-Darling, returning acceptable 
values of skewness for all teams, and kurtosis only evident in teams with small source 
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populations (Japan and Zimbabwe). Heteroscedasticity of residuals was not apparent, though 
this was not statistically tested. Pool Standings and seedings for the knock out stages of the 
Sevens RWC is in part determined by tries scored (tournament rules, www.rwcsevens.com), 
and so a prediction of tries was required for realistic tournament simulation. Try scoring rate 
per team was assessed as the number of tries scored by each team in the 2011-2012 series 
(IRB, 2012). Where no data was available for a competing nation (EG: Tunisia, The 
Philippines, and Georgia) the global mean was used (0.16), in the expectation of the fact that 
the relatively low ranking of these teams would suggest that any inaccuracies in the number of 
tries scored would be outweighed by the impact of points difference to the extent that any 
effect would be negligible. 

Each match was played independently, with the points difference determined by Equation 11, 
incorporating a random number generated from a normal distribution based on the pooled 
means and standard deviations of the two sides. 

diff = 0.0588 * RankDiff25 + 2.1305 + Rand(normal, PooledMean, PooledSD)  -     (11) 

The score for each team was calculated by Equations 12 and 13, where 18 was selected as the 
mean value, as this is the mean score during the 2011-12 Sevens Series.  

ScoreTeam A = 18 + 0.5 * diff      -     (12) 

ScoreTeam B = 18 + 0.5 * diff      -      (13) 

Scores were then adjusted programmatically to ensure no impossible scores occurred according 
to the scoring system of Rugby Sevens, and the tries for and against each team was calculated. 
Tries scored was calculated by multiplying the team’s score by their scoring rate as given in 
Table 5. Points and tries scored (for and against) were recorded in the six pool tables, along 
with the tournament points (3 for a win, 2 for a draw, 1 for a loss). The tournament fixtures and 
draw was constructed, and pools standings and seedings of the knock out stages were 
determined according to the tournament rules (sorting by, in order: pool position, result 
between teams, tournament points, match points difference, try difference, match points for, 
tries for) once the pool games had been completed (www.rwcsevens.com, 2013). Winners, 
losers and point-difference of each game were recorded, as was the number of upsets. The 
tournament was run 10000 times, and the descriptive statistics described in the previous 
section were recorded and automatically output to Excel for subsequent analysis and 
visualization of data. Model convergence was assessed by examining the stability of the 
percentage of cup, bowl and plate winners, in 1000 tournament increments, and was shown to 
converge to <0.25% for all countries by 8000 iterations, giving confidence in the stability of 
the result.  

The validity of the approach was tested by repeating the exercise above, using the 2013 
London Sevens as a pilot study (iterations = 1000) and compared to the actual results. London 
was selected as it was not included in the original dataset, and like the Sevens RWC also uses 
seedings to determine the knock out stages, rather than pure pool positions as is the case in 
other tournaments in the IRB Sevens Series. The London simulation correctly identified the 
tournament winner on 49% of occasions (New Zealand), the top seed on 62% of occasions 
(New Zealand again), one or more of the pool winners on 93% of occasions, and two or more 
of the pool winners on 38% of occasions. However, the four top seeds were only correctly 
identified on one occasion out of 1000, and then not in the correct order.  Furthermore there 
was no discernible relationship between the actual upsets, and those predicted as likely upsets 
by the model. It is worth mentioning, however, that the tournament was not of equal value to 
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all teams; New Zealand had already mathematically secured the IRB Sevens series in the 
preceding round (www.irbsevens.com). 

Results 

The tournament simulation model identified that New Zealand (43%) were the most likely 
winners of the 2013 RWC Sevens, as well as most likely to enter the knock out stages as top 
seeds (45%). More than half the teams have a less than 0.1% chance of winning the overall 
competition. The most likely winners of the Cup, Plate (2nd Tier) and Bowl (3rd Tier) 
tournaments are presented in Tables 4a, 4b and 4c, while the full summary of the expected 
finishing position is presented in Figure 5. 
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Table 4: Most likely winners of the Most Likely Winners of RWC Sevens, the RWC Sevens Plate Tournament 
(2nd Tier) and RWC Sevens Bowl Tournament (3rd Tier) tournaments are presented in Tables 
4a, 4b and 4c 

(a) (b) (c) 

Team Chance Team Chance Team Chance 

New Zealand 43.4% Scotland 7.5% Georgia 12.7% 

Fiji 16.8% USA 7.1% Japan 10.4% 

South Africa 16.4% Argentina 7.1% Uruguay 9.6% 

Samoa 10.2% Canada 7.0% Hong Kong 7.6% 

England 7.8% Wales 6.9% Phillipines 7.3% 

Australia 2.6% Kenya 6.8% Tunisia 7.0% 

Wales 1.2% Russia 6.2% Tonga 6.2% 

Argentina 0.6% France 6.0% Portugal 5.2% 

France 0.5% Portugal 5.5% Canada 4.8% 

Kenya 0.2% Zimbabwe 5.0% USA 4.7% 

Scotland 0.1% Spain 4.2% Russia 4.6% 

Canada <0.1% Georgia 3.9% Zimbabwe 4.5% 

USA <0.1% Tunisia 4.2% Spain 4.2% 

Russia <0.1% Uruguay 3.9% Scotland 2.7% 

Spain <0.1% Tonga 3.3% Kenya 2.4% 

Zimbabwe <0.1% Japan 3.1% France 1.9% 

  Hong Kong 2.8% Argentina 1.9% 

  Australia 2.8% Wales 1.2% 

  Philippines 2.6% Australia <1% 

  England 1.9% England <1% 

  Samoa 1.1% Samoa <1% 

  Fiji <1% Fiji <1% 

  South Africa <1% New Zealand <1% 

  New Zealand <1% South Africa <1% 
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Figure 5 – Expected Finishing Position of Each Team (+/- 1SD)  (1st
 = Cup final Winner, 2 = Runner up, 3 = 

playoff winner, 4 = playoff loser, 8 = losing Quarterfinalist, 9 = plate winner, etc) 

Analysis of seeding results predicted that the top seed would only win the tournament on 36% 
of tournaments run under this model. The expected distribution of seeds entering the knockout 
stage presented in figure 6. Note that South Africa are expected to out-seed Fiji, despite being 
ranked lower, while the two teams have an equal chance of winning the tournament. 

 

Figure 6 - Distribution of expected seedings for knock out stages. 

The most likely victors of each of the six pools are Australia (60%), South Africa (87%), 
Samoa (76%), New Zealand (94%), Fiji (77%) and England (68%), though it is predicted that 
all six will top the pools concurrently in only 20% of tournaments. All iterations included at 
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least one of these teams as pool winners. Half of the competing nations had a 5% or less 
chance of winning their pool, including everyone in New Zealand’s pool other than 
themselves. Uruguay and Georgia were identified as having a 1% chance of topping their 
respective pools. 1.8% of the pool games were likely to result in draws (approximately one per 
tournament), while 2.4% of the knock-out games were likely to go to extra time. 26.7% of all 
games were likely to produce upsets.   

Performance of Model against Actual Tournament Results 

The Sixth Rugby World Cup Sevens tournament was held in Moscow from the 28th to 30th 
June 2013. Actual results were downloaded from www.rwcsevens.com and compared to the 
predictions of the current study. Table 5 details the finishing positions against tournament seed 
and model prediction, below, with teams that differed from their predicted position by more 
than 1 standard deviation deemed to have either an under / over performance. Figure 7 
illustrates the final positions of each team, against the model prediction. Teams are presented 
in IRB ranking order. 

 

Figure 7 - Model Prediction and Actual Tournament Performance 

The model correctly predicted six out of the eight teams that progressed to the cup 
competition, and also the overall winner, New Zealand, while twelve teams’ performances 
closely matched the prediction (i.e.: within 1sd of their individual model prediction). Only four 
teams produced results that might be considered unexpected, occurring more than 3 standard 
deviations from their expected performance. These were Samoa (-4 sd), South Africa (-3.3 sd), 
Kenya (+3.5 sd) and Canada (+3.2 sd). The model’s suggestion that all six predicted top seeds 
were unlikely to occur simultaneously was borne out, with the actual combination of pool 
winners being the fifteenth most likely to occur. Two of the thirty six pool games resulted in a 
draw (5.5%), which is higher than the model predicted. 
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Table 5 – Model Prediction and Actual Tournament Performance (over/under performing teams in bold). 

Position 
Team (RWC Seed in 

brackets) 

Predictio

n 
Performance 

1 Cup Winner New Zealand (1) 2.8 +/- 1 +1.7 sd 

2 Runner Up England (5) 5.1 +/- 1.4 +2.2 sd 

3 3rd place runner up Fiji (2) 4.1 +/- 1.2 +0.9 sd 

4 Fourth Kenya (10) 11.5 +/- 2.2 +3.5 sd 

8 Losing Quarterfinalist South Africa (3) 4.1 +/- 1.2 -3.3 sd 

8 Losing Quarterfinalist Australia (6) 6.4 +/- 1.7 -1 sd 

8 Losing Quarterfinalist Wales (7) 8 +/- 2 +0 sd 

8 Losing Quarterfinalist France (9) 10 +/- 2.2 +0.9 sd 

9 Plate Winner Canada (13) 15.9 +/- 2.1 +3.2 sd 

10 Plate Runner Up Samoa (4) 4.7 +/- 1.3 -4 sd 

12 Losing Plate Semifinalist Argentina (8) 8.9 +/- 2.2 -1.4 sd 

12 Losing Plate Semifinalist Scotland (11) 13.5 +/- 2.2 +0.7 sd 

16 
Losing Plate 
Quarterfinalist USA (12) 15.5 +/- 2.2 -0.2 sd 

16 
Losing Plate 
Quarterfinalist Portugal (14) 17.3 +/- 2.4 +0.5 sd 

16 
Losing Plate 
Quarterfinalist Tonga (17) 21.2 +/- 2.7 +1.9 sd 

16 
Losing Plate 
Quarterfinalist Zimbabwe (18) 18.5 +/- 2.6 +1 sd 

17 Bowl Winner Russia (16) 18 +/- 2.4 +0.4 sd 

18 Bowl Runner Up Japan (19) 19.1 +/- 2.1 +0.5 sd 

20 Losing Bowl Semifinalist Georgia (21) 17.3 +/- 2.1 -1.3 sd 

20 Losing Bowl Semifinalist Uruguay (24) 18.6 +/- 2.1 -0.7 sd 

24 
Losing Bowl 
Quarterfinalist Spain (15) 18.9 +/- 2.8 -1.8 sd 

24 
Losing Bowl 
Quarterfinalist Hong Kong (20) 20.7 +/- 2.4 -1.4 sd 

24 
Losing Bowl 
Quarterfinalist Tunisia (22) 18.1 +/- 2.3 -2.6 sd 

24 
Losing Bowl 
Quarterfinalist Philippines (23) 21.6 +/- 2.6 -0.9 sd 
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However, set against Kenya’s 2012-13 IRB Series form, finishing in the top four in five out of 
nine events, a fourth place finish should not be seen as out of the ordinary. Figure 8 shows the 
tournaments at which their RWC ranking points were accrued, and there is a clear 
concentration of higher scores in the tournaments immediately preceding the event, with the 
accrual rate increasing sharply in the 2012-13 series. It would seem therefore that the 
regression model used in this study was insensitive to Kenya’s recent and sustained 
improvement in form. Note also that Kenya’s strong showing extended into the four 
tournaments which took place after the ranking period, which may further explain the model’s 
under-estimation of performance. 

 

Figure 8 – Kenya’s points accrual during the RWC Sevens qualification period. 

Discussion  

Of all the independent variables examined in the initial research, only the relative strength of 
the teams showed any significant correlation with the points difference of between two sides.  

The lack of correlation between travel effects and points difference appears to cast doubt over 
the assumption that there are significant travel effects in sport, and is in part supported by other 
attempts to identify correlations between performance and travel (Forbes-Robertson, et al., 
2012; Youngstedt et al., 1999). However, very little is known about how well the estimated 
travel variables used in the current study reflect the actual environmental and logistical 
circumstances of the associated performances. In order to properly determine sensitivity to 
travel effects, detailed travel plans of the teams involved would be required, coupled with 
verified measurements of the environmental conditions either side of the journey.  

While the performance impact of trans-meridian air travel can be expected to be proportional 
to the number of time zones crossed, its ongoing impact is thought to diminish with the 
passage of time. Therefore in order to test for sensitivity, it would be preferable to couple the 
UTC offset with the number of days between arrival and performance, so that both effects can 
be examined. 
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Sensitivity of performance to travel time was examined using data from Skyscanner, in an 
attempt to test the shortest practical travel time between venues, rather than the straight line 
distance which is often used in studies of this nature, though no improvement was observed. 
However, any effect would again have been clouded by uncertainty around the amount of 
recovery time between arrival and the start of the performance, and any other entrainment 
strategies employed by competing teams. Further uncertainty is presented by the reality that 
the funding for all teams is not equal, and certain lower ranked nations may be forced to opt for 
longer, less convenient flight routes, where the need to minimise costs may take precedence 
over travel disruption (e.g.: Friday, 2013). 

Furthermore, the study gave no consideration to the format of the IRB Sevens series, which 
typically features pairs of tournaments played on successive weekends. In these cases, it is 
likely that most teams would opt to travel directly to the venue of the second tournament rather 
than returning home in the intervening week, in order to minimize costs and travelling time. 
Given that this might typically be the case for up to four of the nine events in a given year, it 
would be sensible to remove such tournaments from the data set in any follow up studies, 
which might in turn reveal a greater sensitivity.  

Another likely source of error in the sample data is that while capital cities were used as 
reference points for teams, whereas in larger countries the teams may be based in a different 
time zone to the capital city. For example, it is known that the USA have a centralized 
residential training camp is in Chula Vista, California (UTC -8)  (www.usarugby.com, 2012), 
which is three time zones from the capital city, Washington DC (UTC -5). Clearly any 
evidence of a travel effect is likely to be obscured by systematic sources of error of this kind, 
with attempts to compare altitude and typical seasonal temperature suffering similarly.  

The circadian disruption model adopted in this study was only loosely academically founded, 
and further research may allow the adoption of a more sophisticated model which may better 
reflect the circadian rhythms in athletes. However unless the actual travel plans of teams can 
be examined, it is impossible to conduct a rigorous analysis, regardless of model 
sophistication. 

The availability of such data would allow a much more reliable analysis of travel effects, and 
also allow characterization and evaluation of any entrainment strategies employed. However, 
the importance of entrainment strategies is highlighted in both academic literature (Forbes-
Robertson, et al., 2012) and anecdotal coaching discussions (Friday, 2013; 
www.irbsevens.com, 2013), and so it is likely that competing nations would consider their 
travel plans to be part of the pursuit for competitive advantage, and as such be reluctant to 
allow its use for publication and research. Furthermore, the practicalities of obtaining such data 
would limit sample size such that the “whole database” approach attempted here would not be 
possible. In this case it might be better to embark on a long term, longitudinal study focusing 
on a limited number of teams of similar standing, where it may be possible to negotiate access 
to travel documentation from individual National Governing Bodies. 

In summary then, while there was no obvious travel effect observed in this study, it may be 
that this is due to a lack of accurate travel data in the study, rather than a lack of effect, 
highlighting the need to pursue accuracy in data over quantity of sample size when studying 
travel effects.  

In spite of the limitations described above, much can be learned about Sevens Rugby as a 
result of this study. Initial analysis revealed that the likely result between two teams in a given 
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match was far more likely to be predicted by the two teams’ respective performances over the 
last 25 tournaments than in the most recent, which lends support not only to the RWC seeding 
strategy. Further, the curve of data presented appears asymptotic, with only a marginal 
improvement in shown in model sensitivity when 25 tournaments are used rather than 20, 
predicating the need to include yet more tournaments. This is reinforced by the fact that the 
actual overall RWC standings were largely as predicted by the model.  

However, the suspicion is that performance is related to a combined effect of both form and 
sustained quality. The “Whole Database” approach has been criticised as inflexible and 
insensitive to form (Hughes et al., 2001; Reed, et al., 2005), and this is supported by the 
regression model’s inability to react to Kenya’s surge in pre-tournament form, which was 
followed by the team’s strong showing in the RWC. This could be tested in future research via 
the application of a weighted approach, to determine whether more recent tournaments held 
more or less influence on the model’s ability to predict points difference between teams. 
Equally, the size of the data set may have been responsible for the lack of kurtosis or skewness 
in the data set, in contrast to other comprehensive tournament studies which nevertheless 
involved fewer data, due to the number of matches played (O’Donoghue, 2013, unpub.). 
Similarly, outliers could be removed without particularly diminishing the sample size. 

The predicted upset frequency of the RWC Sevens from the model is in keeping with the 
source data set, where analysis of the input dataset revealed an upset frequency of 24.7%, As 
an aside, this presents an opportunity to position International Rugby Sevens relative to other 
similar “Invasion games” (Hughes et al., 2008), in terms of competitiveness. Though the 
frequency is distinctly lower when compared to other sports, such as English Premier League 
Football (45.2%), NBA Basketball (36.5%) and NFL American Football (36.4%) (Ben-Naim, 
et al., 2005), it is certainly much higher than its parent sport, Rugby Union., which “is 
dominated by a small number of very strong teams” (Reed et al., 2005). The 2011 Rugby 
World Cup produced only 3 upsets (based on pre-tournament ranking, IRB 2011 [online]) in 
the 48 games played (6.25%), all of which occurred in the group stage (IRB Match Analysis, 
2012). While on the one hand Sevens is shown to be an inherently more variable sport than 
Rugby Union, it is still the case that relatively few competing nations have a meaningful 
chance of winning, with only 5% of simulated victories coming from outside the top five pre-
tournament seeds, and 1% coming from outside the top eight. However, according to the 
model in the current study, the incumbent champions, Wales, had only a 1.2% chance of 
retaining their title, underlining their achievement in 2009. The number of draws which 
occurred was also similar to the prediction. Meanwhile it was predicted that 2.4% of knock out 
stage matches would go to extra time, but it is not known how this compares to the source data 
set within Rugby Sevens. 

The accuracy of the model could potentially be improved by examining temporal issues within 
and between tournaments. It is reasonable to hypothesise that certain teams may perform 
differently in knock out stages than in pool stages due to fatigue. Information gleaned on this 
could not only be used to improve the predictions of the models, but could also be used to 
characterise the relative strengths of teams and give further routes to explain performance 
differences, as implied by Reed et al (2005). Similarly the effect of varying recovery times 
between matches may be explored.  
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Conclusions 

The actual winners of the 2013 Rugby World Cup were identified as the most likely to win 
(New Zealand), with a 95% chance that the tournament will be won by one of the top five 
seeds. Scotland and Georgia were shown to be most likely to win the Plate and Bowl 
competitions respectively, though both teams were eliminated in the respective semi-finals. 
The number of tournaments used to generate the seeds for the RWC Sevens was validated and 
is shown to be better able to predict relative strength of two teams than when fewer 
tournaments were included in the model, and with little further improvement when more are 
used. Overall correlation between the simulation results and actual tournament were strong, 
with half of all standings between +/- 1sd of the prediction, and twenty of the twenty four 
teams placed within +/- 3sd of their prediction. Around one in four matches of International 
Rugby Sevens can be expected to produce an upset. This allowed the sport of Rugby Sevens to 
be characterised as more unpredictable than its closest comparative sport, Rugby Union, yet 
less so than other invasion games such as American Football, Basketball and Association 
Football. 

In line with other texts surveying the impact of air travel (trans-meridian or otherwise) on other 
sports, there was no correlation between performance in International Rugby Sevens and jet 
lag or other travel variables, although limitations arising from the assumptions and subsequent 
treatment of the source data were acknowledged. 

Avenues for future research were identified as examination of the weighted effect of recent 
form and overall quality, various temporal effects such as the changing nature of the sport over 
time, the difference between individual teams’ performances in knock out stages compared to 
group stages, and if possible, an in depth review of actual travel details and correlation to 
performance and fatigue. 
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