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Editorial 

Arnold Baca 

Department of Biomechanics, Kinesiology and Applied Computer Science, 

ZSU, University of Vienna 

 

 

Dear readers: 
 

Welcome to the summer 2015 issue of the International Journal of Computer Science in 

Sport (IJCSS). 
 

The issue contains three research papers and two project reports.  

 

Gravenhorst et al. introduce new performance indicators to quantify rowing technique. 

Subsequently, the authors provide two data-driven approaches to identify those indicators 

which make individual rower’s technique unique and those indicators which are correlated 

with the boat’s speed most. 

  

Quintana et al. developed a method to compute the variations in the torque applied to the 

pedals during crank rotation in cycling. 

 

Tamaki and Saito propose a method that reconstructs the 3D trajectory of a ball from 

unsynchronized cameras. The method consists of ball detection, camera calibration, and 

trajectory reconstruction. 

 

In their project report Fernando and Pinidiyaarachchi provide an algorithm to model player 

arm movements in outdoor sporting activities. The algorithm uses a trained cascade object 

classifier, an optical flow algorithm and an Active Shape Model.  

 

The project report by Hirotsu et al. investigates different tournament formats of the World 

Baseball Classic from the viewpoint of the probability of winning the tournament and the 

probability distribution of the number of games played by the same teams. 

 

If you have any questions, comments, suggestions and points of criticism, please send them 

to me.  

 

 

Arnold Baca, Editor in Chief 

University of Vienna, arnold.baca@univie.ac.at 
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Identifying Unique Biomechanical Fingerprints for 
Rowers and Correlations with Boat Speed – A Data-
driven Approach for Rowing Performance Analysis 
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2
, Galloway, M.

2
, Tröster, G.

1
 

1
Wearable Computing Lab., Institute of Electronics, ETH Zurich, Switzerland 

2
Movement Science Department, Australian Institute of Sport, Canberra, Australia 

 

Abstract 

Finding the best fit of rowers for a crew boat is a challenging task. Each rower 

has a unique technique and the ability to adapt this to a crew varies from person 

to person. Currently, subjective evaluations and qualitative measures are the main 

methods used to try to put the fastest crew together. To make the process more 

accurate and objective we introduce 177 performance metrics to quantify some of 

the measureable aspects of rowing technique. We then present two data-driven 

approaches to select the most relevant features that 1) make individual rower’s 

technique unique and 2) correlate most strongly to boat speed. The first approach 

uses sequential forward feature selection to identify the features that are most 

discriminative for individual rowers in crew boats. These features make the 

unique biomechanical fingerprint of each rower. We recorded a dataset with four 

world-class female rowers racing in double sculls in different crew combinations. 

We identified the “Finish Slip” as the most discriminative feature. A rower 

identification classifier based solely on this feature scored an accuracy of 74.6%. 

Applying one or two additional features this accuracy improved to 90.7% or 

95.6% respectively. In a second approach we proposed linear regression analysis 

to identify the features that most strongly correlate to boat speed. For the given 

dataset, a subset of five performance metrics proved sufficient to build a linear 

model that predicts the boat speed with a root mean square error of less than 

0.087 m/s. 

KEYWORDS: ROWING, PERFORMANCE ANALYSIS, CLASSIFICATION, MACHINE 

LEARNING 

Introduction 

Motivation 

Rowing is one of the oldest Olympic disciplines. To perform at the top level rowers must be 

physically strong and have excellent technique. Strength can be measured in off water setups 

with rowing ergometers and individual technical skills are often assessed on the water through 

competitions in small boats. In the case of sculling (two oars per person) tests are usually 

carried out in single sculls (a one person rowing boat). Different athletes often have different 

ideal single sculling technique as they have different skill levels, body proportions and 
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anatomy (Altenburg et al., 2008). As such even athletes who perform at the top level are likely 

to have slightly different technique from one another.  

In the Olympic regatta rowers compete not only in singles but also in crew boats of up to eight 

rowers. Apart from requiring a good strength and endurance base, rowers in crew boats must 

be able to synchronize their technique and timing with each other in order to achieve top 

results (Christov et al., 1988; Hill, 2002; Wing & Woodburn, 1995). It is challenging to 

determine who the strongest and simultaneously most compatible athletes for a crew boat are.  

Results show that crews made up of the best single scullers are often beaten by crews made up 

of rowers with worse individual performances. As Daniel Topolski, one of the most successful 

coaches of the annual Oxford-Cambridge boat race stated, “[t]he sum of a crew is greater than 

its parts” (Robinson & Topolski, 2013). This has become a well-established saying and 

highlights that making a crew boat successful requires more than a group of individually good 

rowers.  

The most common approach for finding ideal rowing crews within a pool of athletes is through 

test races. Coaches put crews together and organize races to determine which crew in which 

seating order performs best. It is usually not possible or practical to test all possible 

combinations due to time restrictions and the difficulty of ensuring comparable conditions 

between so many test races. Key challenges include changing weather conditions, differences 

in athletes’ required recovery time and ensuring that athletes perform to their best in each race. 

Instead of testing all possible combinations, coaches currently decide which crews to test based 

on subjective evaluations and personal experience. The success of such an approach is highly 

based on the coach’s experience. This process is intransparent and often leaves the non-

selected athletes with unanswered questions and a feeling that they were potentially unfairly 

overlooked. 

A more systematic selection process would be to measure the biomechanical parameters of 

rowers and compute the features that describe their technique in order to determine which ones 

fit best together in terms of technique style and synchronicity. There are many possible metrics 

that could be extracted and some are already measured in leading high-performance rowing 

centers. One of the main challenges is to identify the most important of these available 

features. They should be descriptive and of key significance for a rower’s technique, meaning 

they remain different between individuals even when put together in a crew. These features 

should also be relevant for crew boats’ performances, meaning they should correlate with the 

boat speed. 

Rowing Basics 

The goal in rowing is to move the boat as fast as possible from start to finish, usually over the 

Olympic distance of 2000m. The boat travels backwards with the rower's back to the direction 

of movement. There are two sub-types of rowing: sweep-oar, in which each rower holds one 

oar and rotates either to the left or right side; and sculling, in which each rower holds two oars 

making symmetric movements with the left and right oar. The rower sits on a sliding seat 

allowing the body to move forwards and backwards and enabling the rower to further extend 

the stroke length. The rowing movement is cyclic and consists of two phases, the drive phase 

and the recovery phase. For the sake of simplicity this work focuses on sculling, however most 

of the methods can be applied to sweep rowing as well. 



International Journal of Computer Science in Sport – Volume 14/2015/Edition 1              www.iacss.org 

   

 

6 

 

Figure 1. Basic rowing stroke: The boat is moved backwards (from left to right). At the catch position (a) the 

blades are placed into the water (b). The boat is accelerated by pushing back with the legs and 

bending the arms until the rower reaches the finish position (c). The blades are extracted from 

the water and feathered (turned parallel to the water). Then the rower reaches forward, bending 

their legs and extending the arms to prepare for the next catch position (a). Then the cyclic 

movement continues with the next stroke. 

 

The drive phase starts in the forward most position, called the catch position (Figure 1a). The 

legs are bent, so that the shins are perpendicular to the water, the sliding seat is as close to the 

stern of the boat as possible, the upper body and shoulders are in front of the hips, and the arms 

and hands are fully extended, reaching out for maximal length. The blades are then placed into 

the water (Figure 1b). They are then driven through the water and the boat is accelerated by 

pushing back with the legs, moving the seat towards the bow, bending the arms and taking the 

upper body back so that the shoulders are just behind the hips, while the back remains 

relatively straight. At the back most position, called the finish position (Figure 1c), the blades 

are extracted from the water and the recovery phase begins. During this phase, the rower 

prepares for the next stroke, moving the blade above the water to the catch position again. To 

minimize air drag and to increase boat stability, the blade is turned and moved into a feathered 

position above the water (Figure 1d). Finally, the blade has to be turned again so that it is at a 

right angle to the water, this is known as a squared blade. The cycle then starts again with the 

next drive phase (Figure 1a). 

This stroke is repeated over and over again. A standard base training rate is 18-20 strokes per 

minute, while in 2km races it is generally between 32-37 strokes per minute. During the start, 

finish sprint and other strategic points in a race, the stroke rate can reach up to 43 strokes per 

minute. 

The more force a rower applies the faster the boat is accelerated. However, muscle mass 

increases a rower’s weight, and the heavier a boat is the greater the drag factor. Therefore, the 

potential gain of boat speed through strength is limited and this is where rowing technique 

becomes essential. With more efficient technique the rower can manage to increase the boat 

speed with constant strength (and body mass). Not only does good technique maximize 

acceleration, it also minimizes deceleration (FISA, 2011). Deceleration of the boat occurs 

mainly due to the forces applied to the footstretcher as the rower comes towards the catch. The 

a b 

c d 
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deceleration is also caused by unstable boat movements, unsmooth oar movements and delays 

in placing the blade at the catch position. 

In crew boats the ideal rowing technique is even more complex, since the individual rowers’ 

techniques have to fit with the other crew members’. According to Soper et al. this “ideal 

fitting” includes several aspects and similar force profile characteristics are the most important 

ones for successful scullers in crew boats (Soper & Hume, 2004). Our work on the 

biomechanical rower fingerprint is based on the assumption that rowers in crew boats should 

move as synchronously together as possible. For the case of sculling, this is supported by many 

studies (Christov et al., 1988; Hill, 2002; Wing & Woodburn, 1995). However, for sweep 

rowing some authors argue that slightly opposite styles could also complement each other in a 

positive way (Fahrig & Witte, 2007; Smith & Draper, 2002). 

Related Work 

Rowers are aiming to improve their technique to avoid injuries and to improve boat speed. In 

most cases, they rely on human coaches who accompany trainings and give feedback. Besides 

traditional tools such as stop watches and high speed video cameras, there are multiple sensor-

based approaches proposed and some are already available on the market. An overview of 

sensors for instrumented rowing boats is presented in Table 1. 

Table 1. Sensors used for rowing in on-water setups, adapted from (Tessendorf et al., 2011) 

Sensor Location Description 

Magnet Seat Reed switch to count strokes (Nielsen-Kellermann, 

2014) 

Impeller Boat Measure distance and speed relative to the water 

(Kleshnev, 2010; Smith & Hopkins, 2012) 

GPS Boat Measure distance and speed relative to the shore (Smith 

& Hopkins, 2012) 

Accelerometer Boat Measure stroke rate and interpolate boat movement 

(Groh et al., 2014) 

Gyroscope Oars 

Boat 

Measure oar angles (Sabatini & Genovese, 2006) 

Measure boat stability (Gravenhorst et al., 2011; 

Wagner et al., 1993) 

Potentiometer Oarlock Measure horizontal oar angle (Fritsch, 2005) 

Force sensor Oarlocks 

Foot stretcher 

Measure force applied to oars (Sinclair et al., 2009) 

Measure force applied on the foot stretcher (Smith & 

Loschner, 2002a) 

Strain gauge Oars Measure bending force of oars (Nozaki et al., 1993) 

Inertial 

measurement units 

Oars, boat Measure oar and boat orientations and movements 

(Gravenhorst et al., 2014a; Tessendorf et al., 2011) 

 

Experienced rowing biomechanists are required to interpret the acquired data and generate 

benefits from it. Finding methods to automatically analyse the data and provide appropriate 
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feedback for the coaches and athletes is an active field in research (Baca & Kornfeind, 2006; 

Gravenhorst et al., 2014; Smith & Loschner, 2002a; Tessendorf et al., 2011). 

Although rowers have their own styles (Claessens et al., 2002; Claessens et al., 2005; Smith & 

Spinks, 1995; Tessendorf et al., 2011) coaches expect them to adjust their technique to achieve 

a common, efficient and synchronous stroke when placed in crew boats. However, as Korndle 

et al. show, in practice rowers only manage to adapt some aspects of their technique for the 

crew. Regardless of the crew or boat class rowers are put in, they maintain their individual 

“signature” force angle profile, (Korndle & Lippens, 1988). Through a more systematic 

analysis of a group of female rowers Galloway et al. were able to support this finding. They 

also found that some rowers’ movement patterns were more dominant than others in 

influencing the total boat speed (Galloway & Draper, 2011). 

Other studies explore the relative influence of rowers’ fitness, strength, physiological 

constitution, body measures, technique and boat and oar settings on boat speed (Cosgrove 

et al., 1999; Hill et al., 2003; Kaya et al., 1995; Kleshnev, 2002; Loschner & Smith, 1999; 

Smith & Loschner, 2002a; Smith & Loschner, 2002b). 

Millward developed a model considering the fluid mechanics of the oar and verified it with 

rowing performance data (Millward, 1987). He identified the shape of the rowing force curve 

and the proportion of recovery time in the total stroke as important factors for the boat speed. 

Sanderson and Martindale developed an equation to describe the boat speed as a function of 

the movement of the rower's center of mass and the applied force (Sanderson & Martindale, 

1986). To increase the efficiency, the authors suggest building lighter boats, increase the blade 

area of the rowing oar and finding an ideal stroke rate depending on the rower’s body mass. 

Medical and physiological determinants for boat speed are explored in clinical studies. Baguet 

et al. found that supplementation of β-alanine is highly effective in increasing the performance 

of elite rowers. After a 7-week study his control group improved an average of 4.3 seconds 

more than the placebo group (Baguet et al., 2010). Ingham et al. measured the oxygen intake 

during ergometer rowing. The best correlation to the resulting performance was the applied 

power during maximum oxygen consumption (Ingham et al., 2002). 

Secher and Vaage present a mathematical model for forecasting the racing times of male and 

female rowers depending on body mass. They found that heavyweight rowers had a 2.6% 

advantage in comparison to lightweight rowers. This value was supported by on-water results 

(Secher & Vaage, 1983). 

To sum up, most of the published approaches that present dependencies and influences of input 

factors on the boat speed are based on biomechanical models, trying to cover the causal 

dependencies and interactions as accurately as possible. These deductive approaches are 

advantageous in the sense that models can be built based on them and validated using 

theoretical knowledge and simulations. They can be generalized from because assumptions and 

limitations are usually known. The main disadvantage is the complexity to which these models 

can grow if they try to represent reality as completely as possible. These models usually 

require dozens of input parameters and some of them can hardly be measured or estimated. 

Data-driven approaches like regression models have the potential to address this drawback. 

They are built in an inductive way and based on the input parameters that can be measured in 

real-life settings. For example, Perl & Baca introduced the application of neural networks to 

performance analysis in rowing and managed to identify instabilities in the movement patterns 

(Perl & Baca, 2003). The main drawback of these inductive methods compared to approaches 
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based on physical models is the missing proof of causality. In fact, they identify correlations 

solely based on available data, this can be a sign for causal dependencies but not a proof. More 

data and domain-specific knowledge is needed to confirm dependencies, identify limitations 

and to explore how the model can be generalized, for example for other boat classes. 

Contribution 

More and more sensors and measurement systems that can be used to obtain quantitative data 

of rower’s performances on the water are becoming available. To make this available data 

beneficial for rowers and coaches, this work mainly focuses on the post-processing part and 

introduces methods for meaningful data analysis. 

We extend the state of the art in the following respects: 

Performance Metrics. To describe the rowing technique quantitatively, we introduce 37 boat-

specific, 28 oar-specific and 112 crew-specific features. These are the base of our data-driven 

performance analysis. 

Biomechanical Fingerprints. We propose and compare three different machine-learning 

methods to identify the most discriminative features for a group of rowers. We demonstrate 

how this approach can support coaches towards a more systematic approach for finding the 

best-fitting team for a crew boat.  

Boat Speed Model. We suggest a linear model to describe the dependency between boat- and 

oar-specific performance metrics as input and the boat speed as output parameter. The number 

of necessary coefficients and their values are identified with a step-wise linear regression 

analysis. 

Proof of Concept. We carry out an experiment with four elite rowers performing races in 

different crew combinations within a time period of six days. Data has been recorded with 

commercial sensor systems. In a post-processing step, performance metrics were calculated, 

and our proposed methods are applied and results discussed. 

Paper Organization 

The second section explains how meaningful performance metrics can be extracted from raw 

sensor data and introduces oar-, boat- and crew-specific metrics. The third section, 

“Experiment Setup” introduces the measurement system we used to instrument the rowing 

boats and the experiment design applied to collect data from different crew combinations. The 

following two sections explain our methods and the results we obtained using the data from 

our experiment. The section “Analysis and Discussion” analyses the results and outlines 

possible interpretations of them. Limitations are discussed in the next section and the final 

section draws conclusions and provides an outlook. 

Performance Metrics for Individual Rowers and Crews 

As outlined in the introduction, the general idea of good rowing technique is well-established 

(FISA, 2011). For most technical aspects of rowing, there are rough guidelines rather than 

exact quantifiable and measureable targets. However, to enable comparison of rowers and crew 

combinations through data-driven approaches we need quantitative measures, which can be 

obtained with mobile on-boat sensor systems. It is important that the selected set of measures 

contain as little redundancy as possible. In the first of the following two sub-sections we 

introduce performance metrics that can be applied to all boat types. These ones include: 
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• Boat-specific features: These features describe the movements of the boat. These 

features have identical values for all crew members and quantify the effects of the crew 

as a whole. 

• Oar-specific features: These features describe the movement of an individual rower’s 

oar. In crew boats these features usually have different values for each person. 

In the second sub-section we present additional features that are only available for crew boats. 

They quantify the crew synchronicity based on the oar-specific features of all crew members. 

All features are calculated once per stroke. 

Performance Metrics for all Boat Types 

In collaboration with Olympic-level rowing coaches and leading rowing biomechanists we 

define 37 boat-specific features and 28 oar-specific features. 

Boat-Specific Features 

Boat-specific features mainly describe the boat behavior such as its acceleration, speed and 

instability. Boat instability is quantified by deviations of the boat orientation in three 

dimensions. The corresponding angles are visualized in Figure 2. The complete list of the 

proposed boat-specific features can be found in Table 7 (Appendix). 

Oar-Specific Features 

Oar-specific features describe the movement of the rowing oar, such as the amplitude of 

movement, the timing and the force applied. For the sake of simplicity this work, which 

focuses on sculling, only evaluates the rowers’ bowside oars. The definitions of the most 

relevant features are shown in Figure 3. Similarly to the boat-specific features, the oar-specific 

features are also stroke-based, with one set of features describing one rowing stroke. They are 

calculated separately for each crew-member. The complete list of proposed oar-specific 

features can be found in Table 8 (Appendix). 

 

 

Figure 2. Definition of boat orientation angles used to describe the boat instabilities in three dimensions: (a) roll 

angle, (b) pitch angle and (c) yaw angle. 

 

a 

b 

c 
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Figure 3. Definitions of most important oar-specific features describing the oar movement: (c) describes the 

angle at the start of the rowing stroke, the catch position, (b) describes the angle at the end of 

the rowing stroke, the finish position, (a) describes the swept angle during the stroke, the 

geometric stroke length, (d) indicates the direction in which the propulsive handle force is 

measured. 

Additional Performance Metrics for Crew Boats: Synchronicity Measures 

The first step computes the oar- and boat-specific features introduced in the previous sub-

section. In the second step we add additional features that describe the crew’s interaction and 

synchronicity. For a crew boat with N rowers and k oar-specific features per rower, we define 

(N+2)k crew-specific features. The full set of proposed crew-specific features is described in 

Table 2.  

Table 2. Descriptions of crew-specific features. These features describe the crew interaction and synchronicity 

in crew boats. 

Names of 

features 
Description 

Number of 

features 

Diff 
The difference of each rower’s features compared to the 

rower in the stroke position is calculated 
(N-1)k 

Min 
The minimum value of each oar-specific feature within 

the crew is calculated 
k 

Max 
The maximum value of each oar-specific feature within 

the crew is calculated 
k 

Mean 
The mean value of all oar-specific features within the 

crew is calculated 
k 

Experiment Setup 

Mobile On-Boat Measurement System 

The minimum measurement setup to compute all proposed performance metrics consists of 

angle and force sensors on each rowing oar or gate as well as a GPS, accelerometer and 

gyroscope measurement module mounted on the boat. We decided to combine two 
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commercially available systems: 

• Boat-mounted sensor: A MinimaxX module (Catapult Sports, Australia) is attached to 

the boat’s stern. It measures GPS, 3-axes accelerometer and 3-axes gyroscope data with 

a sample frequency of 100Hz. 

• Oarlock integrated sensor: The PowerLine Rowing Instrumentation system (Peach 

Innovations Ltd., United Kingdom) is an instrumented oarlock that enables force and 

angle measurements with a sampling frequency of 50Hz. 

The overall setup is depicted in Figure 4. Both devices work independently and save the data 

to internal memory. After the experiment both memories are read out and a semi-automated 

method is used to synchronize and merge the data. 

 

Figure 4. The overall measurement setup for a double scull rowing boat is shown in (a), the boat sensor is 

attached to the stern of the boat (1), the two rowing oar sensors are integrated into the oarlocks 

(2). Close-ups of the boat module and oarlock module are shown in (b) and (c). 

Test Races for Data Collection 

For the data recording we recruited four Olympic-level female rowers (A, B, C and D) and 

equipped two double sculls with the described mobile measurement system. During a 6-day 

rowing camp, the athletes performed a race over 2000m every other day. The days in between 

were used for training and recovery (Table 3). This way, all six possible crew combinations 

were tried out and in total 1459 rowing strokes were recorded during the races. 

Table 3. During the 6-day data collection all double combination of the four rowers (A, B, C, D) were measured 

in race conditions 

 Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 

Boat 1 Recovery 

and 

training 

B, A Recovery 

and 

training 

B, D Recovery 

and 

training 

C, B 

Boat 2 C, D C, A D, A 

Feature Calculation 

The complete feature calculation processing chain is depicted in Figure 5. The recorded 

continuous data was segmented into strokes, using a peak-detection algorithm on the boat 

acceleration data. For each of the 1459 recorded rowing stroke cycles, we computed 37 boat-

specific features and 56 oar-specific features (28 for each rower), totaling 93 unfiltered 

features per stroke.  

 

1 2 

 

a b c 
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Stroke 

Segmentation 

and Feature 

Calculaton

Sensor Data 

Boat

37 unfiltered 

features 

Boat

28 unfiltered 

features

Oar 1

28 unfiltered 

features

Oar 2

Sensors

Filter: 

mean and std 

for 50m 

segments

74 filtered 

features

Boat

56 filtered 

features

Oar 1

Sensor Data 

Oar 1

Sensor Data 

Oar 2

56 filtered 

features

Oar 2

Crew Feature Calculation

224 Crew Features
 

Figure 5. Feature calculation processing chain for double scull. (a) describes the calculation of the filtered boat 

and oar features, (b) describes the continuation for calculating the crew features. 

 

To filter for noise effects and outliers, we segmented the races in approximately 50-meter 

intervals and combined strokes within these segments. For each segment we computed the 

average and the standard deviation for each feature of the strokes within the segment. In total, 

for all six races, we received 248 race segments, each with 74 filtered boat features and two 

times 56 filtered oar features (Figure 5a). Based on the 56 filtered oar-specific features (28 

averages and 28 standard deviations) for each rower, we computed 224 crew-specific features 

(Figure 5b). The final database consists of 248 race segments, each with 410 features (74 boat-

specific, 56 oar-specific for each rower, 224 crew-specific). In the following analysis, we only 

consider these filtered features and we use the following naming convention: the original 

feature names (according to Table 7 and Table 8) refer to the averaged values. The standard 

deviations are named with the prefix “Std-” following the original features’ names. The crew-

specific features use the additional prefixes “Diff-”, “Min-”, “Max-” and “Mean-”, as taken 

a 
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from the definitions in Table 2. 

Methods 

The data analysis was divided into two parts (Figure 6). In the first part we analyzed which 

features were the most discriminative for individual rowers even when put together in crew 

boats. The identified set of features is most suitable for identifying differences in rowing 

styles, it is the unique biomechanical fingerprint for rowers. 

Boat

Sensor

Oars

Sensors

Feature Calculation

a) Rower Fingerprint

Identification

b) Boat Speed

Correlations
 

Figure 6. Data-driven support for crew selection consists of two analyses, (a) identifies which features are most 

discriminative for individual rowers and (b) ranks the features considering their impact on the 

boat speed. 

 

The second part of the data analysis identified which biomechanical features of crew boats 

correlated most strongly with boat speed and therefore require particular attention when 

evaluating how well a crew fits together. 

Biomechanical Fingerprint Identification: Wrapper-Based Feature Selection 

Problem description and requirements 

As described in the previous section, we generated 74 boat-specific and 56 oar-specific 

features. In this section we want to identify which features out of these 130 proposed features 

make up the rower’s biomechanical fingerprint. We define the following requirements these 

fingerprint features should fulfil: 

1) Uniqueness: The selected feature subset should be most discriminative for each rower. 

This means by knowing these features, the rower can be identified. The selected 

features are the ones in which any two rowers of our dataset are most different from 

each other. 

2) Constant: The selected features do not depend on the crew partner. For each rower, the 

values of the selected features stay within a specific and individual range, even when 

put together with other rowers.  

Our approach 

The problem of finding the most discriminative features out of a given pool of features is well-

known in the machine learning community. The overview of our approach is depicted in 

Figure 7. The input data are the instances for the 130 considered features. Since each of the 

248 race segments contains two sets of oar-specific features, one for each of the two athletes in 

the boat, there are in total 496 data instances available. The first step of our iterative process 
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(Figure 7) is to generate a subset of features according to a search strategy. Then, this subset is 

evaluated according to an optimization criterion. These two steps are repeated over and over 

again until a stop criterion is achieved and the feature subset with the best evaluation value is 

outputted. The stop criterion can be a certain threshold of the evaluation value or the end of the 

implemented search strategy. In our work, the latter is the case. 

 

74 filtered 

features

Boat

56 filtered 

features

Oar

Feature Subset Generation

Feature Subset Evaluation

n < (74 +56)

End of 

Search?

yes

no

Evaluation criterion: 

classification accuracy

Output: Best Feature Subset

74 56

 

Figure 7. Feature selection procedure. Subsets of features are generated and evaluated. The subset with the best 

evaluation value is the final output. Adapted from (Qin et al., 2009). 

Feature subset generation. A full test of all possible subsets of features would require testing 2��� ≈ 10�� possibilities. To reduce the number of required iterations, we implemented 

sequential forward feature selection as search strategy. In a first step, all possible subsets 

containing only one single feature are evaluated. The second step considers the best subset 

from the first step and evaluates all possibilities of extending this subset with a second feature. 

The extended subset with the best evaluation score makes it through to the third step and so on. 

In each step, the winning subset of the previous step is extended by one additional feature. This 

search strategy ends as soon as a predefined threshold accuracy is reached, a predefined 

number of features is selected or after all features are selected. In our case the maximal number 

of tested subsets is 131 ∙ ���� = 8515. Compared to the full search, this search strategy saves 

computational resources while proving good results in many applications (Jain & Zongker, 

1997), however it does not assure to find the theoretically best possible result. 

Feature subset evaluation. To evaluate a given subset of features there are filter and wrapper 

approaches. Filter methods are based on statistical characteristics; they evaluate the given 

subset for example according to its dependencies, relevance or redundancy (Peng et al., 2005). 

Wrapper methods evaluate the given data according to the accuracy a classifier can correctly 

classify it. Wrapper methods are usually computationally more expensive than filter 

approaches. Feature subsets selected by wrappers are optimized for the specific classifier used 
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during the selection process. In this work we used wrappers, because they usually outperform 

filters when it comes to prediction accuracy using the classifiers they are optimized for (Zhu 

et al., 2007). A schematic overview of our wrapper-based feature subset evaluation is shown in 

Figure 8. We used 3-fold cross-validation, which means the evaluation is done in three parallel 

processes. Each process uses two thirds of the 496 input data sets to train the classifier (i.e. 

build the model), the other third is used to test the model and calculate the classification 

accuracy. The mean value of all three accuracies is the evaluation output for the given feature 

subset. 
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Figure 8. Feature subset evaluation with classifier (wrapper approach) and three-fold cross-validation. 

 

Classifiers. In general, classifiers are used to identify categories based on the input data. In our 

case, the input data is the subset of feature values which was calculated for the race segments. 

The ‘category’ which has to be inferred from this input data is the athlete ID. Working with 

classifiers involves two steps: Building the model and applying it. The first step, also known as 

training phase, considers input datasets as training data and outputs the model. The second step 

applies the model to the test datasets. For each test dataset, the model outputs a predicted 

athlete ID, which is compared to the actual athlete ID. The accuracy is calculated as the share 

of correctly predicted athletes: 

�������� = #���������	���������	��ℎ����	�� #�����	!�"#��	�$	���������! ∙ 100% 

 



International Journal of Computer Science in Sport – Volume 14/2015/Edition 1              www.iacss.org 

   

 

17 

In this work we use three state of the art classifier algorithms: 

k-nearest neighbors (kNN): This is a very basic and transparent classifier. For each 

classification result it is easy to trace back which learning datasets are responsible for the result 

(Altman, 1992). We chose k=4. 

Support Vector Machines (SVM): This is the most popular classification algorithm, scoring 

best results for most applications. The main disadvantages are the danger of overfitting and the 

computationally expensive process when building the model (Cortes & Vapnik, 1995). We 

used SVM with radial basis functions. 

Random forest (RF): A high number of decision-trees are generated. The majority vote of 

these sub-classifiers determine the classifiers output. This way, even complex cluster 

boundaries can be represented while overfitting is avoided (Montillo, 2009). We used N=300 

trees. 

Correlations with Boat Speed: Linear Regression Analysis 

Problem description and requirements 

We want to find out which of the proposed features most strongly correlate with the boat 

speed. This subset of features should 1) contain as few features as possible and at the same 

time it should 2) enable the prediction of the boat speed as accurately as possible. 

Besides the identification of the most strongly correlated features, we want to determine how 

strong and in which direction (positively or negatively correlated) the dependencies are. 

Our approach 

The feature selection and classifier approaches presented in the previous sub-section are 

designed to predict qualitative and discrete labels such as the athlete IDs. In contrast, the boat 

speed is a continuous quantitative output, thus we need another approach to model and predict 

it. We decided to use linear regression analysis because the resulting model defines 

transparently which features are correlated; it also calculates weight factors to describe the 

strength and direction. According to Zou et al. these weight factors are more suitable to assess 

the strength of the relationships in the data than correlation coefficients (Zou et al., 2003). The 

overall process is depicted in Figure 9 and is described in the following paragraphs. 
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Stepwise Linear Regression Analysis

filtered 

features

Boat

filtered 

features

Oar 1

filtered 

features

Oar 2

Crew

Features

(t) (t-1) (t) (t-1) (t) (t-1) (t) (t-1)

 

Figure 9. Feature subset selection with linear regression. Input values are the features of the current (t) and the 

previous stroke (t-1). Output values are the features and corresponding weight factors that are 

used to describe the boat speed. 

We expect that the boat speed of race segment � does not only depend on the feature values of 

the same race segment, but also on the previous race segment � − 1. For this reason, the feature 

values of each previous 50m race segment were used to increase the dimensionality of the 

input feature space. These features are named with the additional prefix “Last-”. On the other 

hand, we excluded all features which are calculated based on boat velocity (e.g. “Distance per 

stroke”) because their dependency on the boat speed is obvious and therefore not interesting. 

All features are scaled to ensure values between -1 and 1. 

As ground truth value for the boat speed we used the speed output of the boat-mounted sensor. 

This is calculated based on GPS speed and boat accelerometer data as proposed by Davey et al. 

(Davey et al., 2010). For each race segment �, the average '( of this measured velocity was 

calculated and summarized in vector ) = *'(+. 
For a given (sub)set of , features, each column of the data matrix - ∈ ℝ012 represent one 

feature, the rows are the 3 = 242 instances of the features. We assume a linear relationship 

between feature values and the predicted boat speed )5 (output): 

)5 = - ∙ 6 

The weight factors 6 are calculated using the least squares approach (Legendre, 1805; 

Wolberg, 2006): 

6 = *-7 ∙ -+8� ∙ -7 ∙ ) 

This method minimizes the root mean square error (RMSE) between the predicted velocity and 

the measured velocity (Armstrong & Collopy, 1992): 

9:;< = 38�.> ∙ ‖@‖�    with      @ = ) − )5 

 

We wanted to generate a ranking of the features which are most strongly correlated with the 

boat speed. For this task, we implemented a stepwise linear regression, which increases the 

number of features , following a sequential forward selection strategy, similar to the 
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presented wrapper approach described before and depicted in Figure 7. The evaluation 

criterion is the RMSE. 

To ensure the ranking and the calculated weight factors to be as representative as possible, we 

considered the full set of 3 = 242 instances of the data (no cross-validation) for this feature 

selection/ranking step. However, for the sake of statistical correctness, the RMSE values which 

are used for further calculations and are given in the result tables are calculated using 10-fold 

cross-validation. 

With the generated ranking we can determine the minimal number of features , needed to 

achieve a ‘good fit’, which our collaborating coaches and biomechanists defined as a RMSE of 

less than 35% of the measured velocity’s standard deviation. 

Results 

Biomechanical Fingerprint Identification 

The five top-ranked features and the corresponding average accuracies (see section 0) are listed 

in Table 4. These accuracies are also visualized in Figure 10. 

Table 4. Rower’s biomechanical fingerprint: Top five most discriminative features for identifying individual 

rowers. The rankings are obtained by sequential forward feature selection with three different 

classifiers: k-Nearest-Neighbor (kNN), Random Forest (RF) and Support Vector Machines 

(SVM). The percentages indicate the average achieved accuracy of each classifier when using 

only the top-ranked feature, the top two features, the top three features, the top four or top five 

features. 

Rank kNN RF SVM 

1 Ang Finish Slip 74.6 % Ang Finish Slip 67.3 % Ang Finish Slip 63.5 % 

2 Ang Drive Accel 

Point 

90.7 % Ang Drive 

Accel Point 

89.3 % Yaw Recov Yaw 

Range 

86.7 % 

3 Handle Vel 

Drive Max 

95.6 % RFD Peak 94.0 % Ang Drive Accel 

Point 

91.7 % 

4 Std-Ang Catch 96.6 % Handle Dist 96.6 % RFD Peak 95.6 % 

5 Ang Catch 97.4 % t Max Force 97.2 % t Drive 96.2 % 
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Figure 10. Visualization of how accurately a rower can be identified with a defined biomechanical fingerprint. 

The more features that are allowed in the fingerprint, the more accurately the rower can be 

identified. The results are plotted for three different classifiers (kNN, RF, SVM). 

 

The feature “Ang Finish Slip” is ranked as the most discriminative feature in all tested 

approaches. The feature “Ang Drive Accel Point” is ranked as second or third in all tested 

approaches. The distributions of the values of these two features and some of their statistical 

properties are illustrated in Figure 11. 

 

 

Figure 11. The boxplot (a) shows the statistical parameters of the “Finish Slip”, the most discriminative feature 

for rower identification. The boxplot (b) shows the distribution of the feature “Ang Drive 

Accel Point” which is ranked second or third, depending on the used classifier. 

 

Correlations with Boat Speed: Linear Regression Analysis 

For the total database of 3 = 242 race segments, we received 79 different boat speed values, 

ranging between 4.37m/s and 5.6m/s. The mean boat speed is 4.75m/s and the standard 

deviation is 0.25m/s. The distribution of the boat speed values is shown in Figure 12. 
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Figure 12. This histogram shows the distribution of boat speed values in our recorded dataset 

 

The dependency between the number of features and the resulting RMSE is visualized in 

Figure 13. The graphic shows that , = 5 features are needed to achieve the defined goal 

regarding the resulting RMSE. The selected features for this case and the corresponding weight 

factors are summarized in  

Table 5. A visual comparison of the measured and the predicted boat speed based on this 

model is shown in Figure 14.  

 

 

Figure 13. Dependency between number of features used for the linear regression and the resulting root mean 

square errors (RMSE) between predicted and measured boat speed. 

 

Table 5. Top five features and their corresponding weights for linear regression model for boat speed prediction. 

The last column indicates the root mean square error (RMSE) value when using only the first, 

the first two, three, four or all five features in the model. 

Rank (A) Feature (BA) Weight (6A) RMSE 

1 Max-Handle Vel Drive Max: Maximal oar handle 

velocity during drive phase, maximal value of both 

rowers during the current 50m race segment 

2.79 0.124 

2 Last-Min-Handle Vel Recov Ave: Average oar handle 

velocity during the recovery phase, minimal value of 

-1.06 0.098 
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both rowers during the previous 50m race segment 

3 Last-Std-Accy Recov Min: Minimal value of 

transversal boat acceleration during recovery phase, 

standard deviation of these values during the previous 

50m race segment 

0.15 0.093 

4 Last-Max-Power Drive Ave: Average power applied 

by the rower to the oar handle in propulsive direction, 

the maximal value of all strokes during the previous 

50m segment from both rowers. 

0.56 0.090 

5 Last-Mean-Handle Vel Drive Ave: Average oar handle 

velocity during drive phase, mean value of both rowers 

during the previous 50m race segment 

1.17 0.085 

 

 

Figure 14. Comparison between predicted and measured boat speed, complete data set consisting of 6 races by 

different crews. 

Analysis and Discussion 

Biomechanical Fingerprint Identification 

With the help of machine learning approaches we showed that our proposed features are 

discriminative enough to identify the individual rowers in our experiment. Out of all 130 

features, the “Finish Slip” is the most discriminative feature for all three tested feature 

selection methods. By knowing this single value, the corresponding rower can be identified 

with an average accuracy of 74.6%. Using the top three features, the classification accuracy 

scores 95.6%. None of the boat-specific features ranked within the top-five features to 

discriminate a rower. Rower’s individual characteristics can be found primarily in their oar 

movement rather than their impact on the boat drive or stability. 

Figure 15a depicts the values of the two most discriminative features. One point in the plot 

corresponds to one rower during one race segment. The four colors indicate the athlete 

identities (A, B, C or D). The six different shapes of the point markers correspond to crew 

combinations. For example, squares are available in red color and in black color. These points 

correspond to the race segments in which rower A (red) and rower C (black) were rowing the 

0 50 100 150 200
3.5

4

4.5

5

5.5

6

Race Segment Number

B
o

a
t 

S
p

e
e

d
 [

m
/s

]

 

 

Measured Speed

Predicted Speed

Race Start

Race 1      Race 2      Race 3       Race 4     Race 5     Race 6 



International Journal of Computer Science in Sport – Volume 14/2015/Edition 1              www.iacss.org 

   

 

23 

double together. 

Figure 15b includes covariance error ellipses (Jackson, 2005; Spruyt, 2014). These ellipses 

represent the two-dimensional 80% confidence intervals in which the features for each rower 

can be found. It shows that each rower occupies a dedicated area and forms an individual 

cluster which only partly overlaps with other rowers’ clusters. For each rower, the values of the 

two features are variable but they stay within individual ranges. This illustrates the 

discriminative nature of these two features for each rower.  

Within each of these four clusters three sub-clusters can be identified. For rower D (green), the 

sub-clusters are marked with green stars, green diamonds and green circles. These sub-clusters 

are highlighted with the corresponding 80% confidence ellipses in Figure 15c. Each of these 

sub-clusters corresponds to one crew combination the rower D was part of. The size of the sub-

clusters illustrate the rower’s consistency: The bigger the area of one of these sub-clusters is, 

the more inconsistent the rowing technique of the corresponding rower was when racing in the 

corresponding crew combination (Perl & Baca, 2003). For example, the technique of rower D 

was most consistent when rowing together with rower C. Besides looking at the size of the 

sub-clusters, we can also find information considering their positions and overlaps. This 

distribution is a measure for the rower’s adaptability: If the sub-clusters of one rower are close 

to each other or even overlapping, this indicates a dominant rowing technique or limited 

adaptation capabilities of the rower. Rowers with sub-clusters which are apart from each other 

show that they adjusted their technique under the influence of the other rower in the crew. The 

sub-clusters from rower A are the least spread-out ones. This rower kept her technique most 

constant, also when rowing together with other crew partners.  

For each rower, the corresponding sub-clusters are mainly spread out on the y-axis. This means 

the main adjustments were made concerning the “Ang Drive Accel Point” feature, only rower 

D managed to vary the “Finish Slip” parameter as well. 

Clusters from rower B and D have the largest overlap (Figure 15b). This means these two 

rowers have the capability to perform similar rowing technique according to the two 

considered features. However, when these two rowers are sitting together in the boat, they do 

not use this technique, the two corresponding sub-clusters (blue diamonds and green diamonds 

in Figure 15a) are not overlapping. 

Clusters from rower A and B as well have an overlap in Figure 15b. In contrast to the previous 

example, these two rowers not only have the capability to perform similar technique, they also 

actually apply this common technique when they row together. This is visualized by the 

overlap of the corresponding two sub-clusters (blue crosses and red crosses) in Figure 15a. 

 

Table 6. Summary of achieved 2000m race times (in minutes) and corresponding cluster size (in pixels) for each 

crew combination. Cluster sizes are calculated from Figure 15d, they are a measure on how 

different the rowing technique of both crew partners is. 

Race 1 Race 2 Race 3 

Crew Time Cluster 

size 

Crew Time Cluster 

size 

Crew Time Cluster 

size 

BA 6:57.51 8.055 BD 7:12.98 29.984 CB 7:03.13 17.500 

CD 7:00.06 20.073 CA 7:08.87 15.610 DA 7:05.16 22.023 
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In Figure 15d each pair of sub-clusters is merged and their corresponding confidence ellipses 

are illustrated. Each of these six clusters visualizes one crew combination and includes all 

strokes of both rowers sitting in the boat. When compared to the others, the cluster BA is the 

most compact one. This again illustrates, that these two rowers are most similar and consistent 

over time concerning the two considered features. This combination also achieved the fastest 

time over the 2000m race distance. The size of each of the six clusters is calculated and 

compared to the achieved race time in Table 6. In each race, the winning boat also scored a 

smaller cluster size. 

 

 

Figure 15. The scatter plot (a) shows the distribution of the two most discriminative features. One marker 

corresponds to averaged features of one rower during one race segment. Different colors 

indicate different rowers. Same marker shapes indicate same crew combinations. (b) indicates 

the 80% confidence ellipses forming clusters of the individual rowers. (c) marks three sub-

clusters of rower D. Each sub-cluster corresponds to rower D’s technique when rowing in 

three different crews. Each cluster in (d) correspond to one crew and considers all strokes from 

both crew partners. The more compact the clusters are, the more similar the two crew partners 

are rowing. 

Correlations with Boat Speed 

The proposed linear model needs , = 5 features as input variables to be able to predict the 
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boat speed with a root mean square error of less than 35% of the standard deviation of the 

measured boat speed. In Figure 14 it can be seen that the highest error usually occurs during 

the start phase of the race, where rowers’ technique is usually different compared to the rest of 

the race. Measured velocity peaks during the middle phase of the race are most probably due to 

changed environment conditions such as wind or bumpy water. These external influences are 

not considered in our regression model and therefore the prediction does not include these 

peaks. 

We used the identified correlations as well as their weights as starting points for discussions 

with rowing biomechanists to discover and explain potential causal dependencies: 

Four out of the top five features (Table 5, features 2-5) are metrics that were measured during 

the previous race segment. This indicates that the average boat speed during one 50m race 

segment correlates highly to what happened during the previous 50m race segment. This 

suggests that there is a reaction time of several meters until changes in the oar or boat 

movement impact the boat speed. This inertia can be explained by the crew and boat mass of 

160kg to 180kg. 

All five selected features are boat-specific (Table 5, feature 3) or crew-specific (Table 5, 

features 1, 2, 4 and 5). None of the individual oar-specific features falls within the most 

correlated features. The experiment was not able to determine whether a particular seat in the 

boat, in this case bow or stern, correlates more strongly to the boat speed than the other. 

The maximal value the handle speed reaches during the drive phase of the stroke is the most 

strongly correlated feature to boat speed (Table 5, feature 1). Assuming the blade is fully in the 

water, a higher handle velocity leads to more boat acceleration and therefore the positive 

correlation factor with the boat speed is consistent with coaching expectations. Similar 

explanations apply for the power applied to the oar handle (Table 5, feature 4) and the average 

handle velocity (Table 5, feature 5). These two features are the fourth- and fifth-ranked 

features and also correlated positively with the boat speed. 

The second-ranked feature is based on the average oar handle velocity during the recovery 

phase (Table 5, feature 2). The correlation factor of this feature is negative, meaning the model 

predicts the faster the handles are moved during the recovery phase, the slower the boat speed. 

This is in line with coaching literature (Soper & Hume, 2004), which teaches that the rower 

should move slowly to the catch position relative to the speed of the drive phase. The slower 

movement is especially important at the end of the recovery phase in order to enable a smooth 

transition to the next drive phase. 

The third-ranked feature is the standard deviation of the transversal boat acceleration during 

the recovery phase (Table 5, feature 3). This feature is a measure for the boat instability. The 

correlation factor is positive. However, the data-driven method cannot decide whether a) 

higher instability causes higher boat speed, or b) higher boat speed causes higher instability. 

Biomechanical models and coaching literature suggest that option b) is the most likely 

(Altenburg et al., 2008; Fritsch, 2005; Gravenhorst et al., 2011; Sinclair et al., 2009). Higher 

boat speed leads to more unintentional boat movements, which increases drag factor.  

The standard deviation of transversal boat acceleration (Table 5, feature 3) is the only boat-

specific feature in the top-five features, the others are all crew-specific. According to Loschner 

et al. variations of boat orientations, which is another indicator of instability, can largely be 

explained by different rowing styles, skills and experience levels (Loschner et al., 2000). Thus, 

this boat-specific feature can probably be substituted by a combination of more fine-grained 
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oar- or crew-specific features that more specifically explain the causes of the boat instabilities. 

Limitations 

We are aware that the described approach has several limitations. 

Obtrusiveness. The boat measurement system is designed to be as unobtrusive as possible, 

however the instrumented boat is not physically identical to the usual uninstrumented one, and 

therefore it cannot be fully assured that the boat behavior is unchanged. Additionally, rowers 

might be psychologically impacted by knowing that their movements are being recorded and 

consequently they might row differently. However, similar sensor setups have been found 

unobtrusive in related studies (Tessendorf et al., 2011). 

Measurement errors. We have not validated the error involved by the used measurement 

systems. According to the manufacturers, the force sensor is accurate to 2% of full scale 

(1500N), the oar angle sensor’s accuracy is better than 0.5°, the boat speed and accelerometers 

are accurate to 2%. However there might be additional inaccuracies caused by mounting errors 

and misalignments. 

Generalization. The number of rowers and measurements we used is limited and the measured 

group of rowers is not representative. Thus, the specific results cannot be generalized. To 

answer analogical questions for other rowers, the presented methods have to be applied to 

these rowers’ data. The goal of this work is to introduce generalizable methods, rather than to 

provide statistically relevant data for a representative group of rowers. 

Conclusion 

Each rower has a different rowing technique and different capability to adjust their technique 

to be compatible for a crew boat. In collaboration with elite-level rowing coaches and 

biomechanists we introduce quantitative performance metrics that describe crucial parts of 

rowing technique and which can be measured using unobtrusive mobile sensor systems in 

rowing boats. We implemented three different classifiers and performed sequential forward 

feature selection to identify the features that are most unique for each rower. These features 

make up the rower’s biomechanical fingerprint and are relevant for identifying the best-fitting 

rowers for crews. We collected data from four world-class female athletes while they raced 

against each other in different crew combinations. We applied the described method to this 

dataset. The “Finish Slip” feature, which describes the rower’s efficiency at the end of the 

rowing stroke, turned out to be the most discriminative feature. Our proposed k-nearest 

neighbor classifier outperformed the random forest and support vector machine classifiers in 

terms of rower identification accuracy. It was able to identify 74.6% of the rowers correctly 

solely based on this single feature which requires only oar sensor modules. Applying one or 

two additional features this accuracy improved to 90.7% or 95.6% respectively, however these 

features require an additional boat sensor to acquire boat accelerations. The two rowers with 

the best similarities regarding the two most discriminative features also scored the best time in 

comparison to all the other combinations within the group and later received an Olympic 

medal. 

In the second part of this work, we showed how a linear regression model can be used to 

identify correlations between rowing features and boat speed. Our goal was to achieve a root 

mean square error below 0.087 m/s which is 35% of the boat velocity’s standard deviation. By 

gradually increasing the number of features, we found that five features were sufficient for the 
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given dataset to reach this goal. The results of this data-driven approach suggest that boat 

velocity is mainly correlated to oar-specific input features and that there is a time delay of 

about 50 meters before input variances fully effect the output. The corresponding weight 

factors for these five input parameters were determined with the least-squares optimization 

algorithm. We also outlined that the statistical dependencies we found were consistent with the 

experiences of rowing biomechanists and coaches, and we discussed potential causal 

relationships for these dependencies. 

Outlook 

In future studies we plan to increase the number of sensors to extend the number of available 

performance metrics. Although the number of features presented in this work is sufficient for 

achieving classification accuracies of >95%, a broader set of features could offer new insights. 

This way, the results of the proposed data-driven approaches can be more fine-tuned and 

features describing boat-movements can be broken down into actual causes. For example 

instead of features describing the overall oar movement, measurements of the leg, upper body 

and arm movements can be included. 

Further studies will also add more data to the database and this way makes the results 

statistically more relevant and easier to generalize from. Specifically, we are interested in 

applying and adapting the methods for male rowers, bigger crew boats, lightweight rowers and 

sweep rowing. Additionally, time-dependency can be considered in order to account for 

anomalies due to sprint phases during races or different degrees of fatigue during training. 

The presented crew selection example is based on the assumption that crew members should 

row as synchronously as possible. Although our recorded speed data supports this assumption 

for sculling, it would be interesting to investigate if and how a crew could benefit from 

complimentary rowing movements in sweep rowing. 

We would like to further explore whether the position that a rower is seated in within a crew 

influences his/her biomechanical fingerprint. Based on qualitative experiences in related 

works, we expect rowers’ behavior and their effect on the boat to differ depending on the 

position they sit in within the crew. 

Further research concerning data-driven boat speed dependencies is ongoing. Instead of linear 

models with calculated features as input, we want to test non-linear models and/or use raw data 

as input. 

Finally, the vision is to combine both presented methods, the biomechanical fingerprint 

identification and the boat speed correlation, to find an overall crew efficiency measure that 

identifies the rowers within a group that best fit together and generate the features that most 

increases the boat speed. 
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Appendix 

Table 7. Descriptions of boat-specific features. The column “Sensors” mentions one possible set of sensors that 

can deliver the necessary raw data to calculate the appropriate feature. 

Names of 

features 
Description Sensors 

Stroke Rate Number of strokes per minute 
Boat-

acceleration 

Vel Max 

Vel Min 

Vel Ave 

Vel Range 

Maximum, minimum, average and range of boat 

velocity during one stroke 

GPS, boat 

acceleration 

Dist/Stk 
Distance in meters the boat travelled during one 

stroke 

GPS, boat 

acceleration 

Vel Catch 

Vel Finish 

Boat velocity at the beginning (catch position) and the 

end (finish position) of the drive phase 

GPS, boat 

acceleration 

t Catch Lost 

Vel Catch Lost 

Time interval between reaching the catch position and 

placing the blade into the water; and amount of 

velocity the boat lost during this delay. 

GPS, boat 

acceleration 

Acc Drive Min 

Acc Drive Max 

Minimal and maximal boat acceleration (propulsive 

direction) during the drive phase. 

The same features are extracted for the other two 

acceleration axes (transversal and vertical 

acceleration).  

boat 

acceleration 

Acc Recov Peak 
Value of highest boat acceleration peak (propulsive 

direction) during recovery phase 

boat 

acceleration 

t Recov Decel 
Length of time interval the boat is decelerating for 

during recovery phase 

boat 

acceleration 

Accy Recov Min 

Accy Recov Max 

Accz Recov Min 

Accz Recov Max 

Minimal and maximal boat acceleration (transversal 

and vertical acceleration) during the recovery phase. 

boat 

acceleration 

Pitch Min 

Pitch Max 

Pitch Range 

Minimum, maximum and range of boat pitch angle 

(up/down movement of bow ball) during one stroke 

boat 

acceleration 

and gyroscope 

Roll Drive Min Minimum, maximum and range of boat roll angle 

(boat tipping to left or right) during drive and 

boat 

acceleration 
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Roll Drive Max 

Roll Drive 

Range 

Roll Recov Min 

Roll Recov Max 

Roll Recov 

Range 

recovery phase 

The same features are extracted for the boat yaw 

angle (making a turn to bow or stroke side).  

and gyroscope 

 

Table 8. Descriptions of oar-specific features. These features are individual for each rower. The column 

“Sensors” mentions one possible set of sensors that can deliver the necessary raw data to 

calculate the appropriate feature. 

Names of 

features 
Description Sensors 

t Drive 

t Recovery 

t Stroke 

Drive:Total 

Duration (in seconds) of drive phase, recovery phase 

and total stroke. From that the ratio (in percent) 

between drive and total stroke duration is also 

calculated. 

Angle sensor at 

gate 

Ang Catch 

Ang Finish 

Absolute angle of oar relative to the boat at the 

beginning and end of the drive phase (catch and 

finish position).  

Angle sensor at 

gate 

Ang Stroke 

Length 

Handle Dist 

Swept oar angle during the drive phase. The angle 

value (Ang Stroke Length) is also converted to 

meters (Handle Dist). 

Angle sensor at 

gate 

F Max Gate 

F Mean Gate 

Force (propulsive direction) at gate. 

The same two features are extracted for the force at 

the oar handle. 

Force sensor at 

gate 

RFD Ave 

RFD Peak 

Rate of Force Development (average and peak 

value): Slope of the force curve at the beginning of 

the stroke. 

Angle and force 

sensor at gate 

t Max Force 
Time interval from the beginning of the stroke until 

the maximum oar force is attained. 

Angle and force 

sensor at gate 

Handle Vel Drive 

Ave 

Handle Vel Drive 

Max 

Average and maximal handle velocity during the 

drive phase. 

Angle sensor at 

gate 

Handle Vel Recov 

Ave 
Average handle velocity during the recovery phase. 

Angle sensor at 

gate 
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Ang Catch Slip 

Ang Finish Slip 

Ang Effective Stk 

Both slip values are measures of the rower’s 

inefficiency at the beginning (catch) and the end 

(finish) of the stroke respectively.  

Ang Catch Slip is the catch oar angle (Ang Catch) 

minus the oar angle when the gate force reaches 

threshold value (50N) at the beginning of the drive 

phase. 

Ang Finish Slip is the finish oar angle (Ang Finish) 

minus the oar angle when the gate force reaches 

threshold (10N) approaching the end of the stroke. 

The total stroke length (Ang Stroke Length) minus 

both slip values results in the effective stroke length 

(Ang Effective Stk). 

Angle and force 

sensor at gate 

Ang Max Force 
Oar angle during drive phase at which the maximum 

oar force is applied. 

Angle and force 

sensor at gate 

Ang Recov Decel 

Point 

Oar angle during recovery phase when boat starts to 

decelerate. 

Angle and force 

sensor at gate, 

boat 

acceleration 

Ang Drive Accel 

Point 

Oar angle during drive phase at which the boat 

accelerates the most. 

Angle and force 

sensor at gate, 

boat 

acceleration 

Power Handle 

Ave 

Work Handle 

Average power (propulsive direction) applied by the 

rower to the oar handle during one stroke. The 

stroke duration and work is calculated with this 

value. 

Angle and force 

sensor at gate 

Power Drive Ave 
Average power (propulsive direction) applied by the 

rower to the oar handle during drive phase.  

Angle and force 

sensor at gate 

Power Handle Tot 

Average power (propulsive and transversal 

direction) applied by the rower to the oar handle 

during one stroke.  

Angle and force 

sensor at gate 
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Abstract 

In cycling, the pedalling technique is determined mostly by variations in the 

torque applied to the pedals during crank rotation. We developed and validated a 

method to compute these variations from the pedalling motion using an 

ergometer. The torque at the pedal is the sum of the torques needed to overcome 

all resistive forces and the torque required for any changes of angular momentum 

of the ergometer flywheel. This last torque is proportional to the angular 

acceleration of the crank. For an ergometer with almost constant brake torque, we 

may assume that variations in the pedal force can be extracted from the pedal 

motion alone. The key problem is to reliably estimate the angular pedal 

acceleration from noisy 3D motion capture (MoCap) or 2D video data. We 

projected the positional data onto a least squares fitting circle, then filtered the 

resulting angular time sequence by local polynomial regression. Finally, we 

solved the torque equilibrium equation for the pedal torque. For validation of the 

method, we used direct pedal torque measurement. In our experiments, pedal 

brake forces ranged between 100 and 250	N, and cadences of 60, 80, and 100	rpm were used. The pedal torque results from MoCap were better than from 

video. The results from video were close to MoCap results when a correction of 

the marker position was applied. 

KEYWORDS: CRANK ACCELERATION, PEDALLING MOTION, NET TORQUE 

VARIATION, FORCE VARIATION 

Introduction 

Cycling is the result of the interaction between the cyclist, the bicycle, and the environmental 

constraints. The right selection of the variables involved in adjusting a bicycle (e.g., handle bar 

position, seat height, crank length, etc.), the correct body position on the bicycle, and a good 

pedalling technique are necessary to prevent cycling injuries and to optimize the force 

distribution during the pedal stroke. 

Applying correctly oriented forces to the pedal (i.e., pedalling technique) is a major component 

of skilled performance on the bicycle. Although there is no agreement on the characteristics of 

the optimal pedalling technique, any desired pedalling technique can be learned and trained by 

indoor ergometer cycling. A training session in the lab is based on the analysis and feedback of 

the distribution of the applied pedal forces during each revolution of the crank. In many cases, 

the torque variation is enough for the training of pedalling techniques and the correction of 

force asymmetry between the legs. See some examples in Böhm, Siebert, and Walsh (2008) 

and Faria (2009). 



International Journal of Computer Science in Sport – Volume 14/2015/Edition 1              www.iacss.org 

   

 

35 

The determination of pedal forces is fundamental to analyse cycling performance from a 

biomechanical point of view. Sensors implemented in the pedal have been validated in the 

literature for measuring force in one dimension up to three dimensions based on strain gauges 

or piezoelectric elements. For a list of sensors see Mornieux, Zameziati, Mutter, Bonnefoy, and 

Belli (2006) and Stapelfeldt, Mornieux, Oberheim, Belli, and Gollhofer (2007). A direct 

measure of the torque (resp., tangential force applied to the pedal that rotates the crank) 

requires expensive sensors, but indirect ways of calculating the torque variations are possible 

and presented in this contribution. 

The study of pedal forces in cycling is of interest for several applications. For example, some 

related topics are: pedalling biomechanics (Christensen et al., 2000; Hug, Turpin, Guével, & 

Dorel, 2010; Kautz & Hull, 1993), limb coordination (Bini, Diefenthaeler, & Mota, 2010; 

Jirsa, Fink, Foo, & Kelso, 2000), human motion modeling (Franz Höchtl, Harald Böhm, & 

Veit Senner, 2010; Hull, Kautz, & Beard, 1991), detection and correction of asymmetry 

(Carpes, Rossato, Faria, & Bolli Mota, 2007; Sanderson, 1990; Smak, Neptune, & Hull, 1999), 

evaluation of body performance given a pedalling technique (Cannon, Kolkhorst, & Cipriani, 

2007; Ettema & Loraas, 2009), cadence and workload effects on pedalling technique (Black, 

1994; Rossato, Bini, Carpes, Diefenthaeler, & Moro, 2008; Stapelfeldt, Mornieux, & 

Gollhofer, 2006) and the influence of pedalling technique on muscular efficiency (Theurel, 

Crepin, Foissac, & Temprado, 2011).  

In order to calculate the angular acceleration from the pedalling motion, the angular position of 

a point representing the angular position of the crank is differentiated twice. This is not a trivial 

task, because the differentiation process is noise amplifying by its very nature, (Ovaska & 

Valiviita, 1998). For this reason, a bandwidth differentiator with special characteristics is 

required for this calculation. We tested the Savitsky-Golay filter (Savitzky & Golay, 1964) 

from which we obtained the filtered components required for the calculation of the second 

derivative of the angular position of the crank. In addition, we observed the differences in our 

results when a correction of the marker position was applied for MoCap and video data. The 

physical relation between the angular acceleration of the crank and the net torque applied to the 

pedals is derived, allowing us to compute the net torque from our motion data. The comparison 

of these results with directly measured crank torque (using an SRM Torque Box
1
) provides the 

validation of our method. 

Methods 

The variation in the angular acceleration is proportional to the variation in the applied torque 

when the pedal brake force is constant, which can be achieved using ergometers. We propose 

to derive the variation in the net torque from measurements of pedal motion that can be made 

in the laboratory using motion-capturing or plain commercial cameras. The reconstruction of 

the position and the orientation of the pedal was done in two ways: 1) recording video of two 

LEDs, and 2) by motion capture using two active infrared markers. See the experimental setup 

in Figure 1.  

 

  

                                                 
1
 http://www.srm.de/products/torque-analysis-system/ 
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Figure 1 Pedal motion was recorded using video (through two LEDs) and motion capture (through two active 

infrared markers) in order to reconstruct the position and the orientation of the pedal. For 

motion capture one marker was placed on the pivot point of the pedal rotation and the other 

marker was placed to the right side of the first marker. For video the LEDs were placed on 

both sides of the pedal such that the midpoint between LEDs was aligned with the pivot point. 

Calculation of the second derivative from positional data 

We assumed that the angular position of the pivot point of rotation of the pedal and the crank 

angle H with respect to the center of rotation of the crank are the same. If *I*�+, �*�++	denote 

the marker coordinates of a point representing the angular position of the crank, with the origin 

of the coordinate system placed at the center of the crank rotation, then crank angle is given by H*�+ = tan8�*�*�+/I*�++. The second derivative of H (i.e., angular acceleration) is calculated 

using the chain rule for derivatives 

HO = ��
��� tan8� �I = *�OI	 − 	�	IO +*I� P	��+*I� P	��+� − *�QI − IQ�+*2IIQ P 2��Q +*I� P	��+� . ( 1 ) 

In our application, the Savitsky-Golay filter is applied separately to the I- and �-coordinates of 

the pedal motion to obtain smoothed data and its first and second derivatives. This filter is 

briefly reviewed in the next section. 

Savitzky-Golay smoothing filter 

The recordings of the pedal position with motion capture data (MoCap) and video data contain 

noise. This noise, viewed in the frequency domain, is amplified in the calculation of the second 

derivative by a factor of 4π�$� with $ being the frequency. In order to increase the signal-to-

noise ratio without greatly distorting the signal, we used the Savitzky-Golay filter (Savitzky 

& Golay, 1964), also known as polynomial smoothing (Hamming, 1989) or as least-squares 

smoothing filters (Schafer, 2011). 

The Savitzky-Golay filter is a method for data smoothing based on an approximation by a local 

least-squares polynomial. This filter reduces the noise while maintaining the shape and height 

of the waveform peaks (e.g., their relative widths and heights), (Press, Teukolsky, Vetterling, 

& Flannery, 2007). This filter is a generalization of the FIR averaging filter. It can preserve the 

high frequency content of the desired signal, at the expense of not removing as much noise as 

the averager, (Orfanidis, 2010). 
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Figure 2 Example of polynomial smoothing. The smoothed output value (black square) is obtained by 

evaluating a polynomial of order N = 3 (red line) fitted on a group of 2M P 1 samples (on the 

green line), here with half-length M = 4, at n = 0. 

The basic idea of this filter is to fit a polynomial to a set of consecutive input samples and then 

evaluate the resulting polynomial at the central point. Figure 2 shows an example of 

polynomial smoothing for the central point ! = 0. The input ITUV, with U	 ∈ 	W, is a sequence 

of discrete points (solid blue dots). A window (i.e., points on the green line) with a window 

size of 2: P 1 data points, with : X 1, is used to calculate a least-squares polynomial fit 

(here 2: P 1 = 9). A polynomial �TUV of degree , = 3 (red dashed line) is fitted to the data ITUV, with U = ! −:,… , ! P : and the smoothed output value (black square) is obtained by 

evaluating �TUV for U = !. We obtain the coefficients �(	of the polynomial � of order ,,  

�TUV = [�(U(	2

(\�
, ( 2 ) 

that minimizes the mean-squared approximation error ]^ for the group of input samples 

centered on !,  

]^ = [ *�T! P "V − IT! P "V+�_

`\8_
. ( 3 ) 

It can be shown that this is equivalent to discrete convolution with a fixed impulse response, 

(Schafer, 2011). Savitzky and Golay (1964) published tables of filter coefficients for combined 

smoothing and differentiation. These tables are given for two parameters: the half-length of the 

fitting window, :, and the order of the fitted polynomial, ,. The dependence of the cutoff 

frequency $a on , and : is given by 

$a = , P 13.2: − 4.6	 ( 4 ) 

for :	 X 	25 and	,	 b 	:. Sometimes the same cutoff frequency can be achieved using 

different combinations of , and :. 
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Figure 3 An off-center marker on the pedal gives a trajectory that is not a circle when the pedal orientation is not 

constant. 

Correction of the marker position 

The crank rotation during pedaling motion ideally takes place in a two dimensional plane. We 

expect that any marker on the crank, except the pivot of crank rotation, describes a perfect 

(sampled) circular trajectory. The angular position of the crank can be obtained from the 

trajectory of a point representing the angular position of the crank. In the same way, the 

angular position can be calculated from the trajectory described by a marker on the pedal, 

provided that the marker is on the pivot of pedal rotation. Otherwise the marker trajectory turns 

into an approximate ellipse due to simultaneous rotations of pedal and crank. See Figure 3. 

However, although the marker position is on the pivot of pedal rotation, the crank and pedal 

rotations in the real world describe an elliptical trajectory because the bearings at the pedals 

and in the bottom bracket may have small play and the crank sets are slightly elastic. 

The eccentricity of an ellipse fitted to the marker trajectory characterizes the amount by which 

the marker trajectory deviates from a circle. The eccentricity � is defined as � = c1 − #�/�� 

with � and # denoting the length of the major and minor axes, respectively.  

The correction *ΔI, Δ�+ of the 2D position of a marker on the pedal can be calculated if the 

pedal orientation e^ with respect to the horizontal axis is known. The correction of the marker 

position is given by 

f	I^′�̂ ′h = i	I^�̂ j P fcose^ −sine^sine^ cose^ h f	ΔIΔ�h, ( 5 ) 

where I^ and �̂  are the old coordinates, I^′ and �̂ ′ are the new coordinates after correction. 

The correction vector *ΔI, Δ�+ is defined such that: either 1) a prescribed target eccentricity of 

an ellipse fitted to the corrected positional data is achieved (in following called „prescribed 

eccentricity“) or 2) the RMS distance between the fitted ellipse and the corrected data is 

minimal among all possible corrections and their respective fitted ellipses (in following called 

„minimum error eccentricity M.E.“).  

Related concepts: force and torque 

The total force ototal	applied to the pedal is the sum of all vector forces, see Figure 4, produced 

by the contractions and extensions of the leg and hip muscles which can be decomposed into 

tangential and radial forces, otan and orad, respectively (Equation 6). The force otan is 

tangential to the crank rotation and the radial force orad is parallel to the crank. Only otan 

contributes to the crank rotation, 

ototal = otan P orad. ( 6 ) 
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Figure 4 The total force applied to the pedal, orsrtu,	is the sum of two perpendicular forces: the tangential ortv 

and the radial force owtx. 

 

Figure 5 Right leg torque profiles using different pedalling styles at 90	rpm and 200	W. Figure adapted from 

Korff, Romer, Mayhew, and Martin (2007). Four pedalling styles are shown: individually 

preferred pedalling technique (preferred), pedalling emphasizing the transition phases through 

top dead center at 0° and bottom dead center of the crank cycle at 180°	(circling), emphasizing 

an active pull during the upstroke of the crank cycle (pulling), and emphasizing the pushing 

action during the downstroke of the crank cycle (pushing). 

The torque describes the effect of a force on the rotational motion of the pedal pivot point 

about the axis on the bearing. Mathematically, the torque is the cross product of the lever-arm 

length vector, {a, and the force otan acting on the end of the lever-arm. Here, the lever-arm 

length is equal to the crank length |a. Thus, the magnitude of the torque is given by 

‖}‖ = ‖{a ~ ortv‖ = |a�rtv. ( 7 ) 

Figure 5 shows the torque patterns of one pedal for different pedalling styles, where a positive 

peak around 90° (downstroke) and a negative peak around 270° (upstroke) can be seen for all 

styles. The measurements were made in Korff, Romer, Mayhew, and Martin (2007) using a 

custom made force pedal with two triaxial piezoelectric force sensors, where 0° is highest 

position of the crank rotation.  

The net torque �v�r is the sum of the individual torques �u��r and �w���r applied to the left and 

right pedals: 

�v�r = �u��r P �w���r. ( 8 ) 

Figure 6 shows an example of the net torque curve with some typical features to describe it. 
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Figure 6 Mean of net torque �v�r for one pedal revolution with 60	rpm and 100	N ergometer brake force (i.e., 17.6	Nm). 

 

Figure 7 Basic model for the deduction of the torque equation. 

For example, different peak values indicate an asymmetry due to emphasizing an unequal 

pushing action during the downstroke or due to a problem with pulling during the upstroke. 

During the pedalling motion, two main torques act on the crank at the same time: the applied 

net torque �net and the brake torque �brake. �net is the sum of the individual pedal torques 

(Equation 8) and the brake pedal torque is the sum of all torques produced by the different 

forces against the cycling motion, e.g., the rolling and aerial resistive forces of a bicycle on the 

road, or the forces produced by an eddy-current brake in an ergometer in the lab.  

Figure 7 shows a simple model of the torques acting during pedalling. In this model, the 

inertial mass of the cyclist and the bicycle is (partly) realised by the flywheel in the rear part of 

an ergometer. Assuming that the rear and frontal sprockets are connected with a chain which is 

not elastic and does not slip, and that the frictional forces between the chain and the sprockets 

are small, the physical relation between the torques �net and �brake, and the crank angular 

acceleration �crank, is given by Equation 9. In this equation, ��u�����u	and �awtv�	represent the 

moments of inertia of the flywheel and the crank, 9��/9w�	is the ratio of the radii of the chain 

wheel and the rear sprocket, i.e., the gear ratio, and |a is the length of the crank, 

�v�r =	��awtv� P f9��9w�h
� ��u�����u� ⋅ 	�awtv� 	P 	��wt��	.	 ( 9 ) 

 

  



International Journal of Computer Science in Sport – Volume 14/2015/Edition 1              www.iacss.org 

   

 

41 

 

Figure 8 Equipment used for the experiment and their relation with the equation to validate. The angular crank 

acceleration was calculated from the data captured by the LUKOtronic System and the Sony 

camera. 

Thus, the net torque is an (affine) linear function of the crank angular acceleration, 

�v�r = 	3 ⋅ 	αawtv� 	P 	��wt��	, ( 10 ) 

with   

3 = ��awtv� P f9��9w�h
� ��u�����u�. ( 11 ) 

Torque validation 

Our goal was to determine to what extent net torques computed using Equation 9, based on 

numerically approximated crank acceleration from pedal motion measurements, are close to 

the directly measured (assumed to be true) net torques. For this purpose, we recorded the data 

simultaneously obtained from the motion capture system (i.e., MoCap data), the video camera 

recorder (i.e., video data), the bicycle ergometer, and the torque sensor, see Figure 8. 

For the validation, we assumed that the angular crank acceleration �awtv� is equal to the second 

derivative of angular position of the pivot of rotation of the pedal H. To calculate the right-

hand side of Equation 9, we used a crank length |a = 176	mm, and moments of inertia 

��u�����u = 0.6576	kg ⋅ m� and �awtv� = 0.02kg ⋅ m�. The gear ratio 9�� 9w�⁄  was calculated 

directly from the number of teeth on the gears in the gear train with 9�� = 50 and 9w� = 13. 

The inertia of the crank is composed of the inertia of the pedals, of the crank arm, of the 

chainrings, and of the SRM Power Meter. Each component can be approximated by a primitive 

geometric form rotating around the center of the crank axis (pedal - point mass, crank arm - 

solid cylinder, chainrings - rings, SRM - solid disc). We measured the weights and the sizes of 

each component and computed the individual moments of inertia. Their sum yields the total 

inertia of the crank �awtv� = 0.02	kg ⋅ m�, see more details in Dahmen and Saupe (2011). The 

moment of inertia of the flywheel was found empirically under the assumption that the friction 

force is an affine function of the velocity, which was verified through a fitting procedure. For 

this, we pedaled to accelerate the flywheel until it had a high speed. Then, we stopped 

pedalling and we counted the time until the flywheel did not move anymore.  

The pipeline for calculating angular acceleration from positional data of the pedal is shown in 

Figure 9. The input is either the 3D MoCap data projected onto a two-dimensional plane using 

Principal Component Analysis (PCA), described in detail by Smith (2002), or the 2D 
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Figure 9 Pipeline for calculating angular crank acceleration from positional data. Parameters are given in 

orange. We assumed that the angular acceleration of the crank �awtv� is equal to HO^. 

positional video data. The correction of the marker position, explained in page 38, is a part of 

the preprocessing step (red module in Figure 9). We compared the results without this 

correction and with it based on two different methods, i.e., minimising the RMS distance 

between a fitted ellipse and the corrected data among all possible corrections and fitted 

ellipses, and with prescribed eccentricities. We tested the approach SG+F shown in Figure 9 

consisted of the filtering and the calculation the zero, first and second derivatives of I and � 

coordinate sequences using the corresponding Savitzky-Golay filters for each case, and with 

this data then calculating the second derivative of H using Equation 1. 

Finally, the effects of correction of the marker position and filtering with different parameters 

were compared using the signal to noise ratio (SNR), where the true signal was assumed to be 

the SRM Torque Box data, and the noise was assumed to be the difference between the SRM 

Torque Box data and the right side of Equation 9. 

Experimental setup 

Data acquisition and processing 

We recorded the pedalling motion using simultaneously a commercial camera (Sony Optical 

Steadyshot DSC–H55) and a motion capture system (LUKOtronic-Steinbichler Optotechnik 

GmbH, Neubeuern, Germany). The camera recorded videos with a sampling frequency of 29.97	Hz and a resolution of 1280 ~ 720 pixels. The video camera was placed at a distance of 270	cm from the bicycle.  

The motion capture system consisted of a beam with three integrated infrared cameras. As a 

result of the fixed positions of the cameras within the beam, the system was pre-calibrated and 

did not require any separate calibration procedure. The motion capture system provided three-

dimensional positional data of the infrared active markers. The sampling rate was 240	Hz. The 

positional accuracy provided by LUKOtronic for the distance used in our experiments was 1– 3	mm.	Experimentally, the positional accuracy was 1.5	mm with a precision of 0.9	mm 

calculated from two markers fixed on the pedal during 180 crank rotations. 
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Figure 10 Example of LED trajectories as red streaks on yellow pedal in one video frame. 

Using the motion capture system we recorded the position of two markers as shown in Figure 

1. One marker was placed on the pivot point of the pedal rotation (i.e., a point representing the 

angular position of the crank during the motion of the pedal) and the other marker was placed 

on the right side next to the first marker. During the recording, we used three reference 

markers attached to the bicycle frame in order to define the coordinate system, which was re-

calculated for each measurement. This has the advantage that oscillations and deflections of 

the bicycle frame due to the pedalling motion and bike sway are taken into account during the 

recording of the pedal motion. The pedal orientation for the motion data was calculated from 

the positional data of both markers with respect to the horizontal axis. We projected the three-

dimensional coordinates of the marker position to a two-dimensional plane using the Principal 

Component Analysis (PCA). Then, we rotated the coordinate system using the information of 

additional measurements of the pedal in the lowest position.  

Using the video camera we recorded two red LEDs placed on both sides of the pedal. See 

Figure 1. Each LED in a frame was captured as a streak due to blurring by the rapid movement 

of the pedal during the exposure time of the camera. See Figure 10 for an example. The LEDs 

were placed with enough space between them to avoid a possible streak overlapping. The 

coordinates of the heads of each streak were used in each frame as positional data of LEDs. 

The pivot point of the pedal was calculated as the average of both LED positions and the pedal 

orientation was calculated from the angle of the line between both LEDs with respect to the 

horizontal axis of the frame. For the detection of the streaks, each frame was converted from 

RGB format (i.e., red, green, and blue channels) to HSV format (i.e., hue H, saturation S, and 

value V). Then, a threshold on the value V was applied to find the blobs corresponding to the 

LED trajectories. 

To control the pedal brake force, we used the Cyclus2 ergometer (RBM Elektronik-

Automation GmbH, Leipzig, Germany). During the ergometer operation, the flywheel on the 

rear part is supplied with kinetic energy which maintains the angular momentum. The angular 

speed of the flywheel is decelerated by means of an eddy current brake. The eddy current brake 

guarantees a non-slipping transmission of the braking resistance. Operating the Cyclus2 in 

pedal force mode, a constant pedal brake force (�5% error) is imposed. 

Our SRM Torque Box (Schoberer Rad Messtechnik, Welldorf, Germany) gave an 

instantaneous torque signal with a sampling rate of 200	Hz.	This torque corresponds to the net 

torque, as explained in Equation 8. Furthermore, when the crank has completed one pedal 

revolution (i.e., when the crank has crossed the sensor of the SRM Torque Box attached to the 

bicycle frame), this event was reported. SRM claims an accuracy of 2%	for power and torque 

measurements. 
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Figure 11 Experimental protocol. Eight test of three minutes each are performed with breaks of 2 resp. 5 

minutes in between. 

The laboratory conditions were optimized for recording the pedal motion: we darkened the 

room (i.e., we covered the window to avoid sunlight), used low infrared emitting light bulbs, 

and a special carpet to avoid infrared reflections from the ground. 

Before the validation of the physical relation between the angular acceleration of the crank and 

the tangential force applied to the pedals, using Equation 9, we preprocessed the data obtained 

from all devices (see Figure 8). First, we applied linear interpolation when there was loss of 

data or outliers. Then, we resampled all data to 200	Hz. The data from all devices were 

registered using the SRM Torque Box data as reference. We used the information of the 

angular position of the crank when it crossed the sensor of SRM Torque Box attached to the 

bicycle frame in order to align the MoCap data and video with the SRM Torque Box data. The 

SRM Torque Box data and the Cyclus2 data were aligned using the time stamps provided by 

our system. 

The correction of marker positions was performed using a quasi-Newton strategy minimizing 

either the difference between the prescribed eccentricity and the eccentricity of an ellipse fitted 

on the corrected positional data or the RMS distance between a fitted ellipse and the corrected 

data among all possible corrections and fitted ellipses. The ellipse fitting is performed by 

minimizing the squared sum of orthogonal distances from the points to the fitted ellipse 

described in Gander, Golub, and Strebel (1994).   

Test design 

Ten cyclists participated in this study (male, 31.45	 � 	9.9 years). Each participant was asked 

to ride at a fixed cadence using his preferred technique and cycling shoes with cleats locked 

onto the pedal interface. A continuous feedback of the cadence was given on a projected video 

image, positioned in front of the cyclist. Before the measurements cyclists performed a warm 

up session of 5 minutes at a power output of 100 –	140	W.  

Each subject rode the bike simulator performing eight tests of three minutes each. In each test 

the cadence was held constant and the brake force increased every minute. For the first three 

tests the cadences were 60	rpm, 80	rpm, and 100	rpm, and for each test the brake forces were 100	N, 120	N, and 150	N (i.e., brake torques of 17.6	Nm, 21.1	Nm and 26.4	Nm). For the 

fourth test, the cadence was again 60	rpm but with forces of 150	N, 200	N, and 250	N (i.e., 

brake torques of 26.4	Nm, 35.2	Nm and 44.0	Nm). This last test was done to check the effects 

of large forces on the SNR results which can vary due to crank deformation and brake force 
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fluctuation. All four tests were repeated once after a pause of 5 minutes. See Figure 11 for an 

illustration.  

Results and discussion 

Our goal was to determine to what extent net torques computed using Equation 9, based on 

numerically approximated crank acceleration from pedal motion measurements, are close to 

the directly measured (assumed to be true) net torques. For an example of the resulting torques, 

see Figure 12. We considered the following parameters of the Savitzky-Golay filter: 

polynomial degrees (2, 3) and window sizes (10! P 1, ! = 3,… ,22). We applied the Savitzky-

Golay filter to the resampled data at 200	Hz. We also considered the results with and without 

the correction of marker positions, i.e., minimising the error between the fitted ellipse and 

corrected positional data (i.e., the minimum error eccentricity method) and with prescribed 

eccentricities (� = 0.05�, � = 0,… , 6). See page 38 for a description of the methods for 

correction of marker position. Thus, we applied altogether for each test 360 different 

combinations of parameters and compared their SNR results. 

Table 1 shows the average of the best SNR results for MoCap and video of all tests with and 

without marker correction among all parameter combinations. The SNR results with a marker 

correction and eccentricity 0 (i.e., a perfect circle) were the lowest for both MoCap and video 

data (see Table 1, column 4). This confirms that the crank and the bearings are elastic to a 

small degree and allow for some play.  

Table 2 shows the average results for each test without marker correction and with marker 

correction based on M.E. for each combination of force and cadence. The marker correction 

based on M.E. improved the SNR results of the video data. These results were expected 

because in our video data recordings the position of the midpoint between LEDs cannot be 

precisely at the pivot point. The correction of the marker position based on M.E. did not 

improve the SNR results of the MoCap data. This indicates that the active infrared marker of 

the motion capture device was well placed on the pedal pivot point. 

 

Figure 12 Result after alignment of SRM Torque Box data and MoCap data for the validation of the torque 

equation for the test with 60	rpm and 120	N (21.1	Nm) using the SG+F approach with 

window size 121, polynomial degree 2, and marker correction based on M.E. 
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Table 1 Average SNR for MoCap and video. Columns correspond to the type of input data, the SNR results 

without marker correction, the SNR results with M.E., and the results with different prescribed 

eccentricities for marker correction, respectively. 

type SNR SNR 

� =M.E. 

SNR 

� = 0  

SNR 

� = 0.15  

SNR 

� = 0.2  

SNR 

� = 0.25  

SNR 

� = 0.3  

MoCap 14.82±1.86 14.67±1.75 9.74±1.97 13.28±2.04 14.74±1.94 15.12±1.96 14.80±2.11 

video 10.81±2.11 12.30±2.47 9.61±2.18 11.60±1.84 13.42±1.75 14.02±1.78 14.18±2.11 

Table 2 Average SNR of each test. The table shows the results for each combination of force and cadence. 

Columns correspond to brake force o�wt��, cadence, the SNR results without marker correction 

and the results with marker correction based on M.E., respectively. 

test MoCap video 

o�wt�� N 

cadence rpm  

SNR 

� = 0  

SNR 

� =M.E. 

SNR 

� = 0  

SNR 

� =M.E. 

100 60 15.22±1.24 15.27±1.27 11.22±1.90 13.13±2.13 

100 80 13.55±1.29 13.34±0.89 10.24±1.41 11.03±1.65 

100 100 12.39±0.98 12.30±1.00 9.74±1.75 10.90±2.04 

120 60 16.28±1.46 16.22±1.40 12.18±2.57 14.01±2.89 

120 80 14.71±1.18 14.49±0.80 12.03±2.43 12.27±2.22 

120 100 13.88±1.44 13.95±1.37 10.31±1.89 12.08±2.68 

150 60 17.16±1.31 16.88±1.21 10.94±1.99 13.63±2.86 

150 80 15.20±1.24 14.85±1.30 11.34±2.10 12.42±1.86 

150 100 14.96±1.70 14.69±1.41 9.29±1.54 11.20±2.33 

200 60 17.10±2.06 17.19±1.78 11.85±2.33 15.18±3.51 

250 60 17.55±2.77 17.30±2.26 10.76±1.63 14.79±2.67 

 

Table 3 Parameters for the best average SNR of the SG+F approach with marker correction based in two 

different methods. Columns correspond to type of data, brake force o�wt��, cadence, 

polynomial degree and window size of the Savitsky-Golay filter employed for the method with 

prescribed eccentricities �, polynomial degree and window size of the Savitsky-Golay filter 

employed for the M.E. method, respectively. 

 prescribed eccentricity M.E. 

type 
o�wt�� N 

cadence 

  rpm  

polynomial 

degree 

window 

size 
eccentricity 

polynomial 

degree 

window 

size 

MoCap 100–150 60–100 2 121 0.25 2 91 

MoCap 200 60 2 121 0.3 2 81 

MoCap 250 60 3 191 0.2 3 191 

video 100–150 60–100 2 121 0.25 2 81 

video 200 60 3 171 0.25 3 201 

video 250 60 3 181 0.2 3 201 
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The SNR results using the marker correction based on M.E. were lower than those obtained 

when fitting to ellipse with prescribed eccentricities. For example, the marker correction based 

on prescribed eccentricity � = 0.25 improved the SNR results for video (P3.2	dB) and slightly 

for MoCap (P0.3	dB), see Table 1. Figure 13 shows the effects on SNR results with different 

combinations of parameters of Savitsky-Golay filters and prescribed eccentricities for the tests 

with forces 100	N –	150	N. The best results for both MoCap and video data were obtained 

with prescribed eccentricity � = 0.25, window size 121, and polynomial degree 2. For forces 

larger than 150	N another set of parameters provided the best results. These parameters are 

given in Table 3.  

The deformation of trajectory of the point representing the angular position of the crank for the 

bicycle is difficult to obtain but possible, e.g., with torsional strain gauges at the crank. 

However, the strain gauges are the main component of several commercial torque meters that 

would allow direct toque measurements. In any case, the marker correction based on M.E. can 

improve the SNR results for the proposed video-based indirect torque measurements. 

The differences between the torque based on the angular acceleration (obtained from the 

MoCap and video data) and the measured torque with SRM Torque Box might have arisen 

from the eddy current brake of the bicycle simulator. This brake is less than ideal, so that 

fluctuations in the pedal brake force could occur during our test. Furthermore, we assumed that 

the chain, the crank and the pedal are completely inelastic and non-slipping, and that the 

frictional forces between the chain and the gears is negligible compared with the pedal brake 

force produced by the eddy current brake of the Cyclus2 ergometer.  

In addition, for the calculation of the crank acceleration it was assumed that the motion of the 

marker on the pedal pivot point lies in a two dimensional plane. This plane can be easily 

calculated from MoCap data projecting the 3D data onto 2D by using Principal Component 

Analysis (PCA) but with video data an additional reference to align the camera plane with the  

pedal motion plane is necessary to have better results. The positional data extracted from each 

video frame corresponded to the 2D projection of the crank motion plane to the camera plane. 

If these planes are not aligned, the projection of the circular trajectory of the crank motion to 

the camera plane results in an oval trajectory. Such misalignment of both planes may happen 

during the pedalling motion due to bike sway. This undesirable distortion could be minimized 

in each frame by a perspective correction based on some reference marker points on the bike 

frame. 

 

Figure 13 Mean SNR result of MoCap data (left) and video data (right) with correction of the marker position 

and different window sizes for the SG filter with degree 2 polynomials in the SG+F approach. 
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Conclusions 

The physical relation between the angular acceleration of the crank and the tangential force 

applied to the pedals was validated with measured data of the net torque, brake force, video 

and MoCap data. These variables are related by an affine linear equation. The variation of the 

angular acceleration is proportional to the force variation when the pedal brake force is 

constant. 

The proposed methods provided a valid calculation of the variation of the pedal acceleration 

(i.e., the torque variation). Our results show that optical motion tracking of the crank rotation 

can be used to estimate the tangential force variation applied to the pedal. The results obtained 

using a commercial video camera were close to the results achieved with a motion capture 

system, when a correction of the marker position was applied. Thus, an expensive optical 

device is not necessary to estimate the torque variation. We proposed values of the parameters 

for the relaxation and the Savitsky-Golay filter that can be used for pedal brake forces ranging 

between 100 and 250	N with cadences between 60 and 100	rpm for MoCap and video data. 

The training of a particular pedalling technique can be performed by providing athletes real-

time performance feedback based on our proposed calculation of pedal torque variation. The 

only prerequisite is the availability of an ergometer delivering an adjustable constant pedal 

brake force, two LEDs on the pedal and a video camera. 

For future research we intend to further improve our results with high speed camcorders (e.g., 59.94	fps) with a high image resolution. Furthermore, we plan to compensate the distortion 

due to bike sway performing a perspective correction with parameters calculated from the 

distortion of a reference attached to the bike frame. 
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Abstract 

The 3D trajectory of the ball is one of the most important performance indicators 

in ball games. However, it often cannot be measured because of the requirements: 

synchronized cameras and control points within the playing field. Thus, this paper 

proposes a method that reconstructs the 3D trajectory of a ball with 

unsynchronized cameras. The proposed method consists of ball detection, camera 

calibration, and trajectory reconstruction. At first, ball candidates are detected on 

the basis of their appearance. Balls are then extracted from the candidates on the 

basis of their motion. After the extraction, ball trajectories are reconstructed in 

image spaces. The corresponding points in two views are estimated on the basis 

of the ball trajectory in image spaces and the temporal offset between cameras, 

which is supposed to be recorded with a few erroneous frames. The matrix 

including the geometrical relationship between cameras, namely the fundamental 

matrix, is then computed from the corresponding points. The estimated one is 

inaccurate due to the error of the temporal offset. The key feature of this method 

is to optimize the temporal offset and fundamental matrix simultaneously. After 

the optimization, the geometrical relationship between cameras is computed from 

the matrix. Balls are extracted again by using the temporal offsets and the 

geometrical relationship between cameras. A ball trajectory is finally 

reconstructed as connected trajectories that are separated at collisions. It is 

experimentally demonstrated that the proposed method accurately calibrates 

cameras and successfully reconstructs the 3D trajectory of the ball. 

KEYWORDS: UNSYNCHRONIZED CAMERA, CALIBRATION,  TRAJECTORY, 

TABLE TENNIS, BALL 

Introduction 

Ball trajectory is an important performance indicator in ball games. For example, baseball 

pitchers throw a ball in various trajectories to confuse batters and make it difficult to hit the 

ball. These kinds of skills and tactics can be analyzed if we know the ball trajectories. In net 

sports, such as tennis or table tennis, the positions of impacts and bounces are essential to 

analyze the spatial tactics, and those data can be extracted from ball trajectories. The velocity 

of the ball can be computed from a trajectory if it was reconstructed as a temporal function. If 

the 3D trajectory of a ball is easy to reconstruct, and if we can reconstruct it in a lot of 

matches, performance analysis in ball games will be improved and the temporal and spatial 

understandings of the ball games will be advanced. 

However, ball trajectory is, unfortunately, difficult to reconstruct in practical scenarios. The 

common method of 3D measurement requires synchronized cameras. We need cameras that 
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can be synchronized to other cameras and a signal generator and must connect them with 

cables. In addition to that, the control points, i.e. the points whose 3D coordinates are known, 

are required within the playing field to compute the geometrical relationship between cameras 

(hereinafter referred to as “geometrical calibration”). There are many scenarios where those 

conditions are not met in sports competitions and training. Although the 3D trajectory of a ball 

would be helpful, it usually cannot be measured due to the above requirements. 

Antoku, Kashima, Sato, & Watanabe (2013) measured the trajectories of a tennis ball and the 

position of sportspeople in image space with a camera and recorded the stroke style, i.e. 

forehand or backhand, automatically. Kitahara & Uchida (2013) measured the positions of 

bounces and players in the reference frame on the court with two unsynchronized camera. The 

2D positional data of a ball and players were adopted in these cases to make the system easy to 

use. However, these approaches might be inaccurate when the optical axis of a camera is close 

to parallel to the court plane, which is inevitable. The curvedness of the trajectory cannot be 

analyzed as long as 2D data is used. The method for sports analysis should be able to 

reconstruct the 3D trajectory of a ball. 

Takanohashi, Manabe, Yasumuro, Imura, & Chihara (2007) measured 2D ball trajectories by 

using motion blur and reconstructed the 3D shape of ball trajectory by a shape-from-silhouette 

method, i.e. projecting the image segments to the 3D space from multiple viewpoints and 

computing the intersection of them. The 3D trajectory of a ball can be reconstructed even 

though the cameras are unsynchronized. Their method, however, is unstable outside of an ideal 

environment because they made motion blur intentionally by lengthening exposure time and 

the ball merges into the background easily and sometimes becomes invisible. They did not 

propose any methods that solve these problem, so their method might be inappropriate to 

employ. 

Shimizu, Fujiyoshi, Nagasaka, Takahashi, & Iwahori (2009) computed the intersection of the 

epipolar line (see “Projective Geometry”) and the ball trajectory in image spaces as a pseudo 

corresponding point between different viewpoints and computed 3D coordinates of balls from 

them. In their method, the 3D coordinates of a ball can be computed even if the cameras are 

unsynchronized, panned, and tilted after geometrical calibration. The accuracy of their method, 

however, reduces when the ball trajectory and the epipolar line become close to parallel. This 

often happens when we shoot a match of net sports because cameras are usually put 

horizontally on one side of the court to reduce the spatial occlusion between players and a ball. 

Thus, their method is inappropriate to employ to analyze net sports. 

Matsumoto, Sato, & Sakaue (2010) focused on the geometrical relationship of multiple 

unsynchronized affine cameras in the frequency domain and demonstrated that the points in 3D 

space can be reconstructed by reconstructing the point in the frequency domain even if there is 

no corresponding point in images. It is, however, inappropriate to approximate cameras as 

affine when the cameras are placed close to the playing field, which often happens. Kakumu, 

Sakaue, Sato, Ishimaru, & Imanishi (2013) demonstrated that the theory proposed by 

Matsumoto et al. can be applied to the projective camera when the optical axes of the cameras 

are parallel. From the viewpoint of the accuracy, cameras should be aligned so that their 

optical axes are orthogonal. Therefore, these methods are inappropriate for 3D measurements 

in sports. 

Zhou & Tao (2003) estimated temporal offset between cameras (hereinafter referred to as 

“temporal calibration”) using a set of four corresponding points in different viewpoints. 

Pseudo synchronized image pairs were synthesized on the basis of the estimated temporal 
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offset and optimal flow. This method shows an approach to estimate temporal offsets between 

unsynchronized cameras and seems useful for the 3D measurement in sports. However, this 

method approximates objects’ motion as linear, which will lead to the wrong result when the 

object is a traveling ball because it can move fast and curve. In addition to that, they did not 

provide a solution for the geometrical calibration.  

Noguchi & Kato (2006) developed an approach for geometrical and temporal calibration using 

a marker. In their method, the trajectories of the marker are reconstructed at first. 

Corresponding points are then estimated on the basis of the roughly estimated temporal offset 

between cameras. Finally, temporal offset and geometrical relationship between cameras are 

optimized simultaneously on the basis of the error of the fundamental matrix (see “Projective 

Geometry”). If a ball could replace a marker, this method would be useful for the 3D 

measurement of ball trajectory. However, a ball cannot simply replace a marker. In their 

method, a marker needs to move slowly because they linearly interpolate the trajectory of the 

markers between two consecutive frames. This limitation is inappropriate when the target is a 

ball. In addition to that, they did not deal with false detections because a marker can be 

detected robustly. To apply this method to the 3D measurement of ball trajectory, the above 

problems need to be solved. 

In this paper, a method is proposed that reconstructs the 3D trajectory of a ball with 

unsynchronized cameras. In this method, balls are detected on the basis of their appearance and 

motion at first. Cameras are then geometrically and temporally calibrated by using the detected 

balls. The camera calibration is based on Noguchi and Kato’s method but the ball trajectory 

estimation and the error evaluation algorithms are modified for dealing with ball. Balls are 

detected again by using the temporal offset and the geometrical relationship between cameras. 

At the end, the 3D trajectory of a ball is reconstructed. As we can see from the description 

above, the proposed method is a framework that contains the entire process of ball trajectory 

reconstruction with unsynchronized cameras. This is the frst research which realizes camera 

calibration using balls and ball trajectory reconstruction without control points or camera 

synchronization. The 3D trajectory of the ball will be easy to reconstruct because the calibrated 

cameras and control points within playing fields will no longer be required due to the proposed 

method. Although table tennis is focused on in this paper, the proposed method can be applied 

to all sports where a ball travels in the air, such as tennis and volleyball.  

The paper consists of the following sections. “Projective Geometry” briefly describes 

projective geometry. “Methods” describes the proposed method in detail. “Experiment” 

experimentally evaluates the proposed method. Finally, “Conclusion” concludes the paper. 

Projective Geometry 

This section describes the basic theories of projective geometry on which the proposed method 

is based. More detailed information about projective geometry is described by Hartley & 

Zisserman (2003). 

Camera Model 

The camera modeled by perspective projection is called a projective camera. A projective 

camera can accurately approximate actual cameras and has been broadly used for 3D 

measurements. Figure 1(a) shows an imaging model of the projective camera. The relationship 

between the 3D coordinate - and the 2D coordinates in image space B is defined as the 

following equations. 
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 B� = �-�. (1)

 
� =  T¡	|£V 

= ¤�1  I��¥ ��1 ¦§¨©	| − ª�«. (2)

where �1 is the scale factor in the x-coordinate direction, �¥ is the scale factor in the y-

coordinate direction, s is the skew, and  x� and 	y� are the coordinates of the principal point. 

The above five parameters are called intrinsic parameters, which depend on the extrinsic 

environment, namely the position and the pose of the camera. In contrast to intrinsic 

parameters, camera position ª and camera pose § are called extrinsic parameters. If the 

intrinsic parameters and extrinsic parameters of two cameras are known, 3D coordinates of 

corresponding points can be reconstructed by triangulation (Figure 1(b)). 

Epipolar Geometry and Fundamental Matrix 

Let us denote the -  in the two different image spaces as B® and B¯, and the homogeneous 

coordinates of B® and B¯ are B�� and 	B��. Their relationship is defined by the following 

equation. 

 B�¯°±B�® = ². (3) 

The matrix ± contains the intrinsic parameters and relative geometrical relationship of two 

cameras. The matrix is called the “Fundamental Matrix”. The line, which is called the 

“Epipolar Line”, can be projected to the other image by the following equation (Figure 1(c)).  

 ³́ = ±B�®. (4) 

The epipolar line is the set of points related to B®. If the intrinsic parameters are known, the 

geometrical relationship can be extracted from the fundamental matrix without the scale of 

translation. Computing the fundamental matrix, therefore, is sometimes regarded as 

geometrical calibration without scale. The scale of the translation can be computed from the 

line segments whose length in the real world is known. 

 

Figure 1. Projective geometry 

Methods 

Outline 

Figure 2 shows the flow of the method proposed in this paper. The start and the end times of 

rallies are supposed to be known. The trajectory of a rally is reconstructed in the method. First, 

ball candidates are detected in two view images that are separately referred to as image 1 and 
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image 2. The cameras that took images 1 and 2 are referred to as cameras 1 and 2 hereinafter. 

If the two cameras are not calibrated temporally and geometrically, they are calibrated by using 

detected ball candidates. In the calibration, balls are extracted from the candidates on the basis 

of the motion. Ball trajectories are reconstructed after the calibration. In order to enhance the 

detectionrate, balls are extracted again using the geometrical and the temporal relationship 

between camras. The intrinsic camera parameters and the coefficient of lens distortion are 

supposed to be computed by the method proposed by Zhang (2000), which is easy to use 

because it is implemented as calibrateCamera in OpenCV, which is a popular software library 

in computer vision, or Matlab. The temporal offset between cameras is supposed to be roughly 

estimated by step-by-step playback. The coordinates of four corners of a table are supposed to 

be recorded manually and used to estimate the vertical direction in 3D space, calculate the 

actual length of a pixel, detect bounces, and convert the positions of the bounces and impacts 

in the coordination system on the court. 

 

Figure 2. Flowchart of the proposed method 

Ball Candidate Detection 

The segments of moving objects are extracted by frame differentiation. First, we obtain the 

difference image between the images at time t and time t-s and the difference image between 

the images at time t and time t+s, where s denotes the arbitrary interval for difference. The 

logical conjunction of the each pixel in two difference images is then calculated. The value is 

true where the part of a moving segment is at time t. Figure 3 shows the segments of an impact 

scene extracted by frame differentiation, where s was 3 and the camera’s frame rate was 60 

fps. Because a ball travels faster than many other objects in the image, extracted segments can 

be reduced by setting a small difference interval.  

Next, the segments that are similar to the ball were extracted from the moving objects on the 

basis of their color, circularity and size. The circularity C of a segment whose boundary length 

is l and the area is S is defined as follows:  

 µ = 4¶;/��. (5) 

The following thresholds are required in this process. 

� Lower bound of the intensity [0-1.0]: |· 
� Lower bound of the circularity [0-1.0]: |¸ 

� Lower bound of the area [pixel
2]

: |¹ 
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� Upper bound of the are [pixel
2
]: º¹ 

The detected segments are the ball candidates. Unfortunately, no methods can determine the 

true ball only on the basis of the appearance in a single view. Another process is necessary for 

extracting a true ball. The method for extraction is described in the following subsections 

because different approaches are used before and after the camera calibration. 

 

Figure 3. (a)-(d) are input images captured in 60 fps. (e)-(h) are results of frame differentiation with 3ms 

interval. 

Temporal and Geometrical Camera Calibration 

Ball Extraction 

The candidates that move like a ball traveling in the air are extracted from the ball candidates. 

The motion is differentiated by the velocity, the difference from the adjacent velocities, and the 

angle from the adjacent traveling directions. The following thresholds are required in this 

process. 

� Lower bound of the velocity [m/s]: |» 

� Upper bound of the velocity [m/s]: º» 

� Upper bound of the change rate between two consecutive travel distances [%]: º¼ 

� Upper bound of the angle between two consecutive travel directions [rad]: º½ 

Note that |» and º» are converted into the velocity in the image coordination system |¾ and º¾, respectively, on the basis of the actual length of a pixel, which is supposed to be computed 

from the corners of the court. Let us denote the position of a ball candidate in the j-th frame as 5¿ and the velocity vector from 5¿ to 5¿À® as )¿,¿À®. 5¿ and 5¿À® can be the same ball if the 

norm of )¿,¿À® is greater than |¾ and less than º¾. 5¿, 5¿À®, and 5¿À¯ can be the same ball if 

the norm of )¿À®,¿À¯ is greater than |¾ and less than º¾ and the change rate between )¿,¿À® and )¿À®,¿À¯ is less than º¼ and the angle between them is less than º½. If the above conditions are 

met up to 5¿ÀÁ, the consecutive five candidates are extracted as the true ball. 

The true balls, however, will not be extracted perfectly even if this strong constraint is applied. 

A small amount of false detections can be extracted as well. This is the limitation of this 
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method and many others (Huang, Llach, & Zhang, 2008; Ishii, Kitahara, Kameda, Ohta, 2007; 

Yu, Sim, & Wang, 2004; Chen, & Zhang, 2006).  We think it is too difficult to extract only the 

true ball from images. For that reason, the contamination of a small amount of false detections 

is assumed in the following processes. 

Reconstruction of 2D ball trajectory 

The ball trajectory in the image spaces is reconstructed by third-degree spline interpolation 

with the balls obtained so far. The trajectory is reconstructed only in the period of time when 

the position of the ball was recorded consecutively. Spline, or any other polynomial 

expression, cannot accurately represent abrupt change of the motion, such as bounces. This 

will not be a problem for camera calibration because the existence of outliers is initially 

supposed and they are handled appropriately in the following processes. 

Estimation of temporal offset and extrinsic parameters 

The temporal offset between cameras is supposed to be roughly estimated, as mentioned 

before. Let us denote the initial temporal offset between cameras 1 and 2 as �� and the time of 

the j-th frame captured by camera i as �Â(. If τ� is truth,  �Â� equals �Â� − ��. The ball position at  �Â( can be estimated only if a trajectory was reconstructed in the image i around �Â(. This fact 

leads to the temporal offset providing many corresponding points between two views, so the 

fundamental matrix ±² can be computed (Hartley & Zisserman, 2003). The relative 

geometrical relationship between cameras can be extracted from the fundamental matrix. 

However, ±² is inaccurate due to the error of ��. Let us denote the point in a j-th frame 

captured by camera i as 5¿A, the point corresponding to 5¿® as 5¿̄ Ä, the homogeneous coordinates 

of 5 as  5�, the function that calculates the distance between a point and a line as d, and the 

function that calculates the median of a series of N elements as Med(2. The error of the 

fundamental matrix ± is defined as the following equation: 

 E*±+ = Med(2 idÆ5¿®, ±5¿̄ ÄÇ P dÆ5¿̄ Ä, ±°5¿®Çj. (6) 

±5¿̄ Ä is the epipolar line related to 5¿̄ Äin image 1, and ±°5¿® is the epipolar line related to 5¿®. 

E(F) is the median of the series of distances between an epipolar line and its corresponding 

point.  This function returns a smaller value when a better fundamental matrix is input. Note 

that this function can be regarded as the error of a temporal offset because a fundamental 

matrix has a one-to-one relationship with a temporal offset. Figure 4 shows the value change of 

Equation 6 caused by temporal offset. This figure shows a better temporal offset leads to a 

smaller value. The best temporal offset, therefore, can be determined by seeking the temporal 

offset that makes Equation 6 smallest. However, some random fluctuationsoccur. If the 

temporal offset is far away from the truth, the geometrical correctness of corresponding points 

behaves almost randomly. and the error fluctuates strongly. Even if the temporal offset is close 

to the correct value, the fluctuation can occur because of the unstableness of the computation 

of the fundamental matrix. Fundamental matrix is calculated from corresponding points 

estimated using the temporal offset. Outliers are eliminated by RANSAC, and the fundamental 

matrix is computed from eight points that are randomly chosen from the corresponding points. 

This computation can return inaccurate results because the fundamental matrix can be 

degenerated if the corresponding points are not distributed uniformly in 3D space. The 

extraction of corresponding points and the computation of the fundamental matrix, therefore, 

are repeated N� times to make sure some accurate results are obtained. The fundamental matrix 
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is finally determined by selecting the one that returns the smallest reprojection error. In this 

method, a fixed step approach is used for the seeking to avoid converging on a local minimum 

and achieve the constant accuracy within a specific bound.  

The method described in this subsection is an extension of the method proposed by Noguchi & 

Kato (2006). One of the differences is the method for reconstruction of ball trajectory. Because 

a slowly moving marker is used in Noguchi & Kato’s method, they reconstruct the trajectory 

linearly. On the other hand, a spline curve is used in the proposed method to reconstruct the 

curvy trajectory of a table tennis ball. Another difference is the error function. Noguchi & Kato 

employed the mean for computing the representative value of the error distribution. In the 

proposed method, the median is employed instead to deal with outliers because false detections 

can be included in the balls. The median is much more robust than the mean against the 

contamination of outliers. The proposed method will calibrate cameras more robustly than 

Noguchi & Kato’s method when the detected balls contain false detections. 

 

Figure 4. Error of fundamental matrix. The ground truth of temporal offset is -3.0 ms. 

Reconstruction of the 3D Trajectory of a Ball 

Ball Extraction 

Balls are extracted again from the ball candidates by using epipolar lines. The following 

thresholds are required in this process. 

� Upper bound of the distance between a epipolar line and a ball [m]: ºÈ 

� Upper bound of the distance between a trajectory and its supports [m]: ºÉ 

Note that ºÈ is converted into the distance in image space ºÊ before it is used. The pairs of 

candidates that satisfy the following conditions are extracted (Figure 5(a)): (1) one of which is 

captured at the first frame before �Â� P �, (2) the other is captured at the first frame after �Â� P �, 

(3) the distance between them is less than the product of º¾ and the period of time between 

adjacent frames, i.e. maximum distance a ball can travel. The candidates of 5Ë¿®ÀÌ®  are then 

estimated linearly. The circles in Figure 5(a) denote the estimated candidates. The epipolar line 

related to 5Ë¿̄̄  is computed after that. The candidates whose distance from the epipolar line is 

less than ºÊ are extracted. The linearly estimated candidate, its two source candidates, and the 

source candidate of epipolar line are stored and passed through the first filter. Many false 

positives are eliminated through the process. Because the linearly estimated candidates are 

used only for the ball extraction, their errors do not influence the final measurement accuracy 
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at all. 

The 3D positions of the corresponding points, which were obtained previously, are calculated 

by triangulation. Because most false balls are far away from the true balls in 3D space, true 

balls are extracted in 3D space by the algorithm proposed by Yan, Kostin, Christmas, & Kittler 

(2006). In their method, the constant acceleration model fits to the ball candidates in every h� 

frame. An integer greater than three is assigned to h� and the fitting step is assigned to h�/3 

in our case. The fitting needs to be a window function like the above because the constant 

acceleration model will be inaccurate when the approximation time is very long. For the 

fitting, the candidates are 5®, 5¯, and 5Î, the distances between two of which are less than the 

maximum distance a ball can travel. Let us denote the times of the candidates as ��, ��, and ��, 

the difference between �� and �� as Δ���, the distance between �� and �� as Δt��, the 

acceleration as Ï, and the velocity at �� as )®. The parameter of the constant acceleration 

model can be obtained by the following equations. 

 )® = 5¯85®ÐÑÒÓ − ÐrÒÓÏ� . (7) 

 Ï = 2Δt��*5Î − 5¯+ − Δ���*5¯ − 5®+Δ���Δ���*Δ��� P Δ���+  (8) 

The model may be inaccurate when it is reconstructed from successive candidates. This 

problem is solved by iteratively optimizing the trajectory model by using three points, i.e. the 

earliest, the latest, and the middle ones in inliers, which were consistent with the trajectory. 

This iterative optimization stops when the three points do not change or the sum of errors starts 

to increase. As we can see from Figure 6, the distance between the balls and the trajectory 

estimated from the three successive points (Figure 6(a)) is longer than that of the trajectory 

estimated after three iterations of the optimization process (Figure 6(b)). The above fitting is 

repeatedly done to the candidates in h� frames. The set of parameters that returns the 

minimum distance between candidates is selected, and the candidates within ºÉ from the 

trajectory are selected as true balls. The trajectory in image spaces is reconstructed again by 

spline interpolation with the extracted balls. The 3D coordinates of the balls are then computed 

 

Figure 5. Ball extraction from ball candidates with epipolar line. White circles denote ball candidates. The 

number of each candidate is the frame number at which the candidate was detected. Gray 

circles denote estimated ball candidates. (a) Connect two candidates whose distance is less 

than threshold and estimate ball position at t + linearly. (b) Obtain epipolar line from the ball 

imaged in the other camera and detect candidates that are close to the epipolar line. (c) 

Detected candidates are extracted. 
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Figure 6. Connect two trajectories. Numbers denote times when the ball was detected. Distance between two 

trajectories becomes shortest at 58. (a) denotes “connectable”. (b) denotes “mergeable”. (c) 

denotes “unconnectable. 

by triangulation with the corresponding points estimated from the trajectory in image spaces 

and the temporal offset between cameras.  

Collision Estimation 

The velocity of each previously extracted ball is calculated by Equation 7. Collisions are 

estimated on the basis of the fluctuation of the ball velocity. Note that the trajectory was not 

reconstructed accurately around the collisions because of the limitation of polynomial fitting 

including spline. The trajectory is separated at every collision so as to reconstruct ball 

trajectory around the collisions accurately. 

Figure 7 shows the change of vertical velocity and angle of two adjacent velocity of a ball 

when it collided with other objects. This figure indicates collisions flip the sign of the vertical 

velocity or enlarge the angle of two adjacent velocities. The following threshold is required for 

the collision estimation. 

� Upper bound of the angle of two adjacent velocity vector [rad]: ºÔ 

False collisions can be estimated because of the error of the ball velocities, which were 

calculated from the ball positions with measurement error. The false collisions are eliminated 

in the following process.  

 

Figure 7. Change of ball motion when it collided with other objects. Pulses of red line denote collisions. 

Trajectory Reconstruction 

First, the trajectories between every two successive collisions are reconstructed by spline 

interpolation and resampled so that all sampling intervals are consistent. After that, the ball 

positions are smoothed by a Savitzky-Gollay filter (Savitzky & Golay, 1964), and then the 

trajectory is reconstructed again. Although the intervals of balls are not originally consistent 

when they were captured with unsynchronized cameras, the above process enables a common 

smoothing algorithm to be applied to them. 

Next, multiple trajectories are connected. “Connect” means to assign the start and end times of 

each trajectory so that a ball position can be computed uniquely at anytime between the start 

and end times of the rally. Let us denote the former trajectory as Õ and the latter one as ÕÄ. 
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Then their start and end times are �É, �Ê , �ÖÄ , and �ÊÄ , respectively. The start time of the first 

trajectory is the start time of the rally, and the end time of the last trajectory is the end time of 

the rally. That means the problem is to determine �Ê and �ÖÄ  for every two successive 

trajectories. The separated time of two trajectories is thought to be when a collision happens, 

and the relationship between them is shown in Figure 8(a). There, however, can be false 

collisions. Let us consider the two trajectories shown in Figure 8(b). The traveling directions 

between two trajectories are identical, and the ball positions at the separated time are close 

together. Therefore, the two trajectories should be merged. Next, let us consider the two 

trajectories shown in Figure 8(c). The ball positions at the separated time are far apart. The 

figures show three kinds of the relationship between two trajectories: connectable, mergeable, 

and unconnectable. Mergeable is a special case of connectable. The following thresholds are 

required to define the relationship between two trajectories. 

� Upper bound of the distance between balls at a collision [m]: º· 
� Upper bound of the angle between velocity vectors at a collision [rad]: º_ 

� Upper bound of the temporal interval between two trajectories [s]: º7 

Let us denote the time when the distance between two trajectories takes the smallest value as �(, the time of the newest ball used for reconstructing Õ as �×, and the time of the oldest ball 

used for reconstructing ÕÄ as �ØÄ . The relationship between two trajectories is classified as 

unconnectable if the following two conditions are met: (1) the difference between t� and t�Ä  is 

greater than º7, and (2) the distance between Õ and ÕÄ at �( is greater than º·. The relationship 

between two trajectories is classified as connectable, not mergeable, if the angle between two 

trajectories at �( is greater than º_, otherwise it is classified as mergeable. If the two 

trajectories are connectable, �( is assigned to �Ê and �ÖÄ . If the two trajectories are mergable, the 

new trajectory is reconstructed with the balls used for reconstructing Õ and ÕÄ, �Ö is assigned to 

the start time of the new one, and the end time is determined when it is connected to the next 

trajectory. If the two trajectories are unconnectable, the mean of �× and �ØÄ  is assigned to �Ê and �ÖÄ . The flow of the trajectory connection is as follows; 

Step 1  Extract the pairs of trajectories that are connectable and mergeable 

Step 2  Extract the pair whose length of time is longest 

Step 3  Eliminate trajectories that temporally conflict with the extracted ones 

Step 4  Extract the pair whose length of time is longest except for the eliminated ones 

Step 5  Repeat Steps 3-4 until no trajectory is extracted 

Step 6  Merge mergaeble pairs of trajectories 

The ball trajectory of a rally is reconstructed through the above steps as the connected 

trajectories, and this is the final output of the method. 

 

Figure 8. Connect two trajectories. Numbers denote times when the ball was captured. Distance between two 

trajectories becomes smallest at 58. 
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Experiment 

Conditions 

Two matches were played by experienced table tennis players. Different cameras were used 

and different placements were chosen for both matches. The two matches are separately 

referred to as Match 1 and Match 2 hereinafter. Target rallies are 35 and 10 rallies randomly 

chosen from Matches 1 and 2, respectively. Two Grasshopper 3s (Point Grey Research Inc.) 

were used for taking videos of Match 1. A 3 ms delay was set in the shutter timing of the one 

of the two cameras, i.e. the true temporal offset was -3 ms. The resolution and frame rate of the 

cameras were 1920 ~ 1080 and 60fps. Figure 9(a) shows the placement of the cameras, and 

Figure 10(a) and 10(b) show sample images captured by the cameras in Match 1. Two Lumix 

GH3s (Panasonic co.) were used for taking videos of Match 2. The true temporal offset was 

not known because these cameras do not have the functionality to use an external trigger for 

shuttering. The resolution and frame rate of the cameras were 1920 ~ 1080 and 60fps. Figure 

9(b) shows the placement of the cameras, and Figure 10(c) and 10(d) show sample images 

captured by the cameras in Match 2. Balls were detected in a downsampled images whose 

resolution was 960 ~ 540, and ball positions were converted into the original image 

coordinates after detection. If the distance between a detected ball and the manually digitized 

position was greater than 15 pixels, the ball was classified as false detection. The threshold, 15 

pixels, was the maximum radius of the ball in image spaces. Temporal and geometrical camera 

calibration was done with the first 10 rallies by the proposed method and by Noguchi & Kato’s 

method. The step used for seeking temporal offset was 0.0165 ms. To evaluate geometrical 

calibration, the extrinsic parameters of cameras were computed with 18 control points and 

optimization by SBA (Lourakis & Argyros, 2009). The reprojection error was calculated with 

various poses of a checker board because its corners’ positions can be obtained accurately. The 

performance of temporal and geometrical calibration was evaluated from the results of Match 1 

because the true temporal offset between cameras was unknown in Match 2. The results of 

Match 2 were used for evaluating the performance of ball detection in a different environment 

from Match 1. 

 

Figure 9. Placement of cameras. 

 

Figure 10. Sample of input images. The brightness is modified to improve the visibility. 
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The thresholds of the proposed method were set as follows in Match 1: |·: 0.24, |¸: 0.3, |¹: 

13, º¹: 531, º»: 25, |»: 1, º¼: 0.3, º½: 0.524, ºÈ: 0.025, ºÉ: 0.15, ºÔ: 0.209, º·: 0.015, º_: 

0.785, and º7: 1. In Match 2, 0.12 was set to |· because the videos of Match 1 were brighter 

than those of Match 2. Other parameters were not changed from those of Match 1. Optimal |¸, |¹, º¹,	ºÈ, and ºÉ are changed if the resolutions are different. Optimal UÚ is changed if the 

relative camera angle to the table tennis court is different, although the placement of the two 

cameras will be quite similar in other shoots because the angle of two cameras should be close 

to orthogonal and cameras should shoot the match from the sidelines of the table tennis court 

to avoid the spatial occlusion between players and a ball. º», |», º½, ºÔ, º·, º_, and º7 are 

static as long as the target sport is table tennis.  

Results 

Ball Detection and Extraction Before Camera Calibration 

The overall number of frames and the number of frames where a ball exists are shown in Table 

1. The results of the ball candidate detection are shown in Table 2, in which the numbers 

denote the ratio of the number of each kind of results to the number of frames where a ball 

exists. 

Table 1. The number of frames. #frames stands for overall number of frames. #ball-frames stands for the 

number of frames where a ball exists 

 Match 1 Match 2 

 View 1 View 2 View 1 View 2 

#frames 3422 3379 1412 1397 

#ball-frames 3312 3239 1199 1251 

Table 2. Results of the appearance based ball detection. Detected stands for the frames where the true ball was 

included in the ball candidate, and other frames are Missed. 

 Match 1 Match 2 

Indicator View 1 View 2 View 1 View 2 

Detected [%] 96.0 92.2 92.4 91.3 

Missed [%] 4.0 7.8 7.6 8.7 

 

The reasons for misdetection were as follows: spatial occlusion with players: 66.2% (398/601), 

spatial occlusion with the net: 19.8% (119/601), background color similar to the ball: 11.3% 

(68/601), and being static in the image: 2.7% (16/601). A ball becomes static when it travels 

along the optical axis of the camera or reaches the vertex of a parabola and becomes too slow. 

At that time, the ball is judged as background through frame differentiation, and misdetection 

occurs. The results of the ball extraction based on the motion, namely before camera 

calibration, are shown in Table 3. More than 97% of the extracted balls were true. The ratios of 

the detected balls whose 3D coordinates can be computed to the number of frames where a ball 

exists are shown in Table 3 as “Detection rate 3D”. 
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Table 3. Results of motion based ball extraction in image spaces. TP stands for true positive, FP stands for false 

positive, TN stands for true negative, and FN stands for false negative. “Detection rate 3D” 

stands for the ratios of the balls whose 3D coordinates can be computed to the number of 

frames where a ball exists. 

 Match 1 Match 2 

Indicator View 1 View 2 View 1 View 2 

TP [%] 82.7 70.7 62.2 64.9 

FP [%] 0.3 0.1 0.1 1.6 

TN [%] 3.2 4.1 15.1 10.5 

FN [%] 13.8 25.1 22.6 23.1 

Detection rate [%] 85.5 73.8 73.2 72.4 

Detection rate 3D [%] 61.6 66.4 48.7 46.1 

Precision [%] 99.7 99.9 99.8 97.6 

 

Temporal and Geometrical Camera Calibration 

The results of the temporal and geometrical calibration are shown in Table 4.  

Table 4. Results of temporal and geometrical camera calibration 

 Nogucni & Kato Proposed method 

Error of temporal offset [ms] 1.95 0.04 

Error of optical axis [degree] 3.26 1.07 

Error of camera center [m] 0.27 0.03 

Reprojection error [pixel] 2.71 1.31 

 

Ball Extraction After Camera Calibration 

The results of the ball extraction using the temporal offset and geometrical relationship 

between cameras, namely after camera calibration, are shown in Table 5. The ratios of the 

detected balls whose 3D coordinates can be computed to the number of frames where a ball 

exists are shown in Table 5 as “Detection rate 3D”. 
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Table 5. Results of ball extraction using temporal offset and fundamental matrix. TP stands for true positive, FP 

stands for false positive, TN stands for true negative, and FN stands for false negative. 

“Detection rate 3D” stands for the ratios of the balls whose 3D coordinates can be computed to 

the number of frames where a ball exists. 

 Match 1 Match 2 

Indicator View 1 View 2 View 1 View 2 

TP [%] 85.4 85.0 66.7 69.8 

FP [%] 0.8 1.9 3.9 2.1 

TN [%] 3.2 4.1 15.1 10.5 

FN [%] 10.6 9.0 14.3 17.6 

Detection rate [%] 88.2 88.6 78.6 77.9 

Detection rate 3D [%] 79.9 85.2 72.4 73.9 

Precision [%] 99.1 97.8 94.5 97.0 

 

Reconstruction of 3D ball trajectory 

A sample of the successfully reconstructed trajectories is shown in Figure 11(b), and the balls 

used for the reconstruction are shown in Figure 11(a). Additionally, a sample of the 

unsuccessfully reconstructed trajectories is shown in Figure 11(d), and the ball positions used 

for the reconstruction are shown in Figure 11(c). The ratios of the balls in image space, namely 

the detected ball segments, covered by the reconstructed trajectory were 93.9% and 95.6% in 

Match 1 and 80.6% and 81.8% in Match 2. 

 

Figure 11. Reconstruction of trajectories from balls. (a) was used for reconstructing (b). (c) was used for 

reconstructing (d). 

Discussion 

Ball Detection and Extraction Before Camera Calibration 

The biggest reason for misdetection was spatial occlusion with players. This result suggests 

that the cameras should be appropriately placed to avoid this. True balls were able to be 

detected with a high probability. Although false detections are also contained in the detection 

results, true balls could be extracted with high precision in the extraction process. The results 

of the ball extraction (Table 3) indicate that this method is appropriate to extract balls for 

camera calibration because of the high precision. However, the detection rate is not sufficiently 

good for reconstruction of ball trajectory. In the proposed method, therefore, another method is 

used for trajectory reconstruction. 
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Temporal and Geometrical Camera Calibration 

The error of the temporal offset estimated by the proposed method is 2% of that estimated 

purely by Noguchi & Kato’s method. All errors of the geometrical calibration are also much 

smaller. These results demonstrate that the modification proposed in this paper is helpful to 

improve the accuracy of the temporal and geometrical calibration. The reprojection error of 

1.31 pixels equals about 3.2 mm in the real world. This accuracy is sufficiently good for 

performance analysis in sports. 

Ball Extraction After Camera Calibration 

The detection rate is 18-27% higher than that of the previous extraction. Although precisions 

are 0.6 -5.3% smaller than that of the previous extraction, this difference is relatively small. 

This result indicates that the robustness can be improved by taking advantage of the proposed 

method and that the temporal offset and the geometrical relationship between cameras can be 

known. 

The reasons 20% or 27% extractions were mis-extractions need to be considered. One of the 

biggest reasons is the misdetection at the ball detection. About 4-9% of balls were not detected 

as shown in Table 2. Another main reason is that a ball was not imaged in one of the two 

cameras, which occurred in 7.9% and 6.7% of frames in Match 1 and 9.3% and 12.5% of 

frames in Match 2. Unfortunately, these kinds of misdetections cannot be avoided with only 

two cameras. Spatial occlusion with players, nets, or other objects can happen wherever two 

cameras are placed. A color similar to the ball’s can be included in the background because 

this cannot be controlled in many cases. The angle of two optical axes cannot be small in terms 

of the measurement accuracy; 90° is the best. When the angle of two optical axes is big, a ball 

is often not imaged in one of the two cameras. Although the two-camera case is discussed in 

this paper, the proposed method can be applied to multi-camera camera case by calibrating 

each pair of cameras one by one. The number of cameras should be increased so as to make a 

ball visible for two or more cameras if a higher detection rate is required. 

Reconstruction of 3D ball trajectory 

The ratios of the balls in image spaces covered by the reconstructed trajectory were higher than 

the ratios of the balls whose 3D coordinates can be computed. That means the trajectory well 

interpolated in the period of time when balls were missed. For example, the 3D positions of the 

balls around a bounce were not computed in the sample in Figure 11(a) (see the top right of the 

table). The trajectory interpolated the term well as shown in Figure 11(b). Balls can be missed 

for reasons described above. These results indicate the proposed method deals with the 

problem of misdetection if the adjacent trajectories are successfully reconstructed. Some 

trajectories were, however, reconstructed unsuccessfully as shown in Figure 11(d). The 

trajectory right after the bounce could not be reconstructed, while the wrong trajectory, such as 

that penetrating the table, was reconstructed. Moreover, false detections remain in 3D space, 

and when false positives existed, a completely wrong trajectory was reconstructed. The longest 

trajectory in a specific period of time is extracted in 3D space in the proposed method. Thus, if 

a ball is not detected during several frames, other objects, such as a player’s foot, can be 

extracted as a ball. In this experiment, false detections remain in 1-4% frames. Therefore, the 

number of cameras should be increased when trajectories need to be reconstructed more 

robustly. 
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Conclusion  

A method was proposed that reconstructs the 3D trajectory of a ball with unsynchronized 

cameras. In the method, balls are detected on the basis of their intensity, area, circularity, and 

motion. Cameras are temporally and geometrically calibrated by using the ball trajectories in 

image spaces. Balls are detected again by using the temporal offset and geometrical 

relationship between cameras. It was experimentally demonstrated that the temporal offset and 

geometrical relationship between cameras can be estimated accurately and the ball trajectory 

can be reconstructed robustly. The next challenge will be to develop the software for actual 

use. More specifically, the following two challenges remain as future work: (1) develop 

software that can handle videos from three or more viewpoints, and (2) develop an algorithm 

for extracting the useful data for sports analysis from trajectories. Using the proposed method 

is expected to advance the spatial and temporal understanding of sports. 
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Abstract 

Despite the large amount of studies conducted in the field of human pose 

estimation and tracking in sports, currently there is a lack of a system which is 

capable to track player arm movements in real time. Such a system can assist the 

players to master the right techniques with guaranteed optimal performance of the 

player. In this paper we propose a robust algorithm to model player arm 

movements in outdoor sporting activities. The system uses trained cascade object 

classifier to predict a region of interest for arm in the monocular input video 

sequence. Optical flow algorithm is employed to extract the motion in that region. 

Arm region in resultant binary image is later classified using Active Shape 

Model. The algorithm is tested and validated using several experiments for 

tracking ball delivery process in cricket as well as for tracking service in 

volleyball and tennis. The algorithm is capable of classifying and tracking player 

arm movements with more than 80 percent accuracy, irrespective of the position 

and background complexities that the real gaming conditions offer. 

KEYWORDS: MOTION ANALYSIS, JOINT KINEMATICS, ARM TRACKING, SPORTS 

BIOMECHANICS, VIDEO SELF CALIBRATION.  

Introduction  

A sport is an activity involving physical exertion and skill in which an individual or team 

competes against another. It is also used for entertainment as well as for improvement of 

physical, social and psychological aspects of life. Not only professional athletes but any 

individual involved in sports requires mastering the correct techniques to achieve his or her 

goals. 

For an example in cricket, the process of delivering the ball last less than five seconds even 

when the bowler is a spinner.  Therefore it is extremely difficult to master the correct 

techniques by monitoring without any tools. As the competiveness of the game increases, 

countries tend to move on to computer technology which enables to obtain information on 

athlete’s bio-mechanics techniques which can be difficult to evaluate using naked eye. Such 

model will not only help the player to master the accurate technique to deliver the ball more 

precisely but also to check whether the player is chucking the ball. These facts are applicable 

when considering sports such as tennis and volleyball. The arm movement of the player is 

directly related with the angel and velocity of the ball in service.  

As stated by Yu et al. (2005), developed countries spend large amounts of money on advanced 

motion capturing systems to obtain accurate details of body position and elbow movements of 

their players. The utilization of  videos,  to watch players delivery or serve, has been proven a  
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useful  tool  for  a  coach  to  detect  and  correct  the players techniques  or important  

mistakes. If the player is able to obtain a model of his or her delivery action or the arm 

movement in the service, it will be helpful in determining how to apply the force and the 

acceleration needed more accurately and more efficiently . 

Most approaches to computer vision based motion capture techniques make use of special 

markers attached to the athlete. As described by Shotton et al. (2011),   the drawback of marker 

based motion capturing is that it requires subjects to wear special suits with markers or to have 

the markers attached to their clothing or body. It is not practical to apply markers in sports like 

cricket, volleyball and tennis due to the fact that they are outdoor sports as well as it might 

disturb the players. Additionally, if the marker slips or becomes blocked by another object, the 

tracking process will be inaccurate. Therefore the need for a low cost, marker-less motion 

capturing systems with high accuracy is inevitable especially for developing regions of the 

world.  

With the introduction of  low cost three dimensional cameras such as Microsoft Kinet  and 

Asus Xtion PRO into the market the researches focuses in using such devices to track the 

movements in the player’s Bio mechanical model in real time. But such approaches have lot of 

constraints due to the lack of frame rate in the device. As per the specification in the device, it 

is only accurate for limited depth range (for Asus Xtion PRO the value is 2 meters). This 

approach cannot be used in most of the outdoor sports. These cameras capture colour and 

depth data using a RGB camera, a monochrome camera and reflective infra-red (IR) camera. In 

outdoor sporting environment can have additional IR radiation due to other factors such as 

illumination of sun or other artificial light sources. These factors will introduce noise in the 

depth measurement; hence the bio mechanical model will be inaccurate.  

We propose a marker less motion capturing method to model the arm movements in outdoor 

sporting activities. The proposed algorithm combines current state-of-the-art motion capturing 

and pattern recognition techniques in order to come up with a model to capture the variant 

nature in player arm movements. A trained cascade object classifier is used to detect the face 

area of the athlete. A Region Of Interest (ROI) for the arm region is defined using the head 

height as a parameter. An Active Shape Model (ASM) is trained to fit in to the contour of the 

arm region within the defined ROI. The method is well tested and applicability is proven not 

only for training purposes but also for real game scenarios as well.    

The remainder of this paper is organized as follows: in Section 2, we present the materials and 

methods used in the study. The proposed method is validated with obtained experimental 

results in Section 3. Finally, conclusions are drawn in Section 4. 

Methods 

I. Input-video 

The video capturing device should have a higher frame rate and higher shutter speed. 

A higher frame rate is chosen to cope with the fast reflexes of the professional athletes. The 

camera should be mounted to a tripod and kept still in video capturing process.  This constraint 

is imposed to simplify the motion estimation. A separate experiment was conducted to 

determine the minimum frame rate required. Videos of delivery and service process of national 

level athletes were taken at 25, 30, 35, 50, 100 and 300 frames per second. It is concluded that 

the minimum frame rate required for tracking the arm movement of professional athletes in 
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cricket, tennis and volleyball is 50 frames per second. If a lower frame rate is chosen, some 

intermediate data will be lost; hence the generated motion model will be erroneous.  With a 

similar kind of experiment, in which we obtained videos in 1000, 2000, 2500, 3000 and 5000 

shutter speeds, it is observed that the optimal shutters speed for input video stream is 5000. In 

the frames of the videos from lower shutter speeds, a blurriness was observed in the arm 

region.  

II. Background subtraction 

When considering the real gaming environments, background subtraction is one of the most 

challenging problems. Audience as well as the other players in the background are all in 

motion. In order to isolate the motion of the player form the complex dynamic background 

optical flow is employed. Motion vectors generated by the player who is delivering the ball or 

serving the ball are larger than the motion vectors generated by other motions in the 

background. Though it simplifies the motion estimation process, the introduction of optical 

flow introduces some assumptions such as smoothness of the motion and constant illumination 

in the neighbourhood, which hardly holds in real gaming environments. According to Bruhn  et 

al. (2005) optical flow requires generation of temporal and special derivatives, in which large 

fluctuations on these derivatives can be occurred by small noise in the signal. Local optical 

flow methods like Lucas–Kanade (1981) method tries to overcome this problem by optimise 

some local energy-like expression, and global strategies such as the method of Horn and 

Schunck (1981) which attempt to minimise a global energy functional. In a study conducted by 

Galvin et al (1998), they have compared these two classical methods in the presence of 

Gaussian noise. Their conclusion was that the global approach of Horn and Schunck is more 

sensitive to noise than the local Lucas–Kanade method. Considering the above stated 

constraints Lucas–Kanade method is employed in order to generate optical flow. As the results 

may be corrupted by periodic noise, filtering and segmentation are required to perform more 

precise foreground estimation. The motion vectors are thresholded to remove small motions in 

the background. Morphological operations are then performed to enhance the edge strength of 

the detected objects. Closing, with short line segments in diagonal directions as the structuring 

element, is used to connect closely related disconnected components. Area opening is used to 

remove the small disconnected pixel patches in the segmented image.  

III. Player localization and defining a region of interest for the hand. 

In order to minimize the noise in the extracted arm region, a region of interest for the player’s 

arm is defined. In the study by Jarzem and Gledhill (1993) a correlation of 0.989 between arm 

span and height of a person was observed. They have considered the height of 119 normal 

individuals aged 0.5-56 year. In their study, gender differences as well as the height difference 

between different nationalities were considered. Using the classical ratio that an average 

person is generally 7-and-a-half heads tall, it can be inferred that length of arm region of a 

person is approximately 4 times of his or her heads tall.  

To locate the players head tall, face recognition techniques are employed. The typical Viola & 

Johns (2003) face recognition works only for straight face profiles. The method does not work 

for tilt heads or side faces. But during the delivery of the ball in cricket or during the service 

in tennis or volleyball the player’s head is unlikely to be straight all the time. Therefore a 

separate cascade object classifier will be trained to locate the face area of the players. Cascade 

object classifiers for face detection is first introduced by Viola and Johns and later Wu B., et al 

(2004) enhanced the classifier to adapts to the distribution of weights on the training set. 
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Cascade object classifier is a collection of weak classifiers. These simple classifiers are called 

decision stumps. Each stage is trained using a technique called boosting. According to Solar et 

al. (2006), boosting  provides  the  ability  to  train  a  highly  accurate  classifier  by  taking  a  

weighted  average  of   the decisions made  by  the weak  learners. The hierarchical design of 

the classifiers which is obtained using the stages enhances the efficiency of the face detection 

task. It rejects the negative samples as fast as possible by assuming that the vast majority of 

windows do not contain the object of interest. Conversely, true positives are rare, and it passes 

the positive windows to the next levels. 

 

Figure 1: Cascade object classifier training process 

Figure 1 elaborates the cascade object classifier training process. At each stage, the classifier 

labels the region defined by the current location of the sliding window as either positive or 

negative. Positive indicates an object was found and negative indicates no object. If the label is 

negative, the classification of this region is complete, and the detector slides the window to the 

next location. If the label is positive, the classifier passes the region to the next stage. The 

detector reports an object found at the current window location when the final stage classifies 

the region as positive (i.e. in this particular application as a face region). 

The cascade object classifier is trained in 45 cascade stages with 200 positive samples and 400 

negative samples which achieves the negative sample factor of 2. Using the above 

configurations 0.0051 overall false alarm rate is achieved.   

The classifier will detect the face area of the player who is delivering or serving, as well as the 

face area of all the people in that particular frame. This problem is solved by further analyzing 

the delivery and serving processes. In delivery of the ball or during the service process only the 

arm of the player performing that activity will be over his or her shoulder. Therefore the 

proposed method is designed to detect the players arm when it comes over the shoulder. This 

simplifies the tracking procedure and doesn’t impose any constraint on obtained data. Angular 

momentum, serve or delivery speed, delivery angel are gained from the moment arm comes   

over the shoulder but not from the rotations prior to it. Figure 2 show the effectiveness of the 

above approach in a real game scenario. The detected face regions and region of interest for 

arm are displayed with yellow colour bounding boxes in the figure. Though the classifier 

detects the face region of the umpire it doesn’t define a region of interest for the arm area of 

the umpire because there is no significant component within that bounding box (i.e. no arm 

region over his shoulder). 
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Figure 2: Face detection and hand region estimation 

IV. Ball detection and back tracking 

This module is specifically applied to remove complexities in player arm tracking in cricket. 

When considering the ball delivery process in cricket, there can be several rotations of arm 

over shoulder prior to the delivery of the ball. In order to obtain the frames which are taken just 

before the delivery of the ball a special back tracking algorithm is designed. For example in 

cricket, bowlers hand may come several times over his or her shoulder before the delivery. The 

proposed system overcomes this problem by back tracking the released ball to the point of 

delivery. A Circle Hough transform (CHT) proposed by Duda et al. (1972) combined with 

colour image segmentation is employed here.  The key idea in CHT is similar as in line 

detection is to extract edges first and then for each edge pixel accumulate votes in an 

appropriate subset of parametric space using all possible circles passing through it. As 

described by Sýkora et al. (2008) the significant peaks in such a 3D histogram determine 

centers and radii of salient circles in the image. Separate colour streams are being processed 

for different ball colours. For an example in order to track the red cricket ball, the red channel 

of the RGB frame is subtracted from the gray frame, which is obtained by performing RGB to 

gray conversion of the same frame. After thresholding the result to reduce noise and remove 

holes, small regions are connected to their sufficiently large neighbours. In the next step CHT 

is applied on the segmented image. The estimation of circle radius is vital for detection of the 

released ball. It is set with a close match to the radius of the actual ball and with less degree of 

freedom therefore if the ball is partly occluded, it want be detected. After locating the released 

ball the frames are backtracked to the point where the defined ROI for the arm region becomes 

empty. Connected component analysis is used to obtain a list of regions and their neighbouring 

relations. Ones the largest blob inside the defined ROI disappears, it can be concluded that the 

player’s arm hasn’t come over the shoulder yet.  Frames from this point onwards to the frame 

in which Hough circle detection comes true first, are selected for further processing in steps to 

follow. Figure 3 shows a particular implementation where tracked released ball is indicated 

with a circle.` 

Figure 2 (a): Cricket Figure 2 (b): Volleyball Figure 2 (c): Tennis 
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Figure 3: Ball tracking 

V. Hand segmentation and tracking 

When tracking non rigid objects such as human arm which has a greater degree of freedom for 

rotation, two dimensional deformable objects are ideal.  They use the contour representation to 

describe an object in the image.  Koschan et al. (2002) have used an Active Shape Model to 

segment the human silhouette  from the video frames as it is one of the best-suited approaches 

in terms of both accuracy and efficiency among the other methods that fall under the class of 

deformable models. It uses prior knowledge about the shape of the object for the segmentation 

process. More specifically, ASM-based tracking algorithms consist of four steps. (i) 

Assignment of landmark points, (ii) PCA, (iii) model fitting, and (iv) local structure modelling. 

In the training set, predefined number of landmark points are selected manually. In the testing 

phase the transformations needed for the alignment of the trained contour model into the target 

object in the testing frame, are determined in an iterative process. In order to eliminate the 

exhaustive search to find a suitable initialization point, we use the region of interest predicted 

for the arm region in step iii. The search process will be limited to the objects within this 

region.  

i. Assignment of landmark points 

For the purpose of generating the contour model of the object, suitable landmark points 

are selected from the given frame of input video. In order to achieve a greater degree of 

accuracy, the landmark points should be continuously available throughout the frames. 

In particular, for a 2 dimension training image, the selected n landmark points can be 

represented as, 

I = TI�		, … , I^	, ��	, … , �̂ V7 (1) 

In this study 24 landmark points are selected from 100 training frames obtained from 

35 different players. The landmark points are selected manually on the edge images 

obtained from background subtraction process. 

Detected ball 
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Figure 4: 24 manually selected landmark points 

Figure 4 shows the arm model with 24 manually selected landmark points on the initial 

contour. The landmark points are indicated in red and subsequent points in green. 

ii. Principal component analysis 

Figure 5 elaborates a sample of twelve different configurations that can be generated in 

the previous phase. The figures are not normalised for scale variations. It is evident that 

with the available degree of freedom in motion several different arm models can be 

created. 

 

Figure 5: Different landmark points configurations 

The trained shape in the previous step can be modelled with reduced number of 

parameters using PCA technique.  The main objective of PCA is to perform 

dimensionality reduction while preserving as much of the randomness in the high-

dimensional space as possible. Hence each shape in the training set which is in the 2n-

dimensional space can be modelled with a lesser number of parameters.  

Suppose we have m shapes in the training set, presented by xi, for i=1;...,m. The PCA 

algorithm is as follows. 

Compute the mean of the m sample shapes in the training set 

IÛ = 1"[I1"
��1  (2) 

Compute the covariance matrix of the training set 

Landmark points 
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; � 1"[(I(`
(\� − I̅)(I( − I̅)7 (3) 

Construct the matrix Φ � [ϕ�|ϕ�… |ϕß] (4) 

Where ϕj=1....,q represent eigenvectors of S corresponding to the q largest eigenvalues. 

Given ϕ and IÛ  , each shape can be approximated as I� ≈ IÛ+Φ#� (5) 

where #� � eÕ(I� − IÛ) (6) 

iii. Model fitting < � (� −:I)7	à(� −:I) (7) 

The modelled shape in the coordinate x is matched with a new shape in the coordinate y 

by minimising the equation 2. The weighting matrix W is inversely proportional to M, 

which represents the geometric transformation necessary to overlap the model with the 

new frame.   

 As the result of the searching procedure along profiles, the optimal displacement of a 

landmark point is obtained. The combination of optimally updated landmark points 

generates a new shape in the image coordinate frame, y. 

iv. Modelling a local structure 

The nearest sample shape that fits the model can be obtained by minimizing the 

Mahalanobis distance between the sample and the mean of the model.  

VI. Construction of 2D model of the arm 

ASM based tracking process results in locating the changes of the arm model over time. This 

two dimensional data will be plotted and presented to the users as the output.  

It is a vital factor in training to monitor the changes of the technique of a player over time. 

Also when considering cricket, one can monitor whether the player is deliberately chucking the 

ball or whether it is his or her natural action. The proposed method enables users to compare 

two or more video clips of the same player, which will result in plotting of several different 

bowling actions in same grid. This introduces a need for calibration of the videos. As 

elaborated in section II the background subtraction algorithm assumes a static camera. The 

only constraint that it imposes is that camera should be still during the video capturing process. 

Hence a tripod should be used. But after the video capture is completed, the camera can be 

moved and the calibration algorithm which we propose in this section will allow the users to 

analyze two or more such videos with different angels, provided that there are some 

overlapping parts in the frames.  

Dwarakanath et al. (2012) have proposed a method for video self calibration based on image 

feature detected by Scale Invariant Feature Transform (SIFT) which was fisrt introduced by 

Lowe D. (2004). More precisely in their method, the systems automatically match the features 

between camera images using SIFT, which are then used to perform the calibration. The 



International Journal of Computer Science in Sport – Volume 14/2015/Edition 1              www.iacss.org 

   

 

77 

feature points detected by SIFT are assigned a weight value based on the stability of the feature 

detection. In order to estimate the essential matrix the SIFT feature points which have the 

highest stability are chosen. Essential matrix E is derived using normalized 8-point algorithm 

which is proposed by Hartley et al.(1997). The algorithm assumes the rotation matrix and the 

translation matrix as identity matrix and zero matrix respectively. Relative rotation R and 

translation t of the second camera of the camera pair represents the camera pose, and are 

related to essential matrix as E=[t]XR, where [t]X is a skew-symmetric matrix [20], 

[�]1	 � á 0 �1 −�â−�1 0 �¥�â −�¥ 0 ã 
The above essential matrix can be used for determining both the relative position and 

orientation between the cameras and the 3D position of corresponding image points. 

 

 

 

Figure 6: SIFT point selection for video self calibration 

Figure 6 shows first frames of two videos of same bowler bowling in two different overs.  The 

locations of the selected SIFT points are marked in red. Intersection operator will provide the 

common feature points for both cases and later utilized by the calibration algorithm.  

Results 

In this section, we present the quantitative and qualitative results of our tracking approach. To 

generalize our approach we have obtained data from different camera types, in different frame 

rates, in different gaming conditions. We have used Cannon 5D Mark III (5D) camera with 

800mm lens, Sony HVR-S270E (Sony I) and Sony NX5 Full HD camera (Sony II). Some 

practice session videos were obtained from an online resource. (Analyzing volleyball serve by 

Abby Oakland, Northern State University, Basic tennis serve technique by David Leyod tennis 

school. url: www.introsprot.com) 

The sequences cover different challenges of object tracking. The details regarding frame rates, 

number of videos and resolutions are elaborated in Table 1.  

  

Detected SIFT feature points 
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Table 1: Details of the video dataset    

Game Gaming 

condition 

Camera 

Model 

Frame rate # of videos Resolution 

Cricket Practice session 5D 50 fps 72 1024x800 

Real Game 5D 50 fps 65 1024x800 

Practice session Sony I 100fps 80 600x480 

Real Game Sony I 100fps 40 600x480 

Practice session Sony II 60 fps 30 720x480 

Real Game Sony II 60 fps 22 720x480 

Practice session Internet 30 fps 05 320x240 

Real Game Internet 30 fps 02 320x240 

Volleyball Practice session 5D 50 fps 32 1024x800 

Real Game 5D 50 fps 25 1024x800 

Practice session Sony I 100fps 11 600x480 

Real Game Sony I 100fps 15 600x480 

Practice session Sony II 60 fps 20 720x480 

Real Game Sony II 60 fps 10 720x480 

Practice session Internet 30 fps 12 320x240 

Real Game Internet 30 fps 15 320x240 

Tennis  Practice session 5D 50 fps 27 1024x800 

Real Game 5D 50 fps 24 1024x800 

Practice session Sony I 100fps 26 600x480 

Real Game Sony I 100fps 13 600x480 

Practice session Sony II 60 fps 44 720x480 

Real Game Sony II 60 fps 52 720x480 

Practice session Internet 30 fps 09 320x240 

Real Game Internet 30 fps 10 320x240 
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Figure 7: Data capturing in actual game situation     

I. Qualitative results 

 

 

   

(a) 

   

(b) 

   

(c) 

Fitted Arm model 
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(d) 

Figure 8: Qualitative results (a): In cricket, (b): In volleyball, (c):In tennis, (d): Miss classifications. 

Figure 8 shows example inferences of our algorithm. The fitted arm model is indicated in red. 

After fitting the model in binary image, the model is super imposed in respective RGB frame. 

Regardless of the large variations in the dataset considering body and camera pose, depth in 

scene, cropping, and body size and shape (e.g. school athlete vs. heavy adult) a higher 

accuracy in both arm classification and tracking was achieved. The bottom row shows some 

misclassifications and failures due to subtle changes such as the crossed arms. Despite the fact 

that no temporal or kinematic constraints are being used for any of our computation, the results 

show higher accuracy in classification and tracking with lesser amount of jitter. 

II. Quantitative results 

We compared our approach to two related well known tracking methods. The first tracking 

method is the general Continuously Adaptive Mean Shift (CAMSHIFT) algorithm which was 

first introduced by Bradski et al. in (1998).  The next algorithm, proposed by Klein et al. 

(2010) is an extended version of CAMSHIFT that enhances the general algorithm using 

Kalman filter. The input parameters of the Kalman filter, respectively, the position of the 

object in the image at time k, the size of the object and the width and length of the search 

window.  

We conducted three experiments to evaluate the accuracy of the proposed algorithm. In the 

first two experiments we compared the algorithm against the above two algorithms in different 

gaming conditions. In the first experiment we analysed the tracking process under real gaming 

conditions in cricket, volleyball and tennis. Arm tracking process in practice sessions was 

evaluated in the second experiment. In order to evaluate the different setups, we ran each of the 

above experiment 100 times and evaluated following metrics. 

(1) Overlap join-ratio percentage 

overlap	join − ratio	percentage � G ∩ TG ∪ T ~ 100% 

Where G and T are the areas of the bounding boxes of the idealized configuration that is given 

by ground truth of the arm configuration and the tracking hypothesis respectively. Here as the 

measurement of the area we consider the number of pixels in each set. The ground truth is 

obtained from manual selection of the arm region. In order to minimize the human error in 

manual tracking process, we have used 3 different personals and assigned them the videos 

randomly.  

Fitted Arm model 



International Journal of Computer Science in Sport – Volume 14/2015/Edition 1              www.iacss.org 

   

 

81 

(2) Centre Location Error  

This evaluation matrix measures how much the evaluated centre of the arm region matches 

with the actual centre. The Euclidian distance, in pixels, between the actual centre pixel and 

the evaluated centre pixel in the arm bounding box is calculated as the Centre Location Error.  

 

(3) Average false-Alarm rate. 

How often an incorrect arm region is predicted by a particular algorithm is evaluated using this 

evaluation matrix.  

Average	false	alarm	Rate � #	of	incorrect	arm	region	detections#	of	trials	 ~ 	#	of	arm	regions	in	the	video	sequence	 
Finally in the third experiment we have evaluated the accuracy of the generated bio mechanical 

model against the ground truth. Hence the accuracy of the joint position in the generated bio 

mechanical model is evaluated.  

i. Experiment 1: Real Game scenario 

In this experiment we evaluated the three tracking algorithm against the real game 

scenario data set. For a fair comparison CAMSHIFT tracker and Extended CAMSHIFT 

tracker are initialized on the first frame using the actual location of the arm. The 

evaluated matrices are shown in the Table 2. In sequences A, B, D and F our proposed 

method has outperformed the other two algorithms. Only in sequence C the Extended 

CAMSHIFT tracker has slightly performed better than the proposed method due to the 

problem of player hand overlapping with face of the umpire. We can easily overcome 

such problems by slightly adjusting the camera position.  

Table 2: Evaluation matrices for videos in real game environments   

Seq. # Fr. Average overlap join-ratio 

% 

Average Centre Location 

Error 

Average False-Alarm rate. 

CAMSHIFT Extended 

CAMSHIFT 

Proposed CAMSHIFT Extended 

CAMSHIFT 

Proposed CAMSHIFT Extended 

CAMSHIFT 

Proposed 

A 51 50.3 71.7 87.7 5.9 3.1 1.2 0.370 0.290 0.016 

B 32 44.4 84.5 95.8 8.6 3.6 1.9 0.210 0.027 0.520 

C 71 50.7 73.1 72.8 7.2 5.1 6.9 0.630 0.075 0.024 

D 45 77.3 80.3 86.0 7.5 7.2 5.3 0.170 0.041 0.020 

E 80 69.2 80.4 85.0 5.0 2.5 4.7 0.191 0.014 0.082 

F 62 61.7 76.4 83.1 6.1 4.4 3.0 0.139 0.199 0.027 

avg  58.9 

 

77.7 

 

85.1 

 

6.7 

 

4.3 

 

3.8 

 

0.285 

 

0.108 

 

0.115 
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ii. Experiment 2: Practice sessions 

The accuracy of the tracking algorithms in practice session situations are compared in 

this experiment. Similar to experiment 1, we manually initialised the CAMSHIFT 

tracker and Extended CAMSHIFT tracker on the first frame using the actual location of 

the arm. The evaluated matrices are shown in the Table 3. In all the sequences the 

proposed tracker has outperformed other two algorithms.  

Table 3: Evaluation matrices for videos in practice sessions   

Seq. # Fr. Average overlap join-ratio 

% 

Average Centre Location 

Error 

Average False-Alarm rate. 

CAMSHIFT Extended 

CAMSHIFT 

Proposed CAMSHIFT Extended 

CAMSHIFT 

Proposed CAMSHIFT Extended 

CAMSHIFT 

Proposed 

G 46 57.5 60.3 80.4 7.8 5.0 2.7 0.470 0.210 0.011 

H 95 65.9 64.2 83.5 5.3 3.9 1.0 0.310 0.240 0.098 

I 62 50.7 52.7 76.6 2.6 2.2 0.8 0.830 0.430 0.062 

J 40 46.8 59.3 86.0 1.3 1.1 0.3 0.190 0.140 0.069 

H 21 42.4 74.7 89.4 1.2 0.4 0.1 0.191 0.133 0.053 

K 63 53.6 77.9 79.0 4.1 3.5 2.6 0.370 0.173 0.067 

avg  52.8 64.8 82.5 3.7 2.6 1.3 0.394 0.221 0.060 

 

iii. Experiment 3: Accuracy of the generated bio mechanical model. 

Ten videos from each category were randomly picked and they were fed to the 

algorithm. To generate the bio mechanical model we consider wrist, elbow and 

shoulder joints. These three joints were manually tracked in the original video. The 

position of each joint in each frame in ground truth is compared against the joint 

position in the model. The Euclidian distance, in pixels, between the actual joint 

position and the inferred position is evaluated as the precision error. According to the 

results in Table 4, it can be seen that the generated bio mechanical model has a higher 

degree of precision. Figure 9 visualises a frame from the cricket data set and its 

respective bio mechanical model. 
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Table 4: Average precision error of the generated bio mechanical model  

Seq. # Fr. Average precision error % 

Wrist Elbow Shoulder 

1 70 2.40 

 

4.16 

 

6.93 

 

2 50 2.93 

 

3.47 

 

5.75 

 

3 34 6.87 

 

2.68 

 

4.28 

 

4 47 4.71 

 

5.29 

 

5.71 

 

5 79 2.29 

 

4.22 

 

4.28 

 

6 44 1.94 

 

4.65 

 

1.22 

 

7 21 3.08 

 

3.19 

 

5.42 

 

8 46 1.08 

 

4.71 

 

4.81 

 

9 51 2.68 

 

5.39 

 

6.56 

 

10 71 4.15 

 

3.04 

 

2.25 

 

avg  3.21 

 

4.08 

 

4.72 

 

 

  

Figure 9: A frame from the cricket data set (Left) and its respective bio mechanical model (Right) 

Conclusion 

We have presented an effective method to track player arm motion during sporting activities.  

The algorithm was tested for tracking the delivery of the ball in cricket, and during the service 

in tennis and volleyball. We have validated the proposed algorithm against a large dataset 

which is generalized in terms of resolution and frame rates. The video sequences cover 

different challenges of object tracking   such as object occluding and illumination 

inconsistencies.    

Irrespective of the object size, position and the background complexities, the proposed 
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approach finds the optimal matching position and tracks the arm movement in the sporting 

activity. The quantitative comparison shows that the method performs equally or better to 

current state-of-the-art methods in object tracking. The effectiveness of  proposed algorithm to 

track fast reflexes of professional athletes is  vindicated  by  its higher degree of accuracy. For 

each  of  the  three evaluation matrices the proposed apporach has out perforemed currently 

available tracking methods. We have observed over 80 percent accuracy when considering 

overlap join-ratio percentage. The mere score of 3.8 pixels, for average center location error 

and 0.115 for average false alarm rate elaborates how precisely our algorithm can track the arm 

movements even under complex real gaming conditions. Furthermore, this method exhibits 

more consistent results over lighting variations, stroke variations as well as gaming condition 

variations.  

The novelty in our approach is the hybrid model to track the player arm movement. Cascade 

object classifier is learned to discriminate the target player face area from background and is 

utilized to estimate a region of interest for the arm area. This hybrid approach together with 

Active Shape Model was able to classify and track player arm movements and achieve 

cooperatively higher accuracy. Additionally, with the third experiment we have validated that 

the generated bio mechanical model has a higher degree of precision and hence the model can 

be directly applied for applications such as player delivery angel validations in cricket or serve 

speed detection in tennis.  

According to best of our knowledge this is the only available method which is capable to track 

player arm movements in Cricket. The algorithm requires the arm  to be over the shoulder of 

the athlete in order to be tracked. This doesn’t impose any constraints, because vital factors 

such as serve, delivery speed or delivery angel are measured from the moment arm comes   

over the shoulder. But, if necessary, subsequent movements can be tracked easily by 

employing a method like particle filter, after detecting the initial arm region using this 

algorithm. Hence this algorithm is self-sufficient for tracking player arm movements in 

outdoor sporting activities.  

In the future work, we aim to modify the presented ASM model to a hierarchical model and to 

accompany different resolution levels in order to reduce the number of iterations in model 

fitting process. 
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Abstract 

The third World Baseball Classic (WBC) was held in March 2013. In this 

tournament, 16 teams play in Round 1 under a round-robin (RR) format and 8 

teams which advanced to Round 2 play under a modified double-elimination 

(MDE) format. This 2013 WBC format is compared with the formats such as the 

past two WBCs held in 2006 and 2009, from the aspect of the probability of 

winning the tournament and the probability distribution of the number of games 

played by the same teams. We make the comparison by changing the relative 

strength of teams, and demonstrate the difference between the tournament 

formats. 

KEYWORDS: BASEBALL, DOUBLE-ELIMINATION, ROUND-ROBIN, 

TOURNAMENT, WBC 

Introduction 

The World Baseball Classic (WBC) is an international baseball competition. The main 

tournament of the third WBC was held in March 2013, and the Dominican Republic won the 

tournament. The basic structure of the main tournament consists of three rounds. In Round 1, 

16 teams were divided into 4 pools, each of which consists of 4 teams, and competed in each 

pool. The top two teams from each of the four pools advanced to Round 2. The top two teams 

from each of the subsequent two pools advanced to single-elimination (SE) in Finals.  

This basic structure has not been changed since the first WBC held in 2006, but the tournament 

format of each pool is different between the WBCs. In the 2006 WBC, a round-robin (RR) 

format was employed in Rounds 1 and 2. Under this format, there were ties in 2 out of 6 pools. 

(We here call “tie” when three teams resulted in the same win-loss record). 

In the 2009 WBC, the RR format was replaced by a modified double-elimination (MDE) 

format, in which any ties do not occur. However, the same two teams faced each other often in 

the tournament under the MDE format, such that Japan faced South Korea in 5 out of 9 games 

which Japan played throughout the tournament. Further, Game 6 in MDE is thought to be 

virtually redundant because Game 6 is played between the top two teams which have already 

been decided to advance to the next round. Actually, the manager of South Korea commented 

that they didn’t put great meaning to winning or losing (Schwarz, 2009) and good pitchers 

were not introduced to Game 6 intentionally (Nakamura, 2009). Although the matches in the 

next round are set up following the result of Game 6 and this somehow affects the final result 
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of the tournament consequently, the existence of Game 6 hardly affects the probability of 

winning the tournament as shown later in this paper. 

In the 2013 WBC, the MDE format was replaced by a RR format only for Round 1. In the 

process of discussion to decide the format of the 2013 tournament, the format deleting Game 6 

from the MDE format was suggested (Okada, 2010). We here denote it as modified modified-

double-elimination format (MMDE), and also look at it for the comparison of the formats.  

In this paper, we present the formulation for calculation of probabilities on the above formats, 

and compare between the four tournament formats (i.e. the 2013 tournament format, the past 

two WBCs' formats, and the case of employing the MMDE format), from the aspect of the 

probability of winning the tournament and the probability distribution of the number of games 

played by the same teams. We make the comparison by changing the relative strength of 

teams, using the Bradley-Terry model (Bradley & Terry, 1952) for setting the probability of 

winning a game between two teams, and demonstrate the difference between these tournament 

formats. We focus on the main tournament in this paper, although a qualifying round played by 

12 teams was first introduced before the main tournament in the 2013 WBC. 

By the way, a variety of sport tournament structures are well studied by a lot of researchers. 

Designing sporting contest is one of the major issues (e.g. Szymanski, 2003; O'Donoghue, 

2005), and the impact of seeding in SE format has well been analyzed (Hwang, 1982; 

Marchand, 2002; Monks & Husch, 2009; Schwenk, 2000). For the impact of seeding under the 

different type of tournament formats, Scarf & Yusof (2011) and Scarf, Yusof, & Bilbao (2009) 

study the seeding policy in terms of RR and SE and hybrids of them, which are used in soccer 

World Cup Finals or other tournaments, and propose the tournament metrics to measure the 

success of the tournament. In terms of modelling a major soccer tournament, Koning, 

Koolhaas, Renes, & Ridder (2003) propose a practical model to identify the team that is most 

likely to win a tournament. The design of play-off system of football or baseball is also studied 

in connection to the seeding problem (Martine & Troendle, 1999; Carlin & Stern, 1999, Annis 

& Wu, 2006). 

In terms of efficiency for selecting the strong teams in comparison between the SE and the RR 

format (e.g. David, 1959; Appleton, 1995; McGarry & Schutz, 1997), there is the following 

tendency: Under the RR format, the stronger team is more likely to win the tournament, but the 

number of total games in the tournament is larger than in SE, in which the stronger team is less 

likely to win the tournament than in the RR format. In terms of the double-elimination (DE) 

format, McGarry & Schutz (1997) indicate that the DE format has the well balanced feature in 

that it yields selection of stronger teams with a moderate total number of games. 

With regards to the calculation for the DE format, several studies provide the calculation 

methods (Glenn, 1960; Ladwig & Schwertman, 1992; Edwards, 1996; McGarry & Schutz, 

1997), although they did not consider multi-round structures such as the WBC tournament. 

Stanton & Williams (2013) study the DE format considering it as two SE formats which 

consist of the winner bracket and the loser bracket, and investigate the design of the two 

brackets.  

We here use the method along the lines of Ladwig & Schwertman (1992) to calculate the 

probability of winning the tournament and the probability distribution of the number of games 

in terms of the multi-round structure including the RR format and/or the MDE format in the 

first two rounds and the SE format in the finals. We make a comparison of the four formats by 

changing the relative strength of teams, along the lines of Marchand (2002) who uses the 

Jackson's (1993) model.  
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In this paper, we describe the formats employed in the WBCs in Section 2, and then we present 

the formulation for calculation of probabilities on these formats in Section 3. After showing 

how to set a probability of winning a game in Section 4, we illustrate and discuss the 

difference between these formats in Section 5 and conclude in Section 6. 

Tournament format of the WBCs 

In this section, we present the format of the main tournament of the WBCs. The format 

consists of three rounds. In Round 1, 16 teams are divided into 4 pools (A, B, C and D) each of 

which consists of 4 teams, and the top two teams in each pool advance to Round 2. In Round 2, 

the 4 teams from Pools A and B and the 4 teams from Pools C and D compete in Pools 1 and 2, 

respectively. The top two teams in each pool of Round 2 advances a single-elimination in 

Finals. The 4 teams cross over for the semifinals, with the winner of each pool playing against 

the runner-up from the other pool. Figure 1 shows the main structure of the tournament, which 

is consistent between the WBCs, but the format in each pool is different between the WBCs. 

Round Round 1 Round 2          Finals 

Semifinal Final 

Number of teams 16 8 4 2 

         

 
 

Pool A 

(4 teams) 

 
     

 
  

 Pool 1 

(4 teams) 
    

 
 

Pool B 

(4 teams) 
 

 
 

   

Flow         

 
 

Pool C 

(4 teams) 

  
    

 
  

 Pool 2 

(4 teams) 
    

 
 

Pool D 

(4 teams) 
      

Figure 1. Main structure of the tournament format of the WBCs. 

In the 2006 tournament, the RR format was employed in Rounds 1 and 2. That is, each team 

plays other three teams in a pool once. Teams are ranked by the winning percentage in each 

round, and the top two teams in each pool advance to the next round. (If ties occur, the top two 

teams allowing the fewest runs per nine innings in head-to-head games between the tied teams 

were qualified to the next round). 

In the 2009 tournament, the RR format was replaced by the MDE format. This MDE format is 

illustrated in Figure 2. Figure 2 (a) and (b) shows the draw of Pool A of Round 1 and the draw 

of Pool 1 of Round 2, respectively, as an example. Figure 2 (c) shows the draw of the Finals. 

  

Top 2 teams 

Top 2 teams 

Top 2 teams 

Top 2 teams 

Top 2 teams 

Top 2 teams 
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Loser of 

Game 2 

      
  

Loser of 

Game 2 

      
     

 
Game 5 

    
Game 5 

       

 

Loser of 

Game 4 

  
   

 

Loser of 

Game 4 

  
       

            
         (a) Pool A of Round 1                              (b) Pool 1 of Round 2                                    (c) Finals 

Figure 2. Modified double-elimination format (Rounds 1 and 2) and single-elimination (Finals) in WBC 2009 

In the 2013 tournament, the MDE format was replaced by the RR format only for Round 1. 

Together with this replacement to the RR format, the tie breaking rule was modified a little. 

(i.e. not only allowing runs per nine innings but also scoring runs per nine innings in head-to-

head games between the tied teams are evaluated for advancing to Round 2). 

We summarize the feature of the four formats in Table 1. The 2013 tournament format is 

indicated by RR&MDE, and other three formats (the past two classics and the MMDE format) 

are indicated by RR
2
, MDE

2
 and MMDE

2
, respectively. We note that the total number of 

games in MMDE
2
 is 6 games less because of the absence of Game 6 in each pool. 

Table 1. Comparison between the tournament formats 

Abbreviation   RR
2
 MDE

2
 RR&MDE MMDE

2
 

WBC No.   1 2 3 - 

Format Round 1 RR MDE RR MMDE 

  Round 2 RR MDE MDE MMDE 

Total number of games 39 39 39 33 

Max. number of played by same teams 3 5 4 3 

Ties 
 

Yes No Yes No 

 

In terms of the main structure of the tournament, it is controversial to maintain the general 

structure shown in Figure 1 (e.g. http://en.wikipedia.org/wiki/2006_World_Baseball_Classic). 

Other competitions such as the soccer World Cup have a structure not to make teams play each 

other more than twice.  Although there are the pros and cons of this general structure, we here 

calculate the probability based on this general structure. 

Formulation for calculation of probabilities 

In this section, we present a formulation for calculation of probabilities in terms of the RR 
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format and the MDE format. In this paper, we assume that the result of the game is mutually 

independent throughout the tournament. 

Round-robin format within a round  

We first look at a formulation for calculation of probabilities in terms of the RR format of a 

pool within a round. Let P(i,j) be the probability of team i winning a game against team j.  

Using this notation, for example, an event that "Team A1 wins 3 games, Team A2 wins 2 and 

loses 1 game, Team A3 wins 1 and loses 2 games, Team A4 loses 3 games" occurs in the 

probability of  

 (1) 

Here, the total number of possible win-loss events in a pool is 2
6
=64. These events are 

categorized into four patterns shown in Table 2. We can calculate the probability of each of the 

four patterns occurring by just counting the number of events in each category. In Table 2, ties 

occur in Win-loss patterns 2 and 3. In Win-loss pattern 2, three teams are tied with the record 

of 1 win and 2 losses, and these teams are ranked as 2nd, 3rd and 4th, following the 

tiebreaking rule. In Win-loss pattern 3, three teams are also tied with 2 wins and 1 loss, and 

ranked as 1st, 2nd and 3rd by the tiebreaking rule.  

Table 2. Win-loss pattern of the round-robin format 

           Win-loss pattern   

  1 2 3 4 

1st 3-0 3-0 2-1 2-1 

2nd 2-1 1-2 2-1 2-1 

3rd 1-2 1-2 2-1 1-2 

4th 0-3 1-2 0-3 1-2 

Modified double-elimination format within a round 

We move to look at the formulation for calculation of probabilities in terms of the MDE format 

of a pool within a round. To obtain this probability, we look at A1 in Figure 2(a). As there are 

6 games in the draw of Figure 2(a), the total number of possible win-loss events is 2
6
=64. As 

there are 4 teams in a pool, a quarter of the 64 events corresponds to the events that A1 is 

ranked as the 1st in this pool. That is, there are 16 (=64/4) win-loss events for A1 to be ranked 

as the 1st in Pool A of Round 1. We arrange these 16 events according to the 2nd ranked team 

in this pool, as shown in Table 3.  

  

(A1, A 2) (A1, A 3) (A1, A 4) (A 2, A 3) (A 2, A 4) (A 3, A 4) .P P P P P P
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Table 3. Probability of a win-loss event occurring and the number of games between two teams when A1 

becomes the 1st in the draw shown in Figure 2 (a) in the MDE format 

No. Win-loss event       Number of games     Remark 

  1st   2nd   Probability A1-A2 A1-A3 A1-A4 A2-A3 A2-A4 A3-A4   

1 A1 W1W4W6 A2 L1W3W5L6 P1T(A1,A2)1 2 1 0 1 1 1 A3 wins in Game 2 

2   P1T(A1,A2)2 2 0 1 1 1 1 A4 wins in Game 2 

3  L1W3W5W6 A2 W1W4L6 P1T(A1,A2)3 2 1 1 1 0 1 A3 wins in Game 2 

4     P1T(A1,A2)4 2 1 1 0 1 1 A4 wins in Game 2 

5 A1 W1W4W6 A3 W2L4W5L6 P1T(A1,A3)1 1 2 0 1 1 1 A2 wins in Game 3 

6    P1T(A1,A3)2 1 2 0 0 1 2 A4 wins in Game 3 

7   A3 L2W3W5L6 P1T(A1,A3)3 1 1 1 1 0 2  

8  W1L4W5W6 A3 W2W4L6 P1T(A1,A3)4 2 2 0 0 1 1 A2 wins in Game 3 

9     P1T(A1,A3)5 1 2 1 0 1 1 A4 wins in Game 3 

10  L1W3W5W6 A3 L2W3W5L6 P1T(A1,A3)6 2 1 1 1 0 1  

11 A1 W1W4W6 A4 W2L4W5L6 P1T(A1,A4)1 1 0 2 1 1 1 A2 wins in Game 3 

12    P1T(A1,A4)2 1 0 2 1 0 2 A3 wins in Game 3 

13   A4 L2W3W5L6 P1T(A1,A4)3 1 1 1 0 1 2  

14  W1L4W5W6 A4 W2W4L6 P1T(A1,A4)4 2 0 2 1 0 1 A2 wins in Game 3 

15     P1T(A1,A4)5 1 1 2 1 0 1 A3 wins in Game 3 

16  L1W3W5W6 A4 L2W3W5L6 P1T(A1,A4)6 2 1 1 0 1 1  

 

Wk and Lk in Table 3 represent a win and a loss of the regarding team in game k, respectively. 

For example, the win-loss event that A1 is the 1st and A2 is the 2nd in this pool appears in 

No.1 - 4 rows in Table 3, and if A1 achieves 3 wins (W1W4W6), then A2 has to result in a 2 

wins and 2 losses (L1W3W5L6) as shown in No.1 - 2 rows. In this event, there are two cases 

which correspond to the different result of Game 2, that is, either A3 or A4 wins in Game 2. 

Looking at No.1 row, this event occurs when “A1 wins A2 in Game 1, A3 wins A4 in Game 2, 

A2 wins A4 in Game 3, A1 wins A3 in Game 4, A2 wins A3 in Game 5 and A1 wins A2 in 

Game 6” in probability of  

 (2) 

By summing up the probabilities regarding to the cases of“A1 is the 1st and A2 is the 2nd” 

appearing in No.1 - 4 rows, the probability that A1 and A2 become the 1st and the 2nd in 

Round 1 can be obtained as 

 (3) 

(The subscript m corresponds to the subscript of the notation appearing in the column 

"Probability" in Table 3). In the same manner, not only P1T(A1,A3) and P1T(A1,A4) but also 

other teams such as A2 to be the 1st in this pool can be calculated. 

Here, note that the 4 teams should be randomly assigned in the draw in Pool A. So, the above 

calculations are conducted for the 3 different assignments, and then averaged out. That is, we 

1T 1(A1,A2) = (A1,A2) (A3,A4) (A2,A4) (A1,A3) (A2,A3) (A1,A2).P P P P P P P

1T 1T (A1,A2)  (A1,A2) .m

m

P P=∑
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consider the 3 different draws for assigning 4 teams in the MDE format in a pool such that A1 

faces A2, A3 or A4 as the first game of A1, and the 3 different draws occur in 1/3 each. 

As shown in Table 3, the number of games between two teams in the pool is fixed, according 

to its win-loss event. For example, if A1 is the 1st and A2 is the 2nd with the event of 

W1W4W6 and L1W3W5L6, A1 has to play A2 twice in the pool.   

Using the number of games played by two teams, we can calculate the probability distribution 

of the number of games between two teams. Here, let Q1(i,j,n1|A1,A2) be the probability that 

team i plays against team j (i、j ∈{A1,A2,A3,A4}) n1 times in Round 1, under the condition 

that A1 and A2 results in the 1st and the 2nd in the pool, respectively.  We calculate this using 

the probabilities shown in Table 3 such that  

 (4) 

Here, (4) corresponds to the probability that A1 and A3 play once in the pool, and this 

probability can be obtained by summing up the probabilities for resulting in the win-loss 

events corresponding to the number of games "1" appearing in No.1 - 4 rows in the column of 

"A1 - A3" in Table 3.  

Calculation between the rounds 

So far, we looked at the format in a round, actually in Round 1. In order to formulate the multi-

round structure, we should identify the 8 teams advanced from Round 1. Here, we denote the 

1st and the 2nd team in Pool A and Pool B as A
1
, A

2∈{A1,A2,A3,A4} and B
1
, 

B
2∈{B1,B2,B3,B4}, respectively.   

Using this notation, in terms of the RR format in Round 2, we can calculate the probability of 

each of the four patterns occurring shown in Table 2 just by looking at A
1
, A

2,B
1
 and B

2
. 

When a tie occurs, the advanced teams are chosen from tie teams in equal probability.  

In terms of the MDE format in Round 2, the calculation becomes a little complicated because 

the 4 teams are assigned into the draw of Pool 1 according to the rank in pool A and B as 

shown in Figure 2(b). As A
1
 and A

2
 are chosen from the 4 teams in Pool A in 4×3 = 12 

different ways, and so as to B
1
 and B

2
, there are 12×12=144 different ways in total for the 4 

teams to be assigned in the draw of Pool 1. By calculating each of these 144 different ways, we 

can obtain such probability that A1 advances to Finals from Pool 1. 

In Finals, we should calculate in the SE format shown in Figure 2(c) using 4 teams advanced 

from Round 2, both in the RR and MDE formats. Here, we denote the 1st and the 2nd team in 

Pool 1 and Pool 2 as S1
1
, S1

2∈{A1,A2,A3,A4,B1,B2,B3,B4} and S2
1
, 

S2
2∈{C1,C2,C3,C4,D1,D2,D3,D4}, respectively. Using this notation, the draw of semifinals 

is fixed according to the rank in Pools 1 and 2. As S1
1
, S1

2
 are chosen from the 8 teams in 8×7 

= 56 different ways, and so as to S2
1
, S2

2
, there are 56×56=3,136 different ways in total for the 

8 teams to be assigned in the draw of semifinals. By calculating for these 3,136 different ways, 

we can obtain such probability that A1 wins the tournament. 

In order to calculate the probability of the total number of games between team i and j 

occurring throughout the tournament in the MDE format, we need to sum up the number of 

games from Round 1 to Finals. In practice, we refer to Table 4, which shows the patterns of the 

number of games between two teams from Round 1 to Finals, and calculate the probability of 

the total number of games occurring.  

1 1T 1 1T 3 1T 4 (A1,A3,1 | A1, A 2) =  (A1, A 2)  + (A1,A 2)  + (A1,A 2) .Q P P P
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Table 4. Patterns of the number of games between two teams in the MDE2 format 

Round Times   Number of games between two teams 
               

Round 1 n1 2 2 2 2 1 2 2 1 1 1 - 2 2 1 1 - - - 1 1 - - - 0 - - - 

Round 2 n2 2 2 2 1 2 1 1 2 2 1 2 0 - 1 1 2 1 2 0 - 1 1 - - 0 - - 

Finals nF 1 0 - 1 1 0 - 0 - 1 1 - - 0 - 0 1 - - - 0 - 0 - - 0 - 

Total n 5 4 4 4 4 3 3 3 3 3 3 2 2 2 2 2 2 2 1 1 1 1 1 0 0 0 0 

 

As shown in Table 4, in order for two teams to face each other 5 times they should face twice 

in Round 1, and twice in Round 2, and once in Finals. We here denote this as "2 2 1". In order 

to face 4 times, there are four patterns such that "2 2 0", "2 2 -", "2 1 1" and "1 2 1", as shown 

in Table 4. The notation " - " denotes "not-faced" because of being assigned in a different pool, 

or one of two teams failing to advance to the round. The probability of each pattern occurring 

is calculated by taking account of the conditional probability to advance to Round 2 or Finals. 

For example, in order to calculate the probability that "2 2 1" occurs, we look at the following 

event: A1 and A2 face each other twice (n1=2) in Pool A under the condition that A1 and A2 

become the 1st and the 2nd of the pool in Round 1. A1 and A2 then face each other twice 

(n2=2) in Pool 1 under the condition that A1 and A2 become the 1st and the 2nd of Pool 1 in 

Round 2. A1 and A2 finally face each other once (nF=1) in Finals. This event occurs in 

probability which is given by the product of the above probabilities, such that,  

 (5) 

By conducting the similar calculation for all patterns shown in Table 4, we can obtain the 

probability distribution of the number of games between two teams throughout the tournament.  

Setting of strength of teams 

Until now, we present the formulation for calculation of probabilities, but we have not referred 

to concrete values of the probability P(i,j). In actual calculation we need to set these 

probabilities as concrete values. In this paper, the Bradley-Terry model (1952) is used for 

setting the probability of team i winning the game against team j. That is, we calculate 

P(i,j) =  πi  ／(πi  + πj)  =  1／ (1 + πj／πi), (6) 

where πi and πj represent the strength of team i and j, respectively.  

Here, we set πi following the Jackson's (1993) model, in which πi= ri
α
, where, ri is the relative 

ranking of team i such that ri=1 when team i is top-ranked. α is a parameter to set the 

dispersion of the relative strength. We change the value of α from 0 to 1.5 as Marchand (2002) 

calculated the probabilities of a player winning a standard knockout tournament and a random 

knockout tournament. In teams of the standard knockout tournament, Marchand assigned 16 

teams to consist in matching higher ranked teams with lower ranked teams. To compare with 

his result, we set up "Case S" in which the match-ups of first round are basically same 

structure as his standard knockout tournament. That is, we assign 16 teams into 4 pools in 

"Case S" as shown in Figure 3. Note that the numbers in Figure 3 indicate the teams as its 

relative rankings. Without loss of generality, we show the result by setting A1 be the strongest 

team and arrange the relative strengths such that πA1 > πA2 > πA3 > πA4 in descending order later 

in this paper. (In "Case S", the relative ranking of A1, A2, A3 and A4 are 1, 8, 9 and 16, 

respectively). 

1 2 F (A1,A2,2 | A1,A2)×  (A1,A2,2 | A1,A2)×  (A1,A2,1).Q Q Q
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In terms of the random knockout tournament of Marchand, it consists in selecting the initial 

structure totally at random. He calculated the probabilities of a top-seed player winning a 

tournament for the random knockout tournament by simulating 1 million draws according to a 

uniform distribution and estimated each probability by averaging them out. However, we 

compare the four formats from the aspect of not only the probability of winning the 

tournament but also the number of games between two teams. For calculating these 

probabilities, we have developed our programing code with Excel VBA, and it takes several 

minutes to complete the calculation of one structure (considering all different ways of 

advancement of the 16 teams mentioned in Section 3) using our computer (CPU: Intel Celeron 

M (1.0GHz)). As it would take more than decades to calculate the probability distribution of 

the number of games between two teams based on a large number of random sampling in a 

similar manner to Marchand, we set up just three cases, a standard ("Case S") and two other 

special cases "Case F" and "Case U", as shown in Figure 3 for comparing the four formats, and 

see the effect of the selection of the initial structure on the result.  

Here, in "Case F", each pool is fairly balanced such that the 16 teams are assigned by its 

relative ranking in its order, although it is not perfectly fair because Pool A is relatively 

stronger than other Pools. In "Case U", the assignment of teams to each pool is definitely 

unbalanced such that the top 4 teams are in Pool A. "Case F" and especially "Case U" are 

unlikely to occur in practice, but we set them as extreme cases to see the extent of variation of 

the effect of initial structure on the probabilities. In this sense, most of all possible assignments 

of 16 teams will result in the range between Cases S and U in practice.    

Case S Case F Case U 

1,8,9,16 1,5,9,13 1,2,3,4 

2,7,10,15 2,6,10,14 5,6,7,8 

3,6,11,14 3,7,11,15 9,10,11,12 

4,5,12,13 4,8,12,16 13,14,15,16 
 

 

Pool A 

Pool B 

Pool C 

Pool D 

Figure 3. Three cases of the assignment of 16 teams to each Pool 

We further note that it is better to randomly assign teams to the 4 pools because the number of 

game faced by two teams are significantly depends on which pool these teams are assigned. 

So, we take into account three different initial structure for assigning 4 pools shown by the 

arrows in Figure 3, such that {1,2,3,4} to Pool A, {5,6,7,8} to Pool C, {9,10,11,12} to Pool B, 

and {13,14,15,16} to Pool D as one of the three initial structures.  

Furthermore, we also calculate the case of the knockout tournament of 16 teams for 

comparison. In terms of Case S, it is basically the same case as the standard knockout 

tournament of Marchand (2002). In terms of Cases F and U, we assigned the 4 pools to the 

four separate blocks in the initial draw of the knockout tournament, such as assigning 

{1,5,9,13}, {2,6,10,14}, {3,7,11,15} and {4,8,15,16} separately in the initial draw. 

Calculation results 

In this section, we demonstrate the calculation results between the four formats based on the 

above three cases of assignment of 16 teams. By changing the value of α, we have calculated 

such the probability that A1 wins the tournament, or the probability distribution of the number 
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of games between A1 (here setting A1 be the strongest team) and others. We also present the 

detail about the occurrence of ties in the RR format.  

Comparison between the tournament formats in terms of probability of 
winning the tournament  

Figure 4 shows the comparisons of the probabilities of the top two teams winning the 

tournament in Cases S, F and U. For comparing them with the knockout tournament, we also 

draw the curve of the standard and the random knockout from Marchand (2002), as indicated 

by "standard KO" and "random KO", respectively in Figure 4 (a). In Cases F and U, we also 

show the calculation result of the case of the knockout tournament of 16 teams, as indicated by 

“KO” in Figures 4 (b) and 4 (c).  

As shown in Figure 4, in terms of the probability of the top team winning all of the four 

formats are higher than that of the knockout tournaments throughout the range of α=0～1.5. 

The difference of the probabilities in the four formats is small, especially the probabilities of 

the MDE
2
 and MMDE

2
 formats are almost the same, although the RR

2
 format of Case U in 

Figure 4 (c) is a little different from the other formats. 

Not surprisingly, the probabilities of the second top team winning the tournament are definitely 

smaller than these of the top team. They have the similar tendency with regard to the 

difference of the probabilities between the four formats. 

 

 

 

 

 

 

 

 

 

                          α                                                            α                                                      α 

    (a) Case S                                             (b) Case F                                       (c) Case U 

Figure 4. Comparisons of the probabilities of the top two teams winning the tournament. 

In order roughly to estimate the extent of the difference between the probabilities, we just 

statistically check the distribution of these winning probabilities of the four formats, by 

considering random distributions of teams' relative strengths. In practice, we generated normal 

random numbers ε ～ N(0,σ2) and added to πj in expression (6) for all teams. When σ is set to 

be 10% of relative strength, for instance, the standard deviation of the probability of top team 

winning is around 0.03～0.05 for all cases in the range of around α=1.0～1.5. Assuming that 

sample size n=25 (WBC is assumed to be held 25 times in the next hundred years), significant 

difference of the probabilities of winning will be roughly estimated to around 0.02～0.03 using 

two sample t-test with significance level of 0.05. Using this rough estimate in Figure 4, we can 

find the difference between RR2 and other formats in Case U, but for almost all of the other 

cases, we cannot find statistical differences between the four formats. (When σ is large, it 
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becomes more difficult to distinguish the difference between the four formats in terms of the 

probability of winning the tournament, although the sample size will affect the estimation of 

statistical significance.) 

Calculation result on the number of games between two teams 

We now look at the probability distribution of the number of games between two teams. The 

calculation result of the expected number of games faced between the top two teams within 

Pool A (i.e. A1 and A2) is shown in Figure 5. Here, we can see that the profiles of the expected 

number of games are different between Cases S, F and U. This is caused by an effect of the 

seeding structure. That is, in Case S, two top teams are not faced so much, but in Case U, 

definitely the top two teams have to face often. The result of Case F is roughly in the range 

between Cases S and U. 

In terms of the difference between the four formats in each case, MDE
2
 has the highest 

expected number of games between A1 and A2 than other formats. Especially in Case U, this 

tendency is distinct. Further, it would be interesting that MMDE
2
 has clearly lower expected 

number, not depending on these three Cases.  

In order to look at the detail of this tendency, the probabilities of facing 4 or 5 times in the 

tournament between A1 and A2 are shown in Figure 6. We can confirm that the seeding 

structure will definitely affect the number of games faced by two teams. That is, in "Case S" 

there are almost no differences between the four formats. Even MDE
2
 has a small probability 

for A1 and A2 to face 4 or 5 games. However, in "Case U" A1 and A2 face 5 times in the 

probability of around 0.3 when α is around 1.5.  

 

 

 

 

 

 

 

 

                           α                                                             α                                                           α 

    (a) Case S                                       (b) Case F                                       (c) Case U 

Figure 5. Comparisons of the expected number of games faced between the top two teams within Pool A (i.e. 

A1 and A2). 
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      (a) Case S                                       (b) Case F                                         (c) Case U 

Figure 6. Comparisons of the probability of facing 4 or 5 times in the tournament between the top two teams 

within Pool A (i.e. A1 and A2). 

Calculation result on occurrence of ties in round-robin format 

In terms of the occurrence of ties in the RR format, the probabilities of ties occurring with the 

same win-loss record in a pool are shown in Figure 7. Here, we calculated this probability with 

regard to the 12 different assignments of 4 teams such as {1,8,9,16} and {2,7,10,15} in a pool 

shown in Figure 3. The probabilities of ties occurring are more than 0.15 for all of the 12 

cases. From this result, the fact that ties occurred in 2 out of 6 pools in WBC 2006 and in 1 out 

of 4 pools in WBC 2013 is not curious. We do not discuss the tie breaking rule in detail here, 

but when the RR format is included in the tournament, as the probabilities of ties occurring are 

not small, the effect of the tie breaking rule will not be small on the selection of the top two 

teams in a pool. 

 

 

 

 

 

 

 

 

 

               α 

Figure 7. Probability of ties occurring in a pool in a round-robin format 

Discussion 

From the above calculation results, we here discuss our findings with respect to the probability 

of winning and the number of games played in the tournament. 

In terms of the probability of winning, other literature such as McGarry & Schutz (1997) 

calculated it in such formats as SE, RR and DE. We calculated it in terms of four other 
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formats, and found that the difference of the probabilities of the top two teams winning are 

small, especially between MDE
2
 and MMDE

2
, as shown in Figure 4. Thus, the existence of 

Game 6 in MDE
2
 hardly affects the probability of winning the tournament. Considering the 

small difference of the probability of winning and the total number of games in the 

tournament, MMDE
2
 format would be more efficient than other three formats.  

We also looked at the effect of the assignment of 16 teams to 4 pools on the probability of 

winning using Cases S, F and U. As the seeding favors stronger teams in general (Scarf & 

Yusof (2011), Monks & Husch (2009) and Scarf, Yusof, & Bilbao (2009)), the balanced 

assignment, Case S, would be naturally imagined to be preferable for the top team. However, 

when tournaments are unbalanced because the top two teams are assigned to the same pool, as 

in Case U, the probability of the top team winning the tournament is greater than in Case S in 

terms of MDE
2
, MMDE

2
, and RR&&MDE, in the area where α is large, as shown in Figure 4. 

That is, somewhat surprising, Case U seems to be preferable for the top team rather than Case 

S, when strength of teams are disparate. This phenomenon could be explained in part by the 

number of games between the top two teams. By comparing the calculation results of Cases S 

and U, the probability of facing 4 or 5 times in the tournament between the top two teams in 

Case U is definitely larger than in Case S, as shown in Figure 6, especially in the area where α 

is large. That is, the increase of the number of games between the top two teams seems to 

positively effect on differentiating the two teams’ probability of winning the tournament.  

In terms of the probability of the number of games, other literature such as Glenn (1960) 

calculated the expected total number of games in such formats as SE, RR and DE. We here 

calculated the probability distribution of the number of games by the same two teams. 

According to our calculation, it is not unusual for two teams to face 4 or 5 times in MDE
2
 

format, as shown in Figure 6(c). Thus, events such Japan facing South Korea 5 times in the 

2009 WBC under MDE
2
 format will plausibly occur, especially when two strong teams are 

assigned to the same pool.  

In terms of reducing the expected number of games played by the same two teams, we have 

quantitatively confirmed that MMDE
2
 is better than RR&MDE and RR

2
, and much better than 

MDE
2
, as shown in Figure 5. In this sense, MMDE

2
 is balanced for the same two particular 

teams which do not face often. 

Thus, MMDE
2
 seems to be efficient and balanced from the standpoint of selecting the top 

teams avoiding 4 or 5 time same match-ups throughout the tournament. If the total number, 33, 

of games is acceptable for conducting the WBC, MMDE
2
 should be recommended. Otherwise, 

if up to 4 games played by same teams is acceptable, the current RR&MDE format could be a 

reasonable selection from the four formats. In the use of the RR format, the tie breaking rule 

should be carefully designed for the selection of top two teams in a pool. 

Conclusions 

In this paper, we have presented the formulation for calculation of probabilities on the main 

tournament format of the WBC, and compare the 2013 tournament format to the past two 

tournament formats and the case of employing the MMDE format, from the aspect of the 

probability of winning the tournament and the probability distribution of the number of games 

played by the same teams, by changing the relative strength of teams. We have illustrated the 

difference between these four formats. 

As a calculation result, the difference of the probability of winning the tournament between the 
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four formats is not large. However, the expected number of games and the probability 

distribution of the number of games between two teams depend on the formats or the 

assignment of 16 teams to 4 pools. In general, we could conclude that MMDE
2
 format seems 

to be more efficient than other formats, and MMDE
2
 is also better than other formats in terms 

of the expected number of games played by same two teams. Thus, if the total number of 

games is acceptable for conducting the WBC, MMDE
2
 could be recommended. Otherwise, if 

up to 4 games played by same teams is acceptable, the current RR&MDE format could be a 

reasonable selection. Anyway, as the design of tournament should be considered from a variety 

of factors, this study should be extended including another aspect in evaluation of the 

tournament format. As a further study, we could statistically evaluate the strength of teams 

using empirical data, and apply statistical models to study a design of the WBC type 

tournament structure.  
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