
 

 

 

International Journal 
of  

Computer Science in Sport 

 
 

 

 
 

 

 

 

 

 

Volume 13/2014/Edition 2 

 

 

 

 



International Journal of Computer Science in Sport – Volume 13/2014/Edition 2              www.iacss.org 

   

 

2 

TABLE OF CONTENTS 

 

Arnold Baca 

Editorial ................................................................................................................... 
 

3 
  

RESEARCH PAPERS 
 

Julien Henriet                                                                                                           

Collaborative CBR-based Agents in the Preparation of Varied Training Lessons.. 
 
4 

Stephen J. Robinson                                                                                            

Extracting Individual Offensive Production from Baseball Run Distributions....... 
 
20 

Peter O’Donoghue 

Factors Influencing the Accuracy of Predictions of the 2014 FIFA World Cup…. 
 
32 

  

PROJECT REPORTS 
 

Peter Buzzacott, Andreas Schuster, Amir Gerges, Walter Hemelryck , Kate 

Lambrechts, Dennis Madden, Virginie Papadopoulou, Yurii Tkachenko, 

Aleksandra Mazur, Frauke Tillmans, Miroslav Rozloznik Qiong Wang Andreas 

Møllerløkken, François Guerrero & Arne Sieber
 

A New Model of Head-Up Display Dive Computer Addressing Safety-Critical 
Rate of Ascent and Returning Gas Pressure - A Pilot Trial….………..…………... 

 
 
50 

Robert Strange & Lior Shamir 

Prediction of American Football Plays Using Pattern Recognition……………… 

 

 
59 



International Journal of Computer Science in Sport – Volume 13/2014/Edition 2              www.iacss.org 

   

 

3 

Editorial 

Arnold Baca 

Department of Biomechanics, Kinesiology and Applied Computer Science, 

ZSU, University of Vienna 

 

 

Dear readers: 
 

Welcome to the winter 2014 issue of the International Journal of Computer Science in 

Sport (IJCSS). 
 
The issue contains three research papers and two project reports.  
 
Julien Henriet designed a CBR-based system which considers previous training sessions to 
design new ones. The system was applied to aikido and was evaluated by experts. 
  
Stephen J. Robinson developed a method to determine a baseball player’s worth in context 
of his team’s lineup using a refinement of the ‘wins above replacement’ method. 
 
Peter O’Donoghue compared the accuracy of different regression models of the FIFA 2014 
World Cup to each other using different sets of variables. The models which did not satisfy 
the assumptions of linear regression were more accurate than the models which satisfied the 
assumptions. 
 
In their project report Peter Buzzacott et al. introduce a new model of head-up displays for 
recreational divers which can be fitted to the regulator hose outside the mask lens. The 
displayed information can help preventing rapid ascent injuries.  
 
The project report by Robert Strange and Lior Shamir illustrates how offensive playing 
patterns in NFL games can be predicted using Support Vector Machines and a Weighted 
Nearest Distance method. 
 
If you have any questions, comments, suggestions and points of criticism, please send them 
to me.  
 

Best wishes for 2015! 

 

Arnold Baca, Editor in Chief 
University of Vienna, arnold.baca@univie.ac.at 
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Collaborative CBR-based Agents in the Preparation 
of Varied Training Lessons 

Julien Henriet 

Université de Franche-Comté, Chrono-Environnement UMR 6249 CNRS, FEMTO-ST DISC 

UMR 6174 CNRS, 16 Route de Gray, 25000 Besançon, France 

Abstract 

Case-Based Reasoning (CBR) is widely used as a means of intelligent tutoring 
and e-learning systems. Indeed, course lessons are elaborated by analogy: this 
kind of system produces sets of exercises with respect to student level and class 
objective. Nevertheless, CBR systems always result in the same solution to a 
given problem description, whereas teaching requires that monotony be broken in 
order to maintain student motivation and attention. This is particularly true for 
sports where trainers must propose different exercises to practise the same skills 
for many weeks. We designed a CBR-based system that takes into account any 
previous lessons offered and designs new ones so as to vary the exercises each 
time: reference to prior lessons helps to avoid giving the same lesson twice. In 
addition, the system is based on collaborative agents, each taking into account the 
exercises proposed by others so that each activity is proposed only once during a 
lesson. Five qualified sports trainers tested and evaluated the ability of this system 
as a means to design varied aikido training lessons and proved that our system is 
capable of creating classroom activities that are diverse, changing, pertinent and 
consistent. 

KEYWORDS: CASE-BASED REASONING, MULTI-AGENT SYSTEM, 
COLLABORATION, EDUCATION SYSTEM, SPORTS TRAINING. 

Introduction 

One of the major challenges in teaching is to maintain student motivation. Repetition of the 
same exercises may lead to monotonous and boring lessons. In contrast, originality and 
exercise diversity will challenge students and maintain their interest, even if the same aspect is 
practised during many class sessions. This is particularly true in sports where trainers must 
propose varied exercises while having to train for the same skill over a block of weeks. Most 
of the tools provided by computer science, particularly from Artificial Intelligence (AI), would 
nevertheless produce exactly the same exercises and lessons for training in a single given skill. 
In this particular domain, repetitive activities are a drawback, yet lesson planning is a process 
based on adaptation of past experiences. This paper presents a MultiAgent System (MAS) that 
uses Case-Based Reasoning (CBR) systems to provide lessons with widely differing 
progressions. CBR is a problem solving method that adapts the solutions from similar known 
problems in order to solve new problems (Kolodner J. , 1993). It stores cases called source 
cases that are composed of two parts, problem and solution. Problems that occur and must be 
solved are called target cases. CBR describes a target case problem, retrieves the source cases 
whose problem parts most resemble those of the target case, reuses (adapts) the solutions of 
these most similar source cases, revises the adapted source case and capitalises this new 
experience, storing it in the system’s knowledge base. CBR is widely employed in Intelligent 
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Tutoring Systems (ITS) and e-learning systems (Graesser, Conley, & Olney, 2012). It is 
actually well-suited to this kind of system (Jamsandekar & Patil, 2013), as well as other tools 
from AI-like multiagent systems (Rishi, Govil, & Sinha, 2007), Artificial Neural Network 
(Baylari & Montazer, 2009) and Genetic Algorithm (GA) (Tan, Shen, & Wang, 2012). J. L. 
Kolodner (Kolodner, Cox, & Gonzales-Calero, 2005) distinguished between two types of 
CBR-inspired approaches to education: Goal-Based Scenarios (Schank, Fano, Bell, & Jona, 
1994) where learners achieve missions in simulated worlds, and Learning By Design 
(Kolodner, Owensby, & Guzdial, 2004) in which learners design and build working devices to 
obtain feedback, thus confronting themselves with the real world. O.P. Rishi et al. designed an 
ITS based on agents and a CBR system (Rishi, Govil, & Sinha, Distributed case-based 
reasoning for intelligent tutoring system: An agent based student modeling paradigm, 2007) in 
which a Personal Agent is responsible for determining student level. A Teaching Agent then 
determines the education strategy with the help of CBR regarding the description of the student 
level transmitted. Finally, a Course Agent provides and revises the lessons and exercises 
corresponding to the strategy proposed by the system with the help of a tutor. The CBR and 
GA based e-learning system proposed by Huang et al. also provides lessons taking into 
account the curriculum and the incorrect response patterns of a pre-test given to the learner 
(Huang, Huang, & Chen, 2007). A. Baylari and Gh. A. Montazer focused on the adaptation of 
tests to obtain a personalised estimation of a student’s level (Baylari & Montazer, 2009). They 
used an Artificial Neural Network to correlate the student’s answers to the tests and the 
exercises proposed by the teachers. Nevertheless, these approaches are insufficient for our 
system which seeks to change the proposed exercises. The systems in these approaches always 
correlate the same exercises to a single objective and learner level/experience.  

Our application domain requires that a variety of solutions be proposed for a given problem, 
taking into account solutions previously proposed. Indeed, when an athletic trainer wants to 
prepare an athlete, he/she must take care to maintain the latter’s motivation. Thus, the proposed 
training sessions and exercises must be varied, since the same exercises practised time after 
time would be boring. Finally, our system is based on agents: a lesson has one objective which 
is divided into sub-objectives and each agent is in charge of one sub-objective. This introduces 
another difficulty since an exercise must not be proposed more than once in the same lesson. 
Thus, solutions proposed by all the agents must be chosen collectively, taking into account the 
training history (the previous lessons proposed to the athlete during the season) as well as the 
solutions proposed by all other agents. Our application is therefore a MAS based on 
collaborative agents. E. Plaza and L. McGinty presented different policies suited to different 
cases of distributed CBR systems (Plaza & Mc Ginty, 2005). Nevertheless, these policies are 
well-suited to determining which solution is the best, considering a set of concurrent proposed 
solutions. Each agent of our system must provide solutions to different problems and which are 
drawn from a set of common exercises, and this without proposing exercises already chosen by 
the other agents. In the next section, we present the architecture of the distributed system we 
have designed. Its implementation and performance are then presented and analysed. 

Methods 

In the first part of this section, we detail the lesson structure of our distributed system. The 
distributed architecture and the data flows are examined in the second part. Finally, in the third 
part, we present how a lesson is designed theoretically, with an example to illustrate. 



International Journal of Computer Science in Sport – Volume 13/2014/Edition 2              www.iacss.org 

   

 

6 

Lesson structure 

To coach an athlete for participation in a specific competitive event, the trainer must make 
him/her improve different skills beforehand. The trainer divides the course into cycles of three 
to seven weeks, with a minimum of three lessons per week. During each cycle, the trainer 
emphasises one particular skill. Thus, over many lessons, the trainer sets the same objective 
(Matveev, 1965), (Issurin, 2010), (Garcia-Pallares, Garcia-Fernandez, Sanchez-Medina, & 
Izquierdo, 2010), (Ronnestad, et al., 2012). In sports, an objective is usually expressed as 
follows: “the athlete(s) must become capable of doing something”. This objective may be 
technical, tactical, physical or sometimes even psychological. The objective is then divided 
into different sub-objectives which are elementary and that permit the athlete to reach the main 
objective. Many lessons are usually necessary in order to work and attain all the sub-objectives 
of a single objective. In addition, one sub-objective may be shared by two or more objectives. 
Going a step further, the same relations and constraints exist between sub-objectives and 
exercises: to reach one sub-objective, the trainer will choose and prepare different exercises 
from among a set of known ones, and a given exercise may help to reach many other sub-
objectives. For our application, we have taken the example of training in aikido, a Japanese 
martial art. Table 1 presents an example of a support document elaborated by aikido trainers. 
As presented in this table, the trainer chose an objective for the lesson in function of the 
students’ level and abilities. The objective is then divided into sub-objectives; aikido 
techniques are proposed for practice in order to reach each sub-objective. Students receive 
instructions with each technique.  

Table 1. Example of document prepared by aikido trainers for their lessons. 

Objective: Using a grip Duration: 30 min. 

Sub-objective aikido technique Duration Instructions 

Breaking the 
partner’s posture 

 
Ryotedori Tenchinage 

 
10 min 

- Place yourself behind your partner; 
- Use both of your hands to place your 
partner’s shoulders behind his/her heels. 

 
Katatedori Kokyuhoo 

 
10 min 

- Your gripped hand goes to the floor; 
- Synchronise yourself with your partner; 
-  Your partner must go for the hand he/she 
wants to grab. 

Relaxing despite a 
grip 

 
Katateryotedori Kokyunage 

 
10 min 

- Even if your wrist is strongly grabbed, all 
the other parts of your body can move 
(shoulders, hips, feet). 

In this example, the chosen objective ‘using a grip’ is divided into two sub-objectives. The first 
is practised through two aikido techniques that help the students to understand how to break 
their partner’s posture and to train themselves to do this. Finally, a third technique invites the 
students to move all the parts of their body that the partner is not grabbing. Thus, aikido is 
based on martial techniques that will emphasise a particular point and therefore allow one to 
understand, practise and reach each sub-objective listed above. An exercise consists of 
practising one technique following the trainer’s instructions. A technique will require different 
skills, so trainer can propose the same technique for different sub-objectives. The instructions 
will then stress one particular aspect of the technique regarding the sub-objective to be reached. 
Consequently, our application must (1) propose pertinent sub-objectives in function of the 
objective decided by the trainer and the level the students have reached in their previous 
lessons, (2) provide aikido techniques with instructions and durations as regards each sub-
objective and the abilities students have already acquired, (3) ensure that each technique is not 
proposed more than once during a given lesson and (4) require all the lessons in the same cycle 
(to reach a single objective) to be different. In addition, the trainer must (5) determine the 
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importance and the time to be spent on each sub-objective and aikido technique, (6) quantify 
the degree of assimilation by students for each objective and sub-objective, and (7) modify 
some parts of the proposed lessons at will. Thus, we have created two types of CBR, and our 
system deals with four types of case: 

• CBR that proposes sub-objectives regarding objectives:  
o Source cases noted s=(O, U{(SO, DS

SO,O)}) where objective O is the problem 
part of s, and the set of sub-objectives SO with the duration SO must be 
practised during the season (noted D

S
SO,O) in order to reach O, and is the 

solution part of s noted U{(SO, DS
SO,O)}; 

o Target cases noted t=(O, U{(SO, DT
SO,O)}); 

• CBRs that propose exercises regarding sub-objectives: 

o Source cases noted σ=(SO, U{(EX, INSTREX,SO, CD
σ

EX,SO, RD
σ

EX,SO)}): SO is 

the problem part of σ, and its solution part is composed of EX which is the 
proposed exercise, INSTREX,SO which is the set of instructions to give to the 

students when EX is proposed in order to reach SO,  CD
σ

EX,SO which is the 
duration EX must be practised when proposed in regards of SO (CD stands for 

Constant Duration), and RD
σ

EX,SO which is the duration EX must be practised 
during the season in order to reach SO (RD stands for Remaining Duration); 

o Target cases noted τ=(SO, U{(EX, INSTREX,SO, CD
τ
EX,SO, RD

τ
 EX,SO)}). 

Actually, durations DS
SO,O and RD

σ
EX,SO give the priorities of each sub-objective and exercise, 

priorities which increase with the time available. The initial durations are given by the trainer, 
but further study will base these values on pre-tests as proposed in different approaches (Tan, 
Shen, & Wang, 2012), (Huang, Huang, & Chen, 2007). The system must be initialised each 
year, at the beginning of the season. Further investigation will focus on its initialisation 
process.  

System architecture and communication model 

MAS constitute a paradigm designed to handle distributed systems. They are the product of AI 
research and reflect its limits: a single AI representing the behaviour of a unique entity cannot 
deal with collective behaviour. Thus the idea of intelligence distribution emerges and so one 
can speak of Distributed Artificial Intelligence (DAI). In a MAS, an agent is a physical or 
abstract entity with some specific characteristics: a perception of its environment (including 
itself and the other agents), a capability to act (upon itself or upon the environment) and an 
autonomy in its decisions and actions. To design a MAS is not only to design the different 
agents but the environment too. As explained in the previous section, the choice of the sub-
objectives regarding an objective is an autonomous process, as well as the determination of the 
exercises regarding a sub-objective, the other exercises chosen and their priority level. Each 
process is based on specific rules and reasoning. In addition, it must interact with the other 
processes and take their choices into account. Thus, each process must be autonomous, make 
decisions, infer changes as to the choices made by the others, be aware of its environment, 
communicate and interact with the others. Consequently, we can call them agents. As shown in 
Figure 1, the system is composed of four types of agent: the trainer agent, the student agents, 
the Objective Agent (OA) which is responsible for choosing the sub-objectives regarding an 
objective requested by the trainer, and the exercise agents. Each of these agents is responsible 
for proposing the exercises the best suited to one sub-objective. A single sub-objective is given 
by the OA or by another Exercise Agent (EA) to each EA. Each EA must also take into 
account the choices made by the other EAs: each exercise may be done only once during the 
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entire lesson. Thus, the choices of the other EAs are shared and a decision policy is designed 
and tested. 

 

Figure 1. Platform communication model 

To share the memory among the EAs, we have chosen the Pilgrim protocol which is an 
efficient and secured protocol for concurrent, cooperative and collaborative works with shared 
memory  (Garcia, Guyennet, Henriet, & Lapayre, 2006). The agents are dispatched over a ring 
and a token is exchanged. The originality in this protocol is the fact that the token is carrying 
each stored modification. Each agent has a copy of the shared memory (i.e. the set of exercises 
proposed by the other agents). In this protocol, the token is a structured entity that is 
transmitted from agent to agent and dispatched over a logical ring in an order determined at the 
beginning of the cooperative work. When an agent wants to modify the shared memory, it 
must place a reservation flag above the token if there is not yet another flag above it. The token 
continues its course over the ring and when the agent again receives the token, it is allowed to 
re-write the modifications. Thus, all the other agents receive these modifications during the 
next token revolution, after which all the agents have exactly the same version of the shared 
memory even if two or more agents want to modify it at the same time. The decision policy is 
implemented over each EA that is able to modify its set of proposed exercises, if one or more 
of its exercises are identical to any of those found in another set. 

Determination of sub-objectives 

Once the lesson objective is chosen by the trainer, and after having analysed any additional 
student needs, the objective agent is responsible for choosing the set of sub-objectives and 
their duration in function of those which have been previously met and also according to the 
students’ degree of assimilation. This choice is made by the OA following the CBR approach. 
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Case model 

For the OA, a case is a set comprised of two parts, a problem and a solution. As previously 
presented, each problem part is composed of an objective O, and the solution part of a set of 
(SO, DSO,O) where SO is a sub-objective. The durations DSO,O are updated during the 
capitalisation process taking into account the remarks made by the trainer during the revision 
phase. Since the students’ levels of expertise rise, we can consider that durations decrease and 
we thus speak of “remaining durations”. 

 

 

 

 

 

 

 

 

Figure 2. Process of determination of sub-objectives 

Retrieval phase 

As shown in Figure 2, the retrieval phase is responsible for retrieving and sorting all the 
possible sub-objectives linked to a single objective. Thus, the retrieval phase consists of 
retrieving the source case for which the chosen objective is the problem part.  

Adaptation phase 

As presented in Figure 2, the adaptation phase consists of computing the durations of each sub-
objective. Firstly, the adaptation module sorts the set of sub-objectives with their durations so 
that the sub-objective with the maximum duration comes first and the one with the minimum 
comes last. Then, the proposed durations of t are calculated. For this computation, the trainer 
must give the desired number of sub-objectives, the total number of sub-objectives associated 
with one objective and the total duration of the course respectively noted NSO, Card(SolS) and 
D. The adaptation consists of giving the same duration to each desired sub-objective.  

Thus, t = (O, Un∈{1..Card(Sols)}{(SOn, D
T,n

SOn,O)}) where DT,n
SOn,O=min(DS,n

SOn,O , (D/NSO)) ∀ n ∈ 
{1..NSO}, then filling the possible remaining time with sub-objectives of lower priority:  

∀n∈{(NSO+1)..Card(SolS)}, if (Σi=1
n-1

D
T,n

SOn,O)<D)  

then DT,n
SOn,O=min(DS,n

SOn,O , (D-Σi=1
n-1

D
T,n

SOn,O)),  

otherwise (SOn , D
T,n

SOn,O) is removed from the solution part of t. 

Revision phase 

The revision phase begins just after the adaptation, before the lesson, and finishes afterwards 
with remarks and evaluation of the students’ acquired level of capacity. Consequently, the 
revision phase is one of the most important in our system after the beginning of the lesson. As 

Ontology for 
objectives and 
sub-objectives 

Trainer 

Objective 
Lesson duration 

Retrieval phase Complete list of sub-
objectives  

Adaptation phase 

List of sub-objectives 
adaptated to the lesson 
duration. Revision phase 

Revised list of sub-
objectives and 
evaluations of the 
students’ level. 

Lesson 

Capitalisation 

New durations 
and new sub-
objectives. 
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reported in Figure 2, the trainer modifies (adds, updates, removes) the sub-objectives and 
durations, and following the lesson, the trainer evaluates the skills mastered by the students. 
After having modified the solution part of t and before the lesson begins, each element of t is 
transmitted to one EA that will have to associate the corresponding exercises. After the lesson, 
each sub-objective duration is modified: for each element of the solution part of t, 
D

T,n
SOn,O=D

T,n
SOn,Ox(levelSOn/10) where levelSOn is the evaluation from 0 to 10 of the students’ 

level for the sub-objective SOn. Thus, the remaining time associated with each sub-objective 
will decrease slowly as long as students do not reach the required level. In contrast, this 
remaining duration will decrease quickly once they have reached the expected level. 

Capitalisation phase 

The first task consists of retrieving the source case s for which the selected objective O is the 
problem part, and of adding the sub-objectives that do not yet exist (the ones that may have 
been added during the revision phase). The system then subtracts the durations of t from all the 
durations of the source cases: for all SO in the solution part of t, for all s for which SO appears 
in the solution part (even if its objective Os is not the selected objective O), DS

SO,Os=min(0 , 
(DS

SO,Os-D
T

SO,O)). 

Example of how lesson sub-objectives are selected 

This part presents the method through an example of how an aikido training lesson is planned.  

Table 2. Two source cases stored in the system. 

Source case Objective Sub-objective Duration (minutes) 

1 Using a grip Breaking the partner’s posture 100 

Relaxing despite a grip 100 

Making the partner lose balance 90 

Pivoting around a grip 90 

2 Breaking a grip Breaking a single grip 100 

Relaxing despite a grip 80 

Table 3. Chosen sub-objectives and their evaluation by the trainer. 

Sub-objective Duration (minutes) Trainer’s evaluation (/10) 

Breaking the partner’s posture 30 7 

Relaxing despite a grip 30 3 

Making the partner lose balance 30 4 

Table 4. Cases stored in the ontology objective/sub-objective. 

Source case Objective Sub-objective Duration (minutes) 

1 Using a grip Breaking the partner’s posture 100-(30x7/10)=79 

Relaxing despite a grip 100-(30x3/10)=91 

Making the partner lose balance 90-(30x4/10)=78 

Pivoting around a grip 90 

2 Breaking a grip Breaking a single grip 100 

Relaxing despite a grip 80-(30x3/10)=71 

Table 2 presents two source cases. Assuming, the trainer chooses the objective O =‘Using a 
grip’ as the main point of a lesson D = 90 minutes long and with a minimum of NSO = 3 
different sub-objectives. The trainer transmits these parameters to the OA. Obviously, the OA 
remains case 1. The adaptation process then sorts the sub-objectives according to their 
durations and designates the solution presented in Table 3, allocating D = 90/3 = 30 to each 
selected sub-objective duration. Hence, assuming the trainer has not modified the list of sub-
objectives, the examples of the trainer’s evaluations, made during the revision process just 
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after the course, are reported in the last column of Table 3. Consequently, after capitalisation, 
the new durations will be as reported in Table 4. Even if a sub-objective is associated with 
another objective, its duration is diminished for both. This is the case for the last associated 
sub-objective of source case 2. As shown in this table, the less assimilated sub-objectives 
(“Relaxing despite a grip” and “Pivoting around a grip”) become the most immediate ones. We 
also note that, as required for the system specification, if the same objective (“Using a grip”) is 
selected again, the less assimilated sub-objective with other sub-objectives will be selected 
(“Relaxing despite a grip”, “Pivoting around a grip”, “Breaking the partner’s posture”). Thus, 
as required, the proposed solutions will change even if the same objective is requested again 
later. 

Selection of exercises 

This sub-section presents how the exercises are chosen regarding the selected sub-objectives. 

 

 

 

 

 

 

 

 

 

Figure 3. Process of exercise selection 

Case model  

For this part of the system the problem part of a case is composed of a sub-objective while the 
solution part contains a set of exercises with a specified duration to be spent on them. Though 
the durations for exercises are constant, for sub-objectives the total remaining duration 
required for each exercise must be specified and will decrease from one lesson to the next. 

Consequently, as presented above, each source case σ=(SO, U{(EX, INSTREX,SO, CD
σ

EX,SO, 

RD
σ

EX,SO)}) contains the exercises possible regarding SO. Assuming Card(Solσ) is the number 

of exercises of the solution part of σ, the target case τi taken into account by the EA EAi is 

noted τi=(SOi , Un∈{1..Card(Solσ)}{(EXn , INSTREXn,SOi , CD
τi

EXn,SOi , RD
τi

EXn,SOi)}). The different 
steps of the exercise selection process are reported in Figure 3. 

Retrieval phase 

EA1 is the EA initiated by the trainer. Hence, its role also consists of initiating as many EAs as 
required, and creating the token. Each EAi then retrieves the source case corresponding to SOi. 

Adaptation phase 

The adaptation phase requires the EAs to communicate with each other in order to associate 
exercises with sub-objectives sharing their solutions according to the Pilgrim protocol (Garcia, 
Guyennet, Henriet, & Lapayre, 2006). The number of exercises selected depends on the 

Ontology for 
sub-objectives 
and exercises 

OA 

Sub-objective 
Sub-objective duration 

Retrieval phase Complete list of 
exercises  

Adaptation phase 

List of exercises 
adaptated to the lesson 
duration according to the 
remaining durations and 
the exercises chosen by 
the other Eas. 

Revision phase Revised list of 
exercises and 
evaluations of the 
students’ level. 

Lesson 

Capitalisation 

New remaining 
durations and 
new exercises. 

Trainer 
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duration required. In addition, we assume that the exercises with the highest remaining 
durations are the ones the most important to practice, or must be practiced regularly to reach a 
sub-objective. For this reason, the exercises are decreasingly ordered according to their 
remaining duration and each one is added until the sum of constant durations reaches the 

required level for sub-objective SOi, i.e. (ΣnCD
τi

EXn,SOi) ≥ D
T,i

SOi,O. Before placing its list of 
exercises on the token, EAi verifies whether each exercise has been selected with a higher or 
equal duration by another EA. If so, EAi removes its exercise and replaces it with the next 
unselected one. EA1 acknowledges when all the sub-objectives have been provided with 
exercises and acknowledges again when the list is complete. Then, when EA1 receives the 
token again, it verifies whether any modification has been made by the other EAs. The token 
continues to travel around the ring until EA1 receives it with the complete list acknowledged 
and with no further modification. During the process of selection of SOs, the trainer may have 
created a new sub-objective which will not be associated with any exercise. If so, the EA may 
confirm that no exercise was found for this SO by using the exercise named LackOfExercise 

with the duration required. Also, the EA may not have enough remaining exercises for the 
duration period and can also use LackOfExercise for this. 

Revision phase 

The OA performs a revision phase, but the trainer can also create, modify, replace or remove 
exercises, their durations and their instructions before the lesson. After the course, the trainer 
evaluates student levels. The same computations as those applied to SO determination are 
applied to the exercise durations of the ontology:  

∀i , ∀n ∈ {1..NEX
i}, CD

τi
EXn,SOi = CD

τi
EXn,SOi x (levelEXn/10). 

Capitalisation phase 

Table 5. Cases stored in the ontology sub-objective/exercise.  

Sub-objective Aikido technique Constant 
duration 
(min.)  

Remaining 
duration (min.) 

Breaking the partner’s posture Ryotedori Tenchinage 10 50 

Breaking the partner’s posture Katatedori Kokyuhoo 10 50 

Breaking the partner’s posture Katateryotedori Kokyuhoo 10 40 

Breaking the partner’s posture Aihamikatatedori Ikyo 10 40 

Breaking the partner’s posture Aihamikatatedori Iriminage 10 30 

Relaxing despite a grip Katateryotedori Kokyunage 10 50 

Relaxing despite a grip Katateryotedori Kokyuhoo 10 50 

Relaxing despite a grip Katateryotedori Udekimenage 10 40 

Making the partner lose balance Katatedori Kokyunage 10 50 

Making the partner lose balance Aihaminkatatedori Ikyo 10 50 

Making the partner lose balance Ushiroryotedori Kokyunage 10 50 
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Table 6. Exercises initially selected by EA1, EA2 and EA3.  

Agent Aikido technique Constant duration (min.) Remaining duration (min.) 

EA1 Ryotedori Tenchinage 10 50 

EA1 Katatedori Kokyuhoo 10 50 

EA1 Katateryotedori Kokyuhoo 10 40 

EA2 Katateryotedori Kokyunage 10 50 

EA2 Katateryotedori Kokyuhoo 10 50 

EA2 Katateryotedori Udekimenage 10 40 

EA3 Katatedori Kokyunage 10 50 

EA3 Aihamikatatedori Ikyo 10 50 

EA3 Ushiroryotedori Kokyunage 10 50 

Table 7. Modified list of exercises of EA1. 

Agent Aikido technique Constant duration (min.) Remaining duration (min.) 

EA1 Ryotedori Tenchinage 10 50 

EA1 Katatedori Kokyuhoo 10 50 

EA1 Aihamikatatedori Iriminage 10 30 

During the capitalisation process, any new exercises possible are added, as previously, to the 
corresponding case. Then, the same kind of computation as before is applied to each exercise, 

whatever the associated SO: ∀SO , ∀EX , RD
σ

EX,SO=min(0 , (RD
σ

EX,SO - CD
τ

EX,SO)). 

Table 8. Exercises finally transmited to the trainer.  

Sub-objective Aikido technique Duration (min.) 

Breaking the partner’s posture Ryotedori Tenchinage 10 

Breaking the partner’s posture Katatedori Kokyuhoo 10 

Breaking the partner’s posture Aihamikatatedori Iriminage 10 

Relaxing despite a grip Katateryotedori Kokyunage 10 

Relaxing despite a grip Katateryotedori Kokyuhoo 10 

Relaxing despite a grip Katateryotedori Udekimenage 10 

Making the partner lose balance Katatedori Kokyunage 10 

Making the partner lose balance Aihamikatatedori Ikyo 10 

Making the partner lose balance Ushiroryotedori Kokyunage 10 

Table 9. Cases stored in the ontology sub-objective/exercise after revision. 

Sub-objective Aikido technique Constant duration 
(min.) 

Trainer evaluation 
(/10) 

Remaining duration 
(min.) 

Breaking... Ryotedori Tenchinage 10 8 50 – 8 = 42 

Breaking... Katatedori Kokyuhoo 10 6 50 – 6 = 44 

Breaking... Katateryotedori Kokyuhoo 10  40 – 4 = 36 

Breaking... Aihaminkatatedori Ikyo 10  40 – 5 = 35 

Breaking... Aihamikatatedori Iriminage 10 7 30 – 7 = 23 

Relaxing... Katateryotedori Kokyunage 10 3 50 – 3 = 47 

Relaxing... Katateryotedori Kokyuhoo 10 4 50 – 4 = 46 

Relaxing... Katatryotedori Udekimenage 10 2 40 – 2 = 38 

Making... Katatedori Kokyunage 10 4 50 – 4 = 46 

Making... Aihamikatatedori Ikyo 10 5 50 – 5 = 45 

Making... Ushiroryotedori Kokyunage 10 3 50 – 3 = 47 

Example of exercise selection for one sub-objective 

In this subsection we consider the example presented in the previous section and the selected 
sub-objectives with durations reported in Table 3. Table 5 presents certain sets of aikido 
techniques, called by their Japanese name, that correspond to each of the selected sub-
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objectives. For greater clarity we have not reported the instructions for each exercise in the 
example, assuming they were of no help in understanding how the distributed system works. 
Thus, three EAs are called by the OA: EA1 is the corresponding agent that must deal with the 
sub-objective ‘Breaking the partner’s posture’. It places the two remaining sub-objectives on 
the token which it transmits to EA2, in charge of the sub-objective ‘Relaxing despite a grip’. 
EA2 then transmits the token with the last sub-objective to EA3 which will have to manage 
‘Making the partner lose balance’. By the time the token returns to EA1, the latter will have 
selected the techniques and durations reported in Table 6. The agent places them on the token 
and transmits it to EA2 which, upon receiving the token, has already selected first the 
techniques reported in Table 6. It is worth noting that EA1 and EA2 have both chosen 
’Katateryotedori Kokyuhoo’, but since the remaining duration of this technique for the EA2 
sub-objective (50) is greater than the remaining duration for the EA1 sub-objective (40), EA2 
places it and EA1 will be the agent that must replace it. The token is then transmitted to EA3. 
Before the token arrives, EA3 has selected the techniques reported in Table 6. None of the 
selected techniques has been used by the other agents, thus EA3 can place them on the token 
and transmit them to EA1. When EA1 receives the token, it remarks that it must change one of 
the techniques that it has proposed. Thus, it selects the immediately preceding and most  
available technique instead and adds a complete list of acknowledgements to the token before 
transmitting it to EA2. The techniques finally proposed by EA1 are presented in Table 7. Since 
each technique figures only once, the lesson presented in Table 8 is transmitted to the trainer. 
After the lesson, the trainer must evaluate the assimilation of each technique proposed. 
Assuming the evaluations as reported in Table 9, the new remaining durations are computed 
for each exercise and stored in the ontology by EA1. 

Results  

In this section we present the application’s performances and how they were evaluated. The 
system was evaluated for both of the criteria for which it was designed: its ability to propose 
varied courses (sub-objectives and exercises), and to propose pertinent courses (sub-objectives 
and exercises). Hence, five qualified aikido trainers evaluated 15 lessons proposed by the 
implemented system with the same objective (‘Use a grip’). They previously entered 6 
corresponding sub-objectives and their initial durations. They also entered 5 techniques per 
sub-objective aimed at the sub-objectives previously entered, along with their durations. They 
simulated the skill level of a group of students to whom the course was proposed. We then 
analyse in greater detail the contents of the lessons of one of the trainers.  

Figure 4 shows the scores given to the lessons proposed by our application to each trainer. 
These scores are based on two criteria: (1) the pertinence of the chosen sub-objectives 
regarding the lessons, along with previously given scores, and (2) the pertinence of the 
exercises (techniques) determined by the system. We also asked the trainers to take into 
account the variety of the sub-objectives and exercises. Ten points were given to very 
satisfying lessons, whereas poorly satisfying courses were given a score of 0. Most of the 
lessons have scores from 5 to 9 points. The mean scores given to the courses by the trainers 
vary from 5.7 to 7.7 points. Most of the trainers gave lower scores (4 points) to the third lesson 
which they felt to be too similar to the two previous lessons. After any too-repetitive a lesson, 
the system always proposed a very different one, which was much appreciated by the trainers. 
This is particularly highlighted by the scores given by the third trainer who did not initialise 
the system with enough exercises and sub-objectives and was increasingly disappointed by the 
courses proposed from lesson 9 to lesson 15. The trainers were also disturbed by the order of 
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presentation of the exercises and sub-objectives. Actually, there is an internal order of 
presentation of the sub-objectives and techniques for each lesson that the system does not yet 
take into account. This will be the subject of a future study. 

 

Figure 4. Scores given by five aikido trainers to 15 lessons proposed by the system  

For each lesson we have listed the sub-objectives (Table 10) and techniques (Table 11) 
proposed by the system to Trainer 1. All of the sub-objectives appear with about the same 
frequency (7 or 8 times each). The sub-objectives most often chosen for the first three lessons 
(’Break partner’s posture’ and ’Do Irimi despite a grip’) were the ones with the longest 
durations. This table clearly shows there is a variation and turn-over in the chosen sub-
objectives. Nevertheless, for the first 6 lessons, this trainer gave the same score to all of the 
sub-objectives of each lesson. The use of different scores for the sub-objectives in the 
following lessons implied that these should be mixed and varied.  

Table 10. Sub-objectives chosen by the system. 

Objective: Use a grip 

Lesson 
number 

Break 
partner’s 
posture 

Do Irimi 
despite a 
grip 

Move 
despite a 
grip 

Pivot despite a 
grip 

Relax despite 
a grip 

Make lose 
balance 

1 Chosen Chosen Chosen    

2 Chosen Chosen  Chosen   

3 Chosen Chosen Chosen    

4    Chosen Chosen Chosen 

5    Chosen Chosen Chosen 

6 Chosen Chosen Chosen    

7    Chosen Chosen Chosen 

8 Chosen Chosen Chosen    

9   Chosen  Chosen Chosen 

10  Chosen  Chosen  Chosen 

11 Chosen  Chosen  Chosen  

12    Chosen Chosen Chosen 

13 Chosen Chosen Chosen    

14    Chosen Chosen Chosen 

15  Chosen Chosen   Chosen  
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Table 11. Number of times each technique was chosen. 

Aikido technique Number of times of 
appearance (lesson 
numbers) 

Shannon 
index 

Aikido technique Number of times 
of appearance 
(lesson numbers) 

Shannon 
index 

Aihamikatatedori Ikyo 7 (1-5;8;13) 0.85 Katateryotedori Kokyuhoo 8 (1-5;7;9;12) 0.98 

Ryotedori Ikyo 7 (1;3;6;8;9;11;15) 0.85 Katateryotedori Udekimenage 5 (2;4;5;7;12) 0.61 

Katatedori Ikyo 3 (6;10;15) 0.37 Katadorimenushi Kokyunage 5 (4;7;9;12;14) 0.61 

Katatedori Kokyuhoo 7 (1-3;6;8;11;13) 0.85 Maeryokatadori Iriminage 4 (3;8;13;15) 0.49 

Maeryokatadori Kokyunage 1 (15) 0.12 

Katadori Shihonage 4 (4;10;12;14) 0.49 Katadorimenushi Kotegaeshi 5 (5;7;10;12;15) 0.61 

Katadori Kokyunage 7 (1-3;6;8;10;15) 0.85 Katateryotedori Shihonage 2 (11;14) 0.24 

Katateryotedori Ikyo 3 (2;9;14) 0.37 Aihamikatatedori Iriminage 4 (1;6;10;13) 0.49 

Ushiroryotedori Ikyo 4 (6;11;13;14) 0.49 Katateryotedori Kokyunage 7 (1;4;5;7;9;11;12) 0.85 

Yokomenushi Ikyo 4 (6;8;11;13) 0.49 Katateryotedori Kotegaeshi 2 (11;14) 0.24 

Ryotedori Kotegaeshi 7 (1;3;6;8;9;13;15) 0.85 Ushiroryotedori Iriminage 5 (5;8;9;11;13) 0.61 

Katadori Iriminage 3 (5;10;12) 0.37 Ushiroryotedori Kokyunage 6 (4;7;9;10;12;15) 0.73 

Ryotedori Tenchinage 7 (1-3;6;8;11;13) 0.85 Ushirokatatedorikubishime 
Sankyo 

3 (7;12;14) 0.37 

Katatedori Kokyunage 9 (2-5; 7; 9; 10; 14; 
15) 

1.10 Katatedori Udekimenage 6 (2;4;5;7;10;14) 0.73 

We also discussed with the trainers the fact that some lessons mainly proposed the same sets of 
sub-objectives. They did not consider this to always be a drawback since a student must 
practise again and again to reach an important sub-objective. Some sub-objectives are thus 
repeated in the beginning of the training cycle; progressively, as soon as possible, other sub-
objectives are wisely introduced and practised more and more at the end of the cycle. The 
trainers considered this to be satisfying for the selection of sub-objectives, but thought that it 
would have been a real problem if the selected sets of exercises had been nearly identical from 
one lesson to another. However, all the sets of exercises proposed by our application were 
different. Table 11 shows the number of times each exercise (aikido technique) was chosen 
and the lesson numbers in which they appeared. As shown in this table, all of the techniques 
were selected once or more, which reveals a good turn-over of exercises from one lesson to 
another. Techniques chosen once, twice or three times were those with the lowest scores and 
that appeared once in the sub-objectives with the lowest duration. According to the aikido 
teachers, some techniques are more fundamental than others to each sub-objective. The teacher 
gave a higher score to these techniques and they were actually chosen 6, 7, 8 or 9 times: 
‘Katatedori Kokyunage’ to help students learn the way to make a partner lose his/her balance 
and how to pivot round a grip. ‘Katateryotedori Kokyuhoo’ is of great help in learning how to 
break a partner’s posture and also how to move and relax despite a grip, etc. All techniques 
highly useful in learning multiple abilities are in this category, followed, to varying degrees, by 
those associated with just one sub-objective. In addition, in order to quantify the diversity of 
the solutions proposed by our application, we computed the Shannon index (Shannon, 1948) of 
each selected exercise regarding the lessons in which it has been proposed. Considering that 
the application delivered 15 lessons mixing 27 aikido techniques, and assuming Ni is the 
number of times of appearance of the aikido technique i, the Shannon index H’ is computed 

according to the equation: H’=-Σ(i=1)
15

(Ni/27) x ln(Ni/27). These results are reported in Table 
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11. The indices vary from 0.12 to 1.10. Actually, the aikido trainers confirmed that those 
associated with the less important entropies were not often used every season whereas the 
techniques associated to the greatest values were quasi-systematically used for different 
reasons inherent in this martial art. The mean and median Shannon entropy is equal to 0.61 and 
quantifies the uncertainty associated with the prediction of retrieving each technique in one of 
the generated lessons.  

Discussion 

The results presented above prove that by taking into account previous experiences, the system 
and our method are capable of proposing pertinent and varied lessons. An important part of our 
method resides in the agents’ capacity in real time to take into account remarks made by users 
during the revision processes and also to adapt their own solutions to those concurrently 
provided by other agents of the distributed system. This was possible only due to the use of a 
concurrency management protocol designed to share real-time memory and concurrent actions. 
Indeed, drawing attention to the solutions would have introduced concurrent and inconsistent 
data and lessons since there is no global schedule in collaborative and distributed systems. This 
particular aspect of distributed CBR systems will be examined through further study. One limit 
to our system lies in the fact that it must be initialised each year at the beginning of the season 
or whenever there is no remaining duration left. At that time, the trainer must produce all of the 
initial values. Additional investigation will propose a process based on experience in order to 
compute initial values. Most of the other approaches use pre-tests  (Huang, Huang, & Chen, 
2007),  (Tan, Shen, & Wang, 2012) that evaluate students’ levels. Another limit to our system 
is found in the way creations of sub-objectives are managed: In a future investigation we will 
focus on the way an EA might propose exercises for a newly created sub-objective in function 
of the exercises proposed for similar sub-objectives. At the very least, the trainers must take 
time to again sort through the sub-objectives and to examine the order of the exercises 
proposed by the system: after having selected them, it may be of interest to take into account 
another parameter, closer to the nature of the exercises in order to better classify them. Finally, 
like other approaches (Cordier, Fuchs, & Mille, 2006), (Craw, Wiratunga, & Rowe, 2006), 
(Lieber, 2007), (Dufour-Lussier, Le Ber, Lieber, & Nauer, 2013), and (Henriet, Leni, Laurent, 
& Salomon, 2014), ours establishes a link between adaptation and capitalisation of revisions. 
Indeed, we have examined a way to use the remarks of users made during the revision phase in 
order to enhance the accuracy of the adaptation process of CBR-systems. 

Conclusion 

This paper presents a multi-agent system that can generate and personalise lessons. The design 
is based on agents that use CBR systems to propose varied courses. It emphasises the 
importance of the revision process and its consequence on the adaptation phase. During this 
revision process, the user furnishes information as to the level that students have attained while 
the system stores the proposed lesson in order to enhance the adaptation of future lessons. 
Though AI systems learn to always produce the same solutions to the same problems, our 
system is capable of proposing a variety of solutions. It is capable of proposing sports training 
lessons that are diverse, changing, pertinent and consistent, enabling students to practise the 
same given skill over many weeks. Ours is a distributed system that shares memory. A 
collaboration protocol based on a token ring has been adapted and used, as well as a policy 
capable of merging and arbitrating between concurrent solutions proposed by the collaborative 
agents during their adaptation process. In a future study we will focus on the order in which the 
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exercises and sub-objectives appear in lessons and the enhancement of the initialisation 
process since the pertinence of the solutions proposed depends heavily on this order of 
appearence and the initial values stored. Introducing processes such as the pre-testing of 
students may improve the quality of the adapted solutions generated.  
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Abstract 

Advanced statistical measures are increasingly popular in sports, especially 
baseball. These measures are used for reasons from contract negotiations to roster 
changes to award determinations. One of the most popular methods of 
determining a player’s worth in baseball uses WAR: wins above replacement. 
The methods described herein work to fine-tune the goals of the offensive 
component of WAR by evaluating players in the context of their own team’s 
lineup. This is done by extracting a player’s worth from his team’s simulated run 
distribution using win probabilities. 

KEY WORDS: BASEBALL, OPTIMIZATION, WEIBULL, DISTRIBUTIONS 

Introduction 

Since the inception of Major League Baseball’s (MLB) Most Valuable Player (MVP) award in 
1931, there has been uncertainty around the definition of “most valuable,” namely with regard 
to whom a player is most valuable (e.g., his team, his sport, fans, his team’s owner, etc.) and, if 
such an entity were decided upon, what criteria would be used to decide said value (e.g., 
offensive or defensive statistics, leadership ability, ability to sell tickets and merchandise, etc.). 
Throughout the history of the award, the general trend has been to give the award to a player 
on an above-average team who could also be regarded as one of the best offensive players in 
the league. The historical edge for players on good teams indicates that voters have viewed 
wins and not just raw individual statistics as valuable. Meanwhile, pitchers have been largely 
ignored because they are eligible to receive the Cy Young award, and defense has been 
overlooked because of the difficulty of statistical analysis (Jensen, Shirley, & Wyner 2009). 

The debate over the 2012 American League MVP award brought to light a growing division in 
opinions regarding the analysis of player performance. Awarded for the first time since 1967, 
Miguel Cabrera of the Detroit Tigers won the American League Triple Crown by having the 
highest totals in batting average, home runs, and runs batted in. For many, these statistics are 
the standard measures of player performance. However, the past decade has witnessed an 
explosion of computer-generated statistics that claim to objectively value a player’s overall 
worth (and hence, salary) through offensive and defensive considerations. The most notable of 
these statistics is wins above replacement (WAR), which calculates how many wins a player is 
estimated to have contributed to his team per year compared to a minor-league replacement 
player at the same defensive position. In 2012, Cabrera had an exceptional WAR of 7.2 
(baseball-reference.com) but paled in comparison to the Los Angeles Angels’ Mike Trout’s 
WAR of 10.8, one of the highest in modern baseball history. Cabrera ultimately won the MVP 
award, but the result was debated by media and fans alike. 

Despite WAR’s breadth (Ormiston 2012), relative objectivity (Catania 2013), and popularity 
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(Eder 2013), it suffers from two main flaws. First, its three most popular creators—Baseball 
Reference, Baseball Prospectus, and FanGraphs—do not concur on the details of its 
calculation. Due to small disagreements on the importance of certain statistical measurements 
and coefficients, these three, for example, gave Mike Trout a 2012 WAR of 10.8, 9.0, and 
10.0, respectively. The difficulty of quantitatively measuring “value” may never be fully 
overcome, and the complexity and volume of data needed to calculate WAR have made it a 
paradoxically simple yet incomprehensible statistic to the average fan. 

Second, despite its name, using WAR to measure the number of wins a player contributes to 
his team is slightly misguided. It is an excellent tool to compare two players’ abilities or a 
player’s trade value or salary, but apart from adjustments to playing in certain stadiums, it is 
computed in a vacuum as if a player were not on a team. Of course, WAR is popular for this 
very reason, and it rightly ignores statistics that depend directly on one’s teammates such as 
runs scored and runs batted in. However, truly understanding how many wins a player 
contributes to his team requires analyzing his statistics among his teammates’ statistics. For 
example, a good base stealer may have a different true value on a team with power hitters than 
on a team with singles hitters, but would have the same WAR on either team. Alternatively, if 
a team had a pitching staff that never allowed a run, every offensive player would have 
virtually no effect on the number of wins for the team; that is, a team of high-WAR Hall-of-
Famers would win the same number of games (all of them) as a team of low-WAR minor 
leaguers. This is an absurd case, of course, but it highlights WAR’s shortcoming in doing what 
its name says it does. There are certainly strong correlations between players’ WARs on a team 
and its wins, but similar correlations can be made with several simpler statistics (Petti 2011). 

This paper addresses both of these drawbacks by presenting a simple-to-understand method of 
determining a baseball player’s offensive worth to his individual team. It is not intended to be 
a replacement of WAR, but an alternate view that considers how a player’s abilities 
complement his teammates’. 

Methods 

To see how a player affects his team offensively, it is crucial to evaluate all possible methods 
of his contribution. For example, a walk followed by a double is more productive than a double 
followed by a walk, so, in the batting order, placing a power hitter after a player who often 
walks is a better strategy than vice versa. In this way, both players increase their win value 
through lineup optimization. Much work (e.g., Hirotsu 2011; Bukiet, Harold, & Palacios 1997; 
Freeze 1973) has gone into lineup optimization, but for professional teams, the gain—about 
one win per season (Tango, Lichtman, & Dolphin 2007)—is generally not worth the effort. 
However, using lineup optimization, not to increase team wins, but to evaluate individual 
professional players, has been overlooked. By comparing a team’s run output when a player is 
present in a lineup vs. (1) absent from or (2) replaced by another player in a lineup, it is a 
straightforward task to determine how much said player is worth to his team. For example, if a 
team averages 4.5 runs per game (RPG) with a given player in an optimized lineup (i.e., the 
one that produces the most RPG), but only 4.3 without him, he is worth 0.2 offensive RPG to 
his team. Using probability distribution functions, those 0.2 runs can be directly related to an 
expected increase in wins per season: the crux of this study. 

There are many strategies for lineup optimization, but for the purposes of this article, the 
method used is relatively unimportant; here, a baseball game simulation algorithm is 
employed, as detailed by Robinson (2013). This algorithm uses a player’s raw statistics to 
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calculate the probabilities of several batter outcomes that do not strongly depend on one’s 
teammates’ abilities: singles (1B), doubles (2B), triples (3B), home runs (HR), strikeouts (SO), 
walks (BB), times grounded into a double play (GDP), and times hit by a pitch (HBP), as well 
as runner outcomes: stolen bases (SB) and times caught stealing (CS). Next, it simulates a 
large set of baseball games with a given lineup and then cycles through all possible lineups to 
determine the optimal lineup—the one that scores the most runs on average. With n players, 
there are n! possible lineups; for the eight- and nine-man lineups discussed below, this 
corresponds to about 4.0 × 104 and 3.6 × 105 possibilities. 

Just as a good manager would optimize his lineup to account for roster changes, we need to 
optimize lineups both with and without a player to compare them accurately. For this study, 
the 2012 Chicago White Sox were chosen as a sample team due to the consistency of their 
lineup; they had nine players with at least 500 plate appearances, comprising 83% of their 
team’s plate appearances. Their statistics appear in Table 1. 

Table 1. The statistics used to simulate 2012 Chicago White Sox baseball games. 

name G PA 1B 2B 3B HR SO BB HBP GDP SB CS 

Beckham 151 582 83 24 0 16 89 40 7 10 5 4 

De Aza 131 585 103 29 6 9 109 47 9 1 26 12 

Dunn 151 649 50 19 0 41 222 105 1 8 2 1 

Konerko 144 598 111 22 0 26 83 56 7 16 0 0 

Pierzynski 135 520 84 18 4 27 78 28 8 8 0 0 

Ramirez 158 621 120 24 4 9 77 16 4 15 20 7 

Rios 157 640 114 37 8 25 92 26 4 18 23 6 

Viciedo 147 543 85 18 1 25 120 28 6 18 0 2 

Youkilis 122 509 67 15 2 19 108 51 17 10 0 0 

 

Naturally, the randomness of a single game simulation can be removed with large numbers of 
simulations. To determine an appropriate number of games to simulate, the algorithm was 
tested on a team of identical average MLB players, as determined by averaging all of the non-
pitcher statistics for 2012. The results are shown in Figure 1. Simulating 5 × 104 games per 
lineup (1.8 × 1010 in total for all configurations of a nine-man lineup) substantially reduces 
random error, so this number was chosen as a compromise between accuracy and computing 
time. 

 



International Journal of Computer Science in Sport – Volume 13/2014/Edition 2              www.iacss.org 

   

 

23 

Figure 1. For a team of average players, the most and least runs scored per 27 outs (9 complete innings) as a 
function of the number of games simulated; both converge to 4.11 RPG. “Spread” is the range 
between the most and least average RPG. 

The actual average number of RPG in MLB in 2012 was 4.32, while Figure 1 settles on the 
smaller number of 4.11 ± 0.009. The algorithm purposely accounts for neither errors nor run-
adding situational strategies such as sacrifice bunts, pinch hits, and pinch runners. These are 
important for the outcome of a game, but reveal very little about a player’s offensive talent. 
Sacrifice hits and sacrifice flies constituted only 1.5% of plate appearances in 2012, but 
certainly provided more than that share of runs due to their very nature. In addition, any 
adjustment to the algorithm to force the RPGs to match (e.g., adding a certain likelihood of 
bunting) would affect all players equally and is unnecessary to determine comparative player 
value. Finally, there is no reason to assume that a team of average players would perform the 
same as the average major-league team with two different averages being represented. 

To determine a player’s value from different perspectives, three sets of lineup simulations are 
performed, each with its own advantage: 

(1) Remove a player from an optimized nine-man lineup to produce an optimized eight-
man lineup. This is obviously not allowed in the rules of baseball, but with continuous 
batting orders, has no bearing on how the game is played. When compared to the 
simulated nine-man lineup, it determines the player’s offensive contribution to his 
team. 

(2) Replace a player with an average MLB player. This gives a measure of performance 
closest to the offensive component of WAR, albeit with a comparison to the average 
player rather than a minor-league replacement; the two would differ by a constant. 

(3) Put an individual on a team with eight other average MLB players and compare the 
results to those of a team comprised of only average players. This is useful to compare 
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to the results from the first simulation type to see how a player’s teammates affect his 
offensive worth. 

Note that none of these simulation methods necessarily keeps any one player in the same 
position in the lineup; with different rosters, each player has a different collaborative strength 
and will move around accordingly. 

After running these simulations, we need to convert a player’s run-addition to a win-addition; 
thus, understanding how major-league runs are scored is vital. Figure 2 shows the actual 
distribution of runs over MLB’s 2430 games in 2012 alongside simulated games (i.e., the 
“Model”) using average players. 

 

Figure 2. The distribution of RPG in MLB in 2012 as compared to the simulation’s results. A Weibull 
distribution is fit to the model’s data. Data points above 16 were left off the graph. 

The Weibull distribution is an extremely versatile function that allows a good fit as shown in 
Figure 2 and quantified in Table 2. Its three-parameter version is expressed as 

 ���; �, �, �	 = ��� �� − �� ���� ������� �� � ≥ �0 otherwise (1) 

γ is known as the shape parameter and α is the scale parameter. β, the location parameter, 
simply shifts the function along the x-axis. As pointed out by Miller (2007), the discreteness 
of baseball runs is best accounted for by setting β = –0.5, and the best fits are shown in Table 
2. p is computed from Pearson’s chi-square test and represents the probability that differences 
between the Weibull and actual or modeled distributions are due to chance alone and not due 
to a fundamental error in fitting; that is, the smaller 1 – p is, the better the fit, so that 10–1 and 
below represents at least 90% confidence in the fit. For example, there is a p = 99.977% 
chance that the differences between the modeled average MLB offense and the Weibull 
distribution are due to chance alone, giving 1 – p = 2.3 × 10–4. This is effectively equivalent 
to saying there is a 0.023% chance that the Weibull distribution does not adequately explain 
the data. 
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Table 2.The mean µ, standard error of the mean SE, standard deviation σ, and best-fit parameters for Weibull 
run distributions with β = –0.5. α was calculated from the data set’s mean (Miller 2007) and 
the best fit was determined by varying γ to maximize the p-value between the applicable data 
set and Weibull distribution. 

 µ SE σ α γ 1 – p 

actual MLB 4.32 0.061 3.00 5.40 1.67 8 × 10–2 

optimized model MLB 4.17 0.013 2.90 5.23 1.68 2 × 10–4 

actual White Sox offense 4.62 0.255 3.25 5.72 1.63 9 × 10–2 

optimized model White Sox offense 4.48 0.013 2.97 5.60 1.76 6 × 10–9 

actual White Sox defense 4.17 0.234 2.98 5.22 1.61 2 × 10–2 

 

With this probability distribution of runs scored (RS), we can then compare it to one of runs 
against (RA) to compute the probability of one team beating another. Miller (2007) showed 
that, using the Weibull distribution, the probability of a team winning a game (i.e., its expected 
winning percentage) if it scores RS RPG and allows RA RPG is 

 !"#$ = �RS − �	��RS − �	� + �RA − �	� (2) 

This is popularly known as the Pythagorean expectation, and was first developed by James 
(1983) with β = 0 and γ = 2. Many different values for γ have been suggested over the years, 
each dependent on the data set, time period, and fitting method used. Equation (2) uses only 
one value of γ; here, since comparisons are made using only simulated data, we use the 
modeled MLB fit (β = –0.5, γ = 1.68). (As shown in Figure 3, the best fit of Equation (2) to 
2012 MLB actual winning percentages is β = –0.5, γ = 2.22. However, there is much more 
flexibility with γ to acquire a good fit than is commonly assumed; 1 ≤ γ ≤ 3 produces results 
within the 95% confidence interval for –0.5 ≤ β ≤ 0.) 
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Figure 3. A measure of confidence levels (the difference between the p-value and 1) for the Pythagorean 
expectation (Equation 2) of 2012 MLB games as a function of the exponent; the best fits are at 
the bottom of the graph. The horizontal dotted line and all points below it represent at least 
95% confidence that the differences in predicted and actual winning percentages of MLB 
teams is due to chance alone and not an error in the model. The best-fit exponent to the 
simulated run distribution (β = –0.5, γ = 1.68) is shown as a dot. 

Now, armed with γ and RA, we can use a team’s individual offensive statistics to determine the 
probability of winning with a certain player in or out of the lineup, thereby determining his 
offensive worth. 

Results 

It should be noted here that the difference between simulated and actual RS, when compared to 
actual RA, will cause a small difference in expected winning percentage. As shown in 
Equation (2), the winning percentage is a nonlinear function of runs, but this problem can be 
solved by—on a team-by-team basis—adding a constant to the simulated RS to predict a 
player’s contribution more accurately. Practically, this can be thought of as a team’s RPG that 
have little to do with individual player performance, such as errors by the other team. If not 
accounted for, this will produce a small error in win probability. 

For example, suppose an actual team scores 4.3 RPG and allows 4.1 RPG. Over 162 games, 
they would, using γ = 1.68, expect to win 84.2 games. If a simulation predicts that a team will 
score only 4.2 RPG, the win expectation drops to 82.6. This is an important difference for a 
team; for an individual player, the effect is much less pronounced. Suppose that removing a 
player from the lineup drops the simulated RPG to 4.0. The team would then expect to win 
79.3 games, meaning that he contributes 82.6 – 79.3 = 3.3 offensive wins per season. If one 
accounts for the 0.1 RPG difference mentioned above, his team would score 4.1 RPG for 81.0 
wins. Then, we would say that he contributes 84.2 – 81.0 = 3.2 offensive wins per season. This 
3.3 – 3.2 = 0.1 difference is well within the tolerance of any popular version of WAR, but to 
maintain the most accuracy, the difference between simulated and actual runs will be 
accounted for. 
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The actual 2012 Chicago White Sox averaged 4.62 RPG, gave up 4.17 RPG, and won 85 
games. Equation (2) predicts a winning percentage of .542 (87.9 wins). (Recall that we 
optimized γ for run distributions, not winning percentages, and that, as mentioned, many small 
random factors can contribute to a win or loss). Meanwhile, the nine-man optimized simulation 
calculates 4.48 RPG, a 0.133-RPG difference from the actual mean. Simulation (1) then 
predicts that removing, for example, Paul Konerko from the lineup to produce an eight-man 
optimized lineup yields a 4.33-RPG team. Including the difference of 0.133, this eight-man 
team would average 4.46-RPG. The predicted winning percentage of this team with the same 
defense is then .525. Over a 162-game season, Paul Konerko played 144 games, so he was 
worth 144 × (.542 – .525) = 2.50 wins to his team. Notice that this number is not compared to 
any “replacement” player, as is done with WAR; rather, it is specific to his team, assuming 
optimized lineups with him present or absent. 

Simulation (2), on the other hand, replaces Konerko with an average MLB player to see how 
the lineup fares. Using an identical analysis, this shows Konerko to be worth 2.80 wins. The 
fact that it would be better to remove Konerko from the lineup than replace him with an 
average player shows that an average player is below average on the White Sox; or, put 
another way, the White Sox were an above-average team, as confirmed by their winning 
percentage. Simulation (3) places Konerko in a lineup with eight other average players. A team 
of average players, as shown in Table 2, would score and allow a simulated 4.17 RPG. (This 
number is coincidentally the same as the actual White Sox’s defensive RPG; they are 
unrelated.) That is, without Konerko, they would have a winning percentage of .500. 
Simulation (3) shows that the RPG increases to 4.36 with Konerko, which is adjusted to 4.52 
to coincide with the MLB average of 4.32. This predicts a .517 winning percentage, giving 
Konerko 144 × (.517 – .500) = 2.38 wins. The fact that Konerko is worth slightly more to his 
actual team than he is to a team of average players is most likely an indication that his skillset 
fits well with his teammates’. 

WAR is comprised of three components: batting, fielding, and baserunning. For comparison’s 
sake, as this discussion revolves around batting and base-stealing only, the results herein are 
shown alongside weighted runs above average (wRAA) and weighted stolen base runs (wSB), 
the batting and base-stealing components of WAR: ten of either equals one win and represents 
a measure of performance compared to the league average. (wRAA is computed directly from 
weighted on-base average (wOBA), a measure of how, historically, different baseball plays—
e.g., walks and singles—contribute to runs.) These comparisons are compiled into Table 3 and 
shown graphically in Figure 4. Keeping in mind that all lineups with and without a player are 
optimized to produce maximum RPG, positive win values for players are interpreted as 
follows: 

• Simulation (1): A lineup produces fewer wins if the player is removed. This would be the 
preferred method to determine a player’s trade value as it is a measure of how he 
complements a team. This value is team-dependent. 

• Simulation (2) and wRAA + wSB: The team produces fewer wins if an average MLB 
player replaces the given player. By subtracting the MLB average win contribution, these 
methods could be used to decide whether to call a minor-league player up to replace said 
player. The simulation is team-dependent while wRAA + wSB is team-independent. 

• Simulation (3): A team of average MLB players wins more games when the player is 
inserted in the lineup. This simulation could be useful to determine salaries with regard to 
MLB average salaries. This value is team-independent. 

For Simulations (2) and (3), a positive team average of win values is an indication that the 
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team has above-average talent and/or complementarity (and is probably an above-average 
team). For Simulation (1), a positive team average indicates that the players play well together 
(the whole is greater than the sum of its parts), but it can also be a result of the fact that better 
players also bat more frequently, creating a nonlinear effect of player removal. (However, only 
the starting 9 of the 27 White Sox batters were analyzed; the remaining 18 had mostly negative 
wRAA + wSB values, which would, as expected, bring the actual team average closer to zero.) 
The fact that the White Sox’s Simulations (1)–(3) follow the same general trend is a reminder 
that complementary teams are usually also good teams. Finally, because of these different 
baselines, when determining player values, one may find it more instructive to directly 
compare two players’ win values rather than to compare an individual player’s win value to 
zero. 

Table 3. The offensive wins contributed by players on the 2012 Chicago White Sox using the four methods 
described in the text. R2 gives the correlation between the simulation result and wRAA + wSB 
(fangraphs.com). 

Name Sim. (1) Sim. (2) Sim. (3) (wRAA + wSB)/10 

Beckham –1.14 –0.64 –1.33 –1.07 

De Aza 0.13 0.58 0.16 0.81 

Dunn 1.77 2.02 1.47 1.55 

Konerko 2.50 2.80 2.38 2.60 

Pierzynski 1.72 1.81 1.45 1.46 

Ramirez –1.94 –1.27 –1.98 –1.57 

Rios 1.95 2.13 1.60 2.54 

Viciedo 0.22 0.32 –0.07 0.14 

Youkilis 0.66 0.86 0.50 0.61 
     

R
2
 0.948 0.959 0.958  
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Figure 4. Comparison of win contributions of 2012 Chicago White Sox players using the three simulation 
methods and wRAA + wSB. Through Equation (2), the standard error of 0.013 about the RPG 
means in Table 2 produces a standard error of approximately 0.17 for the win values in each 
simulation. wRAA and wSB are not published with uncertainties, but there is consensus that it 
is a significant fraction of a win for their composite statistic WAR (Cameron 2013). 

Discussion 

Table 3 and Figure 4 confirm that these simulation methods are consistent with wRAA + wSB. 
However, on an individual basis, the simulation results differ from these measures by as much 
0.94. (As an example, this analysis provides evidence that previous estimations have 
overvalued the contributions of De Aza and Rios to the 2012 White Sox.) This is central to the 
purpose of this study: that is, the simulations, in effect, have the same goal as wRAA + wSB, 
but rather than using the same set of coefficients for every player, the methods presented 
herein determine the wins generated by a player in the context of his own and his team’s 
statistics. For instance, wRAA (and thus, WAR) assumes that a double carries the same weight 
for generating runs in all situations; as mentioned earlier, this is certainly not true when the 
double precedes-vs.-follows a walk. Thus, we believe this method of simulation is a more 
accurate representation of an individual player’s offensive win contribution in the context of 
his team than wRAA + wSB. 

In addition to baseball, the methodology used herein is general to many team sports. Its main 
advantage is in the use of simulations in contrast to simply interpreting historical data. First, 5 
× 104 games is equivalent to more than 300 entire seasons for a baseball team. This allows us 
to reduce predictive statistical uncertainty greatly when compared to other statistics such as 
WAR, which is generally calculated over a single season or a relatively short career. Second, 
the ability of a real team to test the effects of lineup changes is miniscule compared to our 
ability to simulate all of a team’s potential lineups. It would take over 2200 years for a baseball 
team to test all 3.6 × 105 possible lineups for a nine-man roster. Even changing the lineup daily 
for an entire season would test only 0.04% of those lineups. 

Such advantages translate easily to other sports, especially with the advent of player-tracking 
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technology that can quantify player ability and complementarity with teammates (Tamir & Oz 
2008). Specifically, this method could assist alternate lineup optimization strategies researched 
in other sports such as cricket (Bhattacharjee & Saikia 2014), basketball (Bhandari et al. 1997), 
and association football (Boon & Sierksma 2003) to produce data on individual player worth. 
For example, unlike baseball, a basketball player’s worth greatly depends on his short-term 
stamina (Hoffman et al. 1996). If Player A can play 40 competitive minutes per game, he is 
worth more than Player B of equal talent who tires after 30 minutes. A team’s general manager 
might find it more cost-effective to supplement Player B with Player C than to sign Player A at 
a high salary if the team’s performance is unaffected. He could find and trade for the right 
Player C for his specific team through game simulations, even if he currently plays on another 
team. 

Beyond sports, simulation-based optimization has been used for decades for all sorts of 
intractable problems (Deng 2007). The main contribution herein is to bring to light the 
possibility of using such algorithms to determine the worth of the individual parts. For 
example, simulating the optimal path of a widget through an assembly line could reveal hidden 
information about the effectiveness of each tool in that line, leading to better decision-making 
and cost-effectiveness. 

Conclusions 

We have developed a new method to determine an individual baseball player’s worth to his 
team (assuming worth is measured in wins). This method was created with the intention of an 
intuitive approach, summed up as follows: 

1. Simulate a run distribution for a team using its players’ raw statistics. 
2. Fit this run distribution with a Weibull probability distribution. 
3. Compare this run distribution to the runs allowed by the team to develop a baseline 

winning percentage. 
4. Remove or replace players in the lineup, simulate, and measure the team’s change in 

offensive performance. 
5. Use the new data to develop a new winning percentage. 
6. The difference between this winning percentage and the baseline winning percentage 

determines the number of wins that a player can be expected to contribute to his team. 
 

We have shown that this method produces results similar to the popular statistics wRAA and 
wSB, while, at the same time, is flexible enough to be fine-tuned for each individual player on 
each team. Although the details are beyond the scope of this paper, this methodology could be 
used to improve the efficiency of any process that can be simulated as the networking of 
quantifiable individual parts. 
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Abstract 

The purpose of this paper was to compare the accuracy of different simulation 
models of the 2014 FIFA World Cup. There were 12 (2 x 3 x 2) models altogether 
(2 data sets of previous matches, 3 sets of variables and models where the data 
either satisfied the assumptions of linear regression or not). One set of previous 
data consisted of 440 matches from all international tournaments played since the 
2006 FIFA World Cup. The second data set was a subset of 96 of these 440 
matches that were from inter-continental tournaments. There were three predictor 
variables used; difference in FIFA World ranking points (PD) between the 2 
teams contesting a match, difference in distance travelled to tournaments (DD) 
and difference in recovery days from previous matches (RD). The goal difference 
(GD) between the two teams contesting a match was modelled using (a) PD only, 
(b) PD and DD and (c) PD, DD and RD. Six models were produced without any 
changes in the data meaning they violated the modelling assumptions. The other 6 
models were constructed using data that had been transformed and outliers being 
removed in order to satisfy the modelling assumptions. The standard deviation of 
residual values was used to add random variation about expected results within 
the simulator. The models that satisfied the assumptions of linear regression were 
not as accurate at predicting the outcomes of the 2014 World Cup matches as 
models where the assumptions were violated. Models based on 2 or 3 variables 
were more accurate than models based on PD alone. Finally, models based on the 
complete set of previous tournament data were more accurate than those based on 
the subset of data from inter-continental tournaments. 

KEYWORDS: LINEAR REGRESSION, HOME ADVANTAGE, SOCCER. 

Introduction 

The ability to predict the outcomes of international soccer matches is limited. In the 2010 FIFA 
World Cup in South Africa, 50.8% of matches were won by the higher ranked team according 
to FIFA’s World rankings, 27.0% were draws and the remaining 22.2% were upsets (this does 
not include extra time and penalty shoot outs). The author has carried out a series of studies 
since 2002 to evaluate the accuracy of predictive models of international soccer matches and 
rugby union matches. The main lesson from these studies is that statistical models, such as 
linear regression, logistic regression and discriminant function analysis, only produce single 
expected results for matches. When one considers the residual values in linear regression 
analyses (differences between actual observed results and expected results), there is 
considerable variability about the expected results. Simulation packages can use the known 
distributions of residual values to include random variation about expected results within 
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predictions. Simulation packages can simulate thousands of tournaments, accumulating 
outcome statistics for matches and progression statistics for the different teams within 
tournaments. The advantage of this is that each team’s chance of winning, drawing and losing 
a match can be represented as well as their overall chances of winning the tournament. The 
main problem with models that fail to represent random chance is they predict a single result 
for each match based on the expected result. For example, one team may be expected to score 
0.6 more goals than the opposing team. This would then be counted as a win because 0.6 
rounds up to a goal difference of +1. However, when the distribution of residual values is 
considered with an expected goal difference of 0.6, we might have a 52% chance of a win, a 
21% chance of a draw and a 27% chance of an upset (assuming a standard deviation of 1.8 for 
residual values). When the expected result of 0.6 goals is counted as a win, the probability of 
drawing or losing is considered to be 0 because the decision has failed to consider random 
variability in the goal difference variable. The author’s previous studies of international soccer 
and rugby tournaments have revealed that simulation models are more successful at predicting 
the outcomes of international tournaments. The probability of a team progressing to the final is 
a combination of conditional probabilities of winning matches at the preceding stages 
(O’Donoghue et al., 2004). This is much better represented by simulation models than 
prediction methods that predict single results at each stage. 

Since 2003, a sub-theme of the author’s series of studies has been the comparison of the 
accuracy of models where the data used satisfy the assumptions of the modelling technique 
with the accuracy of models where the assumptions are violated. Violating the assumptions 
typically uses untransformed variables when producing a model based on previous match data 
as well as when making predictions of future matches. In order to satisfy the assumptions of 
modelling techniques, it is usually necessary to transform variables using square root or natural 
logarithms (Nevill, 2000). It is also necessary to remove matches where the values for any 
variables are statistical outliers. The previous investigations have produced conflicting 
conclusions about the accuracy of methods satisfying and violating the assumptions of the 
modelling techniques used. The studies of the Euro 2008 soccer tournament (O’Donoghue, 
2009) and the 2011 Rugby World Cup (O’Donoghue, 2012) showed that the models based on 
data satisfying the assumptions were more accurate than those where the assumptions were 
violated. However, predictions where the data used violated the assumptions of the modelling 
technique were more accurate in the studies of the 2003 Rugby World Cup (O’Donoghue and 
Williams, 2004), the Euro 2004 soccer tournament (O’Donoghue, 2005), the 2006 
(O’Donoghue, 2006) and 2010 FIFA World Cups (O’Donoghue, 2010).   

Given that simulation models have been more accurate than neural network models and single 
predictions made using statistical analyses, the scope of the current investigation is restricted to 
simulation models. The particular simulation techniques of interest to the current investigation 
are those with underlying linear regression based models of expected match outcomes. There 
are some criticisms that can be made about previous research into the accuracy of simulation 
models. Some factors that may influence the success of such models have not been 
investigated. Such factors include the number of predictor variables used and differing data 
sets used to construct the underlying regression models. Previous attempts to predict the 
outcomes of international soccer matches have used FIFA World ranking points, distance 
between competing countries and the host country(ies) of tournaments and recovery days from 
previous matches. Typically, only ranking points is a significant predictor of the goal 
difference between two teams playing a match. However, given the previous successes of 
methods using all three variables, it is worth comparing models where one, two or all three of 
these variables are included.  
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A further criticism of previous research is that performance in inter-continental tournaments 
(such as the FIFA World Cups) have been predicted using models created by analysing data 
from a combination of inter-continental tournaments as well as continental tournaments (such 
as Copa America, the African Cup of Nations and the Euro 2004 and 2008 tournaments). One 
of the issues in using continental tournaments is that there are more of these than inter-
continental tournaments. This could lead to some matches in inter-continental tournaments 
being considered as statistical outliers with respect to distance travelled by teams involved. 
This is because teams travel further to inter-continental tournaments than to continental 
tournaments. Satisfying the assumptions of linear regression may involve removal of such 
outliers which are actually the type of match we are trying to predict in the current study. 
Therefore, another purpose of the current investigation is to compare models constructed by 
analysing matches from previous inter-continental tournaments only with models constructed 
by analysing matches from all previous international tournaments. 

As has already been mentioned, there is still conflicting evidence as to whether satisfying the 
assumptions of linear regression is effective. Therefore, this study will compare models where 
the necessary variable transformations have been made so that data satisfy the assumptions 
with models where such transformations have not been made. The assumptions of linear 
regression are: 

• There should be 20 cases for each predictor variable (Ntoumanis, 2001, p120). 

• Predictor variables must not be highly correlated with each other (Tabachnick and 
Fidell, 1996, p131-139).   

• Predictor variables and the dependent variable should be free of outliers, especially 
extreme values (Fallowfield et al., 2005, p180).   

• Residual values must be normally distributed (Newell et al., 2010, p140). 

• Residual values must be independent from the predicted values for the dependent 
variable (Newell et al., 2010, p140).  

• Residual values must be independent of the order of case occurrence (Newell et al., 
2010, p140). 

 
The current investigation compares the accuracy of 12 predictive models (2 data sets x 3 
selections of variables x 2 types of model depending on whether the data have satisfied the 
assumptions or not).  

Methods 

Data Sources 

The 12 models were created using data from previous international tournaments played since 
2006 when FIFA changed their World Ranking method. All matches were considered with 
respect to the higher ranked team of the two teams contesting the match. The dependent 
variable was the difference between the higher and lower ranked teams’ goals scored in the 
match excluding extra time and penalty shoot outs. There were three predictor variables used. 
These were: 

• PD: Difference between the FIFA World ranking points between the two teams involved 
in a match. 

• DD: Difference in distance traveled to the tournament by the two teams. For each team 
involved in a match, the distance travelled was estimated by the giant circle distance 
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between the capital city of the country and the capital city of the host nation. This was 
obtained from an internet based distance calculator (Indonesia, 2006). The higher ranked 
team’s distance is denoted DH while the lower ranked team’s distance is dented as DL. 

• RD: The difference in the recovery days from the previous matches within the tournament 
played by the two teams. 

 
There were a total of 440 matches included in the data set from all international tournaments 
played from the 2007 Copa de Oro de la CONCACAF (Confederation of North, Central 
American and Caribbean Association Football) Cup to the 2014 African Nations Cup. A subset 
of 96 of these matches from inter-continental tournaments was used to produce 6 of the 
predictive models while the other 6 models were created using the full data set. The inter-
continental tournaments were the 2010 FIFA World Cup and the 2009 and 2013 
Confederations Cups.  

An exploratory regression analysis revealed that PD was the only significant predictor of goal 
difference (p < 0.001) with DD (p = 0.121) and RD (p = 0.723) being excluded where a 
stepwise variable entry method used a criteria of p < 0.05 for inclusion of variables. It was, 
therefore, decided not to produce models using all 7 combinations of one, two or all three of 
these variables. Instead, the models were based on three collections of variables: 

• PD only 

• PD and DD 

• PD, DD and RD 

Regression Analysis 

Each of the 12 simulation models used an underlying linear regression model of goal 
difference, GD, based on one, two or all three predictor variables. The standard deviation of 
the residual values was used within the simulator to ensure random variation about the 
expected results reflected previous soccer matches. Six of the models were created without 
removing outliers or transforming variables; in each case the data violated one or more 
assumptions of multiple linear regression. Three of these models used the complete set of 440 
previous cases while the other three models used the subset of 96 inter-continental tournament 
matches. SPSS Version 20.0 (SPSS: An IBM Company, Amarouk, NY) was used to perform 
the regression analyses, noting the regression coefficients and the standard deviation of the 
residual values which were saved. 

The complete set of 440 matches and the sub-set of 96 inter-continental tournament matches 
were considered separately when making transformations and removing outliers to ensure the 
data satisfied the assumptions of multiple linear regression. There were sufficient previous 
matches for the number of predictor variables used and there were no high correlations 
between the predictor variables. The residual values were found to be independent of predicted 
values and were found to be independent of chronological match order. However, there were 
outliers in the three variables and residual values were not normally distributed. It was not 
possible to remove outliers for the RD value because the inter-quartile range was 0 (more than 
three quarters of the values were 0) meaning that all values less than or greater than 0 were 
outliers. Even when all matches with RD values of less than -1 or greater than +1 were 
removed, the inter-quartile range for RD was still 0. It was, therefore, decided not to exclude 
any matches on the basis of RD value. When the complete data set of 440 matches was 
considered, there were more outliers for DD than PD. Therefore, outliers were initially 
removed for DD followed by the removal of any remaining outliers in PD before rechecking 
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the distribution of DD. As outliers in DD were removed, the inter-quartile range of DD 
decreased introducing further outliers that were not outliers before. The process of removing 
outliers in DD went through 5 iterations with the matches removed being from Confederations 
Cups, the 2010 World Cup and matches of the AFC (Asian Football Confederation) Cup where 
teams had to travel further to tournaments than teams travelled in other tournaments. Once all 
of the outliers in DD were removed, two iterations of outlier removal were required to remove 
outliers in PD. These matches included Confederations Cup matches where highly ranked 
teams played low ranked teams, such as Tahiti, Iraq and New Zealand as well as a World Cup 
match between Brazil and North Korea. There were also outliers in the dependent GD variable 
requiring matches with GD values less than -3 or greater than +4 to be removed. This reduced 
the data set to 398 matches. Exploratory regression analysis of these cases revealed that the 
residuals were not normally distributed and, therefore, transformation possibilities had to be 
considered. As has already been mentioned, no transformation could have been made to RD 
other than removing it altogether. Therefore, it remained unaltered despite technically 
containing outliers. The following two transformations achieved normalisation of residual 
values in the linear regression models where they were used: 

• PD was replaced by PD0.5 

• DD was replaced by (DH
(2/3) – DL

(2/3)) 
 
The subset of 96 matches from inter-continental tournaments was analysed to produce three 
further models that satisfied the assumptions of linear regression. This data set contained more 
outliers for PD than DD and, therefore, the outliers for PD were removed first. This required a 
single pass of the data removing 6 matches between the highest ranked teams (Brazil or Spain) 
and low ranked teams (New Zealand, Tahiti, North Korea, Iraq and South Africa twice). Two 
remaining outliers in DD were removed (Mexico v South Africa and Brazil v Japan). It was 
also necessary to remove outliers in the dependent GD variable meaning that the only matches 
included in this data set had GD values of between -2 and +3 inclusive. The 80 matches that 
remained, once the outliers in PD, DD and GD were removed, satisfied the remaining 
assumptions of linear regression without any transformation of the variables being required.   

The Models 

Table 1 summarises the 12 underlying models that were used by the simulation package. The 
regression coefficients show that having a greater number of ranking points than the opponent 
increased GD, while travelling further than the opponent decreased GD. The effect of recovery 
days was different in models created using previous data from all tournaments and models 
created using data from just inter-continental tournaments. When previous inter-continental 
tournaments were analysed, having one more recovery day from the previous match than the 
opponent was found to increase GD by 0.295 or 0.363 on average. When all previous 
tournaments were analysed, having one more recovery day from the previous match than the 
opponent was found to decrease GD. However, the additional recovery day here only resulted 
in an additional goal for the opponents in one match in 20 on average. 
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Table 1. Underlying regression models for goal difference (GD) in terms of ranking points difference (PD), distance travelled distance (DD) and recovery days difference 
(RD) used by the simulation package. 

Data Source and Variables Violating Assumptions Satisfying Assumptions 

All tournaments   

Rank -0.0299 + 0.00249 PD 

Residual SD: 1.721 

 

-0.356 + 0.0620 PD0.5 

Residual SD: 1.460 

 

Rank and Distance -0.0353 + 0.00253 PD – 0.0000354 DD 

Residual SD: 1.716 

 

-0.357 + 0.0621 PD0.5 – 0.000386(DH
2/3 – DL

2/3) 

Residual SD: 1.459 

Rank, Distance and 
Recovery Days 

-0.0377 + 0.00254 PD – 0.0000363 DD – 0.0548 RD 

Residual SD: 1.715 

-0.361 + 0.0622 PD0.5 – 0.000409(DH
2/3 – DL

2/3) – 0.0494 RD 

Residual SD: 1.459 
   

Intercontinental tournaments only  

Rank -0.0460 + 0.00228 PD 

Residual SD: 1.967 

 

-0.0622 + 0.00122 PD 

Residual SD: 1.320 

Rank and Distance -0.190 + 0.00249 PD – 0.000106 DD 

Residual SD: 1.883 

 

-0.554 + 0.00123 PD – 0.00000929 DD 

Residual SD: 1.320 

Rank, Distance and 
Recovery Days 

-0.163 + 0.00241 PD – 0.0000985 DD + 0.363 RD 

Residual SD: 1.875 

-0.0647 + 0.00120 PD – 0.000000166 DD + 0.295 RD 

Residual SD: 1.312 
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Simulation 

A simulation package was developed in Matlab version 7.0.1 (Mathworks Inc., Natick, MA) to 
simulate the 2014 FIFA World Cup 20,000 times, accumulating progression statistics for each 
team. The simulator was run 12 times using each of the 12 underlying regression models and 
the standard deviation of the residuals for the dependent GD variable. The simulator was 
initialised with information about the teams’ FIFA World ranking points (www.fifa.org, 
accessed 6th June 2014), distances from each country’s capital city to Brasilia and details of the 
match schedule for the tournament to allow differences in recovery days to be used. The 
simulation of a match worked by determining the expected value for GD using the given 
regression model. A random number between 0 and 1 was then generated and used to look up a 
normal distribution curve with a mean value equal to the expected GD and a standard deviation 
being the standard deviation of the residuals in the predicted GD values from in the data used 
to create the model. The random number dictated the area of the normal distribution curve to 
the left of the simulated GD value. In pool matches, simulated GD values greater than 0.5 were 
rounded up to indicate a win for the higher ranked team, values less than -0.5 were rounded 
down to indicate an upset, with values of between -0.5 and 0.5 being counted as draws. In 
knock out matches, one team has to be eliminated so GD values of greater than or equal to 0 
were used to represent a win for the higher ranked team in the match and values of less than 0 
were counted as upsets. 

The progression statistics accumulated for each team included the percentage of simulated 
World Cups where they finished first or second in their pool, won their second round match, 
quarter-final, semi-final, third place play-off and the final. 

Evaluation Scheme 

The 2014 FIFA World Cup consisted of 48 pool matches and 16 knock out matches. The 
evaluation method awards a maximum of 1 mark for each match. The fraction of a mark 
awarded depends on the proportion of simulated World Cups where a given model predicted 
the correct result. For example, consider the opening match between Brazil and Croatia which 
the first of the 12 models predicted to be a win for Brazil 58.1% of simulated tournaments, a 
win for Croatia in 21.9% of simulated tournaments and a draw in 20.1% of simulated 
tournaments (see Table 2). Brazil won this match and so this predictive model was awarded 
0.581 points for the match. Given the 52% of wins, 21% of draws and 27% of losses that 
occurred in the 2010 FIFA World Cup, one would expect 18.6 results out of 48 to be predicted 
correctly by chance (48 x (52x52/100 + 21x21/100 + 27x27/100) / 100). 

For the knock out stages, a mark was allocated for each of the 8 quarter-final places, the 4 
semi-final places, the 2 final places, the third placed team and the tournament winner. No 
additional marks were awarded for predicting teams to be in the 16 second round places 
because this would double count performances in the pool matches. The first predictive model 
had Brazil reaching the quarter-finals in 46.5% of simulated tournaments, the semi-finals in 
27.5% of predicted tournaments, the final in 16.1% of predicted tournaments and winning 
8.1% of the predicted tournaments. Therefore, because Brazil came fourth in the actual 2014 
FIFA World Cup, this predictive model was awarded 0.465 + 0.275 = 0.740 marks for 
predicting Brazil’s performances in the knock out stages. Altogether, the maximum possible 
mark for a prediction is 64 but realistically this is unachievable because it would require 100% 
of simulated tournaments to predict the actual results of all 64 matches of the World Cup. 
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The Predictions 

Tables 2 and 3 show the percentage of simulated tournaments where each model predicted 
wins, draws and losses in each pool match. Table 2 shows the predictions made by models 
created using all tournament data and Table 3 shows the predictions made by models created 
using only inter-continental tournament data. Figure 1 shows the modal prediction for the 
knock out stages of the World Cup. It should be noted, however, that no model gave any single 
team more than a 25.7% chance of winning the World Cup. The predictions as well as the 
evaluation method were sent to the General Editor of the International Journal of Computer 
Science in Sport before the World Cup commenced. The results and discussion of the paper 
were completed after the 2014 FIFA World Cup had completed.  

Table 2. Pool match predictions for models based on all tournament data. 

Pool Team 1 Team 2 1 Variable 2 Variables 3 Variables 

   Violating 
Assumptions 

Satisfying 
Assumptions 

Violating 
Assumptions 

Satisfying 
Assumptions 

Violating 
Assumptions 

Satisfying 
Assumptions 

   W D L W D L W D L W D L W D L W D L 

A Brazil Croatia 58.1 20.1 21.9 58.4 22.9 18.7 65.3 18.1 16.7 62.9 21.1 16.0 64.7 18.4 16.9 63.7 21.0 15.3 

A Mexico Cameroon 56.7 20.6 22.8 56.8 25.0 18.2 56.9 20.1 23 57.2 24.1 18.7 57.3 20.0 22.6 56.7 24.6 18.7 

A Brazil Mexico 59.0 20.1 20.9 59.0 23.3 17.7 64.2 19.2 16.6 63.2 20.9 15.9 63.0 19.2 17.9 60.9 23.6 15.4 

A Croatia Cameroon 58.6 20.3 21.2 58.0 23.0 19.0 56.2 21.4 22.4 57.1 24.1 18.8 53.7 22.2 24.1 56.7 23.9 19.3 

A Brazil Cameroon 75.5 15.0 9.5 70.3 19.0 10.7 80.5 11.8 7.7 73.6 17.0 9.4 79.7 12.9 7.4 72.7 17.7 9.6 

A Croatia Mexico 38.5 23.3 38.2 33.8 27.8 38.4 36.8 23.4 39.8 33.7 27.5 38.9 38.1 22.6 39.3 35.3 27.1 37.6 

B Spain Holland 67.4 17.2 15.5 64.4 22.4 13.2 68.5 17.2 14.3 64.9 21.1 13.9 67.6 17.2 15.2 65.3 21.0 13.6 

B Chile Australia 66.0 18.4 15.6 65.0 20.2 14.8 75.3 14.0 10.7 68.5 19.0 12.5 75.2 14.5 10.3 68.2 20.6 11.2 

B Spain Chile 63.8 19.2 17.0 63.3 21.1 15.6 61.2 19.8 1.09 61.4 22.0 16.6 61.3 18.5 20.2 61 22.6 16.4 

B Holland Australia 64.2 19.2 16.5 63.3 21.1 15.6 68.1 17.3 14.6 64.2 21.1 14.6 68.4 17.2 14.4 64.8 20.7 14.6 

B Spain Australia 86.5 9.2 4.4 77.4 15.2 7.4 89.5 8.2 2.4 79.5 14.0 6.6 89.5 8.0 2.5 79.0 14.4 6.6 

B Holland Chile 36.2 24.1 39.7 34.9 27.4 37.7 31.8 23.5 44.7 33.5 27.1 39.4 31.2 23.3 45.5 32.5 27.2 40.4 

C Columbia Greece 41.9 22.7 35.4 40.9 27.1 32.0 45.7 23.0 31.3 42.7 27.0 30.3 46.1 22.6 31.4 42.7 27.1 30.2 

C Ivory C Japan 48.3 23.4 28.3 49.0 26.3 24.8 59.4 20.2 20.3 54.1 23.9 22.0 59.0 20.1 20.9 53.8 24.5 21.7 

C Columbia Ivory C 56.9 20.6 22.5 58.6 22.7 18.7 58.1 21.5 20.4 58.2 23.2 18.6 57.5 22.0 20.5 58.4 23.2 18.4 

C Greece Japan 63.2 19.1 17.6 62.3 22.3 15.5 69.1 17.4 13.5 64.2 20.9 14.9 69.4 17.0 13.6 63.6 22.6 13.7 

C Columbia Japan 67.3 18.3 14.5 64.9 21.6 13.5 78.1 13.8 8.1 68.6 19.6 11.8 77.0 14.1 8.8 68.9 19.4 11.7 

C Greece Ivory C 53.3 21.1 25.7 54.0 23.7 22.3 49.4 22.2 28.4 52.3 24.8 23.0 48.8 22.7 28.6 52.1 25.5 22.5 

D Uruguay C Rica 59.6 20.2 20.1 60.3 23.1 16.6 62.9 19.2 17.9 61.5 21.7 16.8 62.7 19.6 17.8 61.6 22.0 16.5 

D England Italy 37.6 23.6 38.8 38.9 27.0 34.0 37.2 23.4 39.5 38.8 27.8 33.4 37.6 24.4 38.0 39.1 27.3 33.5 

D Uruguay England 40.9 23.5 35.7 39.1 27.3 33.6 45.3 23.7 31.0 41.8 27.3 30.9 45.9 23.4 30.7 42.1 26.9 31.0 

D C Rica Italy 21.6 20.0 58.4 18.7 23.3 58.0 23.2 21.7 55.1 18.9 24.4 56.7 24.3 21.4 54.4 19.5 23.3 57.1 

D Uruguay Italy 39.6 23.3 37.1 36.9 27.3 35.8 45.1 22.9 32.0 39.8 27.4 32.9 44.3 23.1 32.6 39.3 27.2 33.5 

D C Rica England 22.4 20.1 57.5 18.2 22.9 58.9 24.3 21.9 53.8 19.6 24.4 56.0 25.9 22.1 52.0 20.5 24.7 54.8 

E Switzerland Ecuador 58.7 20.5 20.7 59.1 23.3 17.6 54.7 21.2 24.2 57.0 24.2 18.8 54.0 22.2 23.8 56.7 23.5 19.8 

E France Honduras 47.6 23.7 28.7 48.4 27.0 24.6 44.7 23.0 32.3 47.9 26.5 25.6 44.9 23.2 31.9 47.6 26.5 25.9 

E Switzerland France 52.9 21.2 26.0 53.1 25.4 21.5 52.3 21.1 26.6 54.3 24.7 21.1 52.3 21.1 26.6 53.0 24.0 23.0 

E Ecuador Honduras 40.9 22.9 36.2 40.1 27.0 32.9 41.8 23.9 34.3 40.4 27.1 32.5 41.2 24.8 34.0 39.2 27.7 33.1 

E Switzerland Honduras 61.8 19.3 18.9 61.1 22.3 16.6 59.5 20.2 20.4 59.8 23.6 16.6 59.1 20.5 20.4 59.4 23.6 17.0 



International Journal of Computer Science in Sport – Volume 13/2014/Edition 2 www.iacss.org 

   

 

40 

E Ecuador France 32.7 23.5 43.8 27.9 27.3 44.8 35.4 23.5 41.0 29.6 27.1 43.3 35.5 23.6 41.0 29.2 27.1 43.7 

F Argentina Bosnia 55.3 20.7 24.0 56.3 23.9 19.8 62.0 19.9 18.1 58.7 23.2 18.1 61.2 20.0 18.8 58.7 24.1 17.2 

F Iran Nigeria 38.1 22.6 39.3 28.2 27.4 44.4 32.8 22.9 44.3 26.5 27.3 46.2 32.8 23.4 43.8 26.9 27.5 45.6 

F Argentina Iran 68.7 16.8 14.5 66.1 20.1 13.7 74.8 15.6 9.6 69.5 19.2 11.4 74.0 15.1 10.9 68.0 19.3 12.7 

F Bosnia Nigeria 51.1 21.6 27.3 53.6 24.1 22.3 47.8 23.4 28.8 52.0 24.2 23.9 46.6 23.4 30.0 50.5 25.2 24.3 

F Argentina Nigeria 68.8 17.1 14.1 65.7 21.0 13.3 71.6 16.1 12.3 67.4 19.8 12.8 72.3 15.2 12.5 67.0 19.9 13.1 

F Bosnia Iran 51.9 22.1 26.0 52.7 24.5 22.8 53.7 21.3 25.0 53.9 24.5 21.6 54.5 20.9 24.6 53.5 24.6 21.9 

G Germany Portugal 44.2 22.9 32.9 43.9 27.0 29.1 42.2 22.9 34.9 44.3 26.2 29.4 41.9 23.3 34.9 42.8 27.3 29.9 

G Ghana USA 21.4 20.9 57.7 19.0 22.9 58.1 22.9 21.3 55.8 18.6 24.8 56.7 22.3 20.8 56.9 18.7 24.3 57.0 

G Germany Ghana 71.3 16.4 12.4 68.5 19.2 12.3 68.6 17.8 13.6 66.2 21.3 12.5 69.7 16.8 13.5 66.3 20.4 13.3 

G Portugal USA 45.7 23.3 31.0 48.1 26.2 25.7 46.0 22.7 31.2 47.1 27.2 25.7 46.3 22.8 30.9 47.1 26.6 26.3 

G Germany USA 53.3 22.3 24.4 53.8 25.2 21.0 51.0 21.9 27.1 53.6 24.9 21.5 49.4 22.8 27.7 52.6 24.9 22.5 

G Portugal Ghana 66.3 18.2 15.5 64.6 20.9 14.5 64.9 18.4 16.7 63.2 21.8 15.0 66.0 18.1 15.9 64.5 22.0 13.5 

H Belgium Algeria 49.7 22.6 27.7 51.6 25.2 23.2 48.3 23.7 28.0 51.1 25.0 23.9 48.6 23.4 28.1 50.9 25.1 23.9 

H Russia S Korea 58.3 19.8 21.9 57.9 23.4 18.8 62.8 19.0 18.2 60.3 23.2 16.5 63.3 18.9 17.8 60.1 22.9 16.9 

H Belgium Russia 48.0 23.5 28.5 49.0 26.8 24.2 50.1 22.0 27.9 50.1 25.2 24.7 50.5 21.8 27.7 49.8 25.2 25.0 

H Algeria S Korea 55.8 21.1 23.1 56.4 23.7 19.9 63.4 18.7 17.9 58.5 23.8 17.7 63.3 19.3 17.3 59.1 23.4 17.5 

H Belgium S Korea 68.0 16.9 15.1 65.5 20.6 13.9 74.2 15.0 10.8 68.0 19.3 12.8 73.8 15.4 10.8 68.4 18.9 12.7 

H Algeria Russia 36.7 23.1 40.2 36.8 26.9 36.2 39.9 23.4 36.7 36.7 27.3 36.0 39.9 23.3 36.8 37.1 27.3 35.7 

 

Table 3. Pool match predictions for models based on inter-continental tournament data. 

Pool Team 1 Team 2 1 Variable 2 Variables 3 Variables 

   Violating 
Assumptions 

Satisfying 
Assumptions 

Violating 
Assumptions 

Satisfying 
Assumptions 

Violating 
Assumptions 

Satisfying 
Assumptions 

   W D L W D L W D L W D L W D L W D L 

A Brazil Croatia 54.9 19.2 25.9 49.0 28.2 22.8 73.3 14.1 12.6 52.0 27.2 20.8 72.0 15.5 12.5 49.3 28.6 22.2 

A Mexico Cameroon 53.9 18.9 27.2 48.2 29.3 22.5 51.3 20.3 28.5 48.4 28.8 22.8 51.7 20.1 28.3 48.0 28.8 23.2 

A Brazil Mexico 56.6 18.0 25.4 49.2 28.8 22.0 69.0 16.2 14.8 52.5 27.1 20.4 74.7 13.4 11.9 59.0 25.4 15.6 

A Croatia Cameroon 55.0 19.2 25.8 48.7 28.6 22.8 48.0 20.2 31.8 48.2 28.9 22.9 56.6 19.0 24.3 58.6 25.7 15.7 

A Brazil Cameroon 70.4 15.4 14.2 61.2 24.6 14.2 82.0 11.1 6.9 64.2 23.6 12.2 86.6 9.1 4.2 70.5 19.8 9.7 

A Croatia Mexico 39.8 20.2 40.0 36.5 30.5 33.0 31.2 21.0 47.8 36.3 30.6 33.2 24.8 20.0 55.2 29.6 29.9 40.5 

B Spain Holland 62.2 17.3 20.5 55.9 26.1 18.1 64.9 17.3 17.8 56.1 26.4 17.5 65.2 17.8 17.0 55.3 26.7 18.0 

B Chile Australia 62.5 17.1 20.4 56.2 25.1 18.7 82.1 11.4 6.5 57.7 25.4 16.9 81.3 11.2 7.5 54.9 26.3 18.7 

B Spain Chile 59.7 18.6 21.8 54.2 26.7 19.1 49.1 20.5 30.4 52.2 27.0 20.8 49.3 20.8 29.9 54.0 26.7 19.3 

B Holland Australia 60.4 18.5 21.1 54.2 26.1 19.7 70.1 14.9 15.0 55.1 26.3 18.6 69.2 16.3 14.5 54.3 26.6 19.2 

B Spain Australia 80.0 11.4 8.6 70.8 20.5 8.7 90.2 6.3 3.5 73.2 18.2 8.6 89.5 7.1 3.5 71.6 19.0 9.4 

B Holland Chile 38.8 20.1 41.1 31.8 30.8 37.5 27.6 21.0 51.4 30.8 28.9 40.4 28.5 19.7 51.7 32.0 29.3 38.8 

C Columbia Greece 42.0 21.2 36.8 38.8 30.3 30.9 52.8 20.1 27.1 41.7 29.7 28.6 52.1 20.2 27.7 38.6 30.8 30.6 

C Ivory C Japan 46.7 20.8 32.5 42.8 30.3 26.9 72.1 15.4 12.4 47.2 28.2 24.6 71.8 14.8 13.4 43.0 30.4 26.6 

C Columbia Ivory C 54.1 19.1 26.8 49.0 28.2 22.7 56.9 19.2 23.9 48.5 28.1 23.3 56.1 18.8 25.0 48.6 28.6 22.8 

C Greece Japan 58.9 18.6 22.6 52.6 28.3 19.1 75.2 14.4 10.5 54.9 25.8 19.2 74.6 14.0 11.4 53.5 26.8 19.7 

C Columbia Japan 62.7 17.2 20.2 55.4 27.1 17.5 86.6 8.8 4.5 58.8 25.3 15.9 85.2 9.2 5.6 56.2 26.0 17.8 

C Greece Ivory C 51.2 19.5 29.3 46.6 29.3 24.2 38.6 22.4 39.0 44.8 29.5 25.7 39.4 20.9 39.7 46.2 29.1 24.7 
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D Uruguay C Rica 57.4 18.2 24.4 51.1 28.3 20.6 62.9 17.6 19.5 52.6 27.4 20.1 61.2 18.2 20.6 51.2 28.3 20.5 

D England Italy 39.5 20.0 40.4 32.5 30.2 37.3 41.8 22.6 35.6 33.1 29.8 37.1 42.8 20.5 36.7 32.9 30.1 37.0 

D Uruguay England 40.4 21.2 38.4 39.0 29.5 31.6 53.0 20.5 26.5 40.5 29.8 29.7 52.9 20.0 27.1 39.7 29.9 30.4 

D C Rica Italy 25.6 19.2 55.2 22.7 28.0 49.4 33.7 21.8 44.5 23.5 28.2 48.3 34.3 21.2 44.5 22.6 28.2 49.2 

D Uruguay Italy 40.7 20.6 38.7 37.9 30.4 31.7 52.7 20.6 26.7 40.6 28.8 30.6 60.3 17.9 21.9 46.5 29.9 23.7 

D C Rica England 26.8 19.0 54.2 23.2 28.2 48.6 34.8 21.1 44.0 23.6 28.6 47.8 27.1 21.4 51.6 16.0 25.1 58.9 

E Switzerland Ecuador 56.4 17.7 25.9 50.2 28.3 21.4 43.1 21.5 35.5 47.9 27.9 24.1 42.7 22.2 35.1 49.3 28.7 22.0 

E France Honduras 47.1 20.4 32.6 43.3 29.7 27.0 37.7 21.3 41.0 41.6 30.5 27.9 38.1 22.1 39.9 43.0 30.0 27.0 

E Switzerland France 49.6 19.2 31.2 44.7 29.7 25.6 46.9 21.3 31.8 45.1 29.0 26.0 48.0 20.0 32.0 45.1 29.0 25.9 

E Ecuador Honduras 42.6 20.2 37.2 39.6 30.1 30.4 42.2 21.2 36.6 38.5 30.1 31.5 41.7 22.9 35.3 38.6 29.6 31.8 

E Switzerland Honduras 58.2 18.7 23.1 52.1 27.0 21.0 50.5 20.1 29.5 51.2 28.0 20.8 49.8 21.7 28.6 51.9 27.4 20.7 

E Ecuador France 34.7 20.8 44.5 28.6 30.1 41.3 46.8 21.7 31.5 30.6 29.7 39.8 47.0 21.4 31.6 28.9 30.3 40.8 

F Argentina Bosnia 53.1 19.2 27.7 48.4 28.0 23.6 67.5 16.2 16.3 49.6 28.8 21.6 66.3 17.4 16.3 47.8 28.2 24.0 

F Iran Nigeria 39.1 20.2 40.8 36.3 30.5 33.2 24.7 19.2 56.1 35.2 30.1 34.7 24.5 20.3 55.1 37.2 30.3 32.6 

F Argentina Iran 65.0 15.9 19.1 57.0 25.4 17.6 81.3 11.4 7.3 59.1 25.6 15.3 85.4 9.2 5.5 65.1 22.2 12.7 

F Bosnia Nigeria 50.3 19.5 30.2 44.8 29.3 25.9 39.9 20.9 39.2 44.4 29.0 26.6 49.0 20.7 30.3 54.3 26.6 19.1 

F Argentina Nigeria 64.2 17.1 18.7 57.1 25.4 17.6 70.8 15.6 13.6 57.8 25.5 16.7 70.9 15.2 13.9 56.0 26.1 17.9 

F Bosnia Iran 49.5 19.4 31.1 44.8 29.8 25.4 52.4 20.3 27.3 45.6 29.8 24.6 52.8 20.4 26.8 44.6 29.9 25.5 

G Germany Portugal 43.2 20.5 36.3 40.9 29.2 30.0 35.8 22.1 42.1 40.2 29.0 30.7 36.9 21.2 42.0 40.4 30.8 28.8 

G Ghana USA 27.1 19.4 53.6 22.9 28.2 48.9 28.9 19.6 51.5 23.0 29.5 47.5 28.5 20.5 51.1 22.4 28.0 49.7 

G Germany Ghana 66.8 16.1 17.1 59.6 25.1 15.3 57.5 19.5 23.1 57.5 25.5 17.0 59.7 18.1 22.2 59.5 24.9 15.6 

G Portugal USA 45.7 20.5 33.9 41.3 30.8 27.8 41.7 22.6 35.8 41.8 30.8 27.4 41.9 21.9 36.2 42.4 30.4 27.2 

G Germany USA 50.9 20.5 28.7 45.7 29.8 24.4 42.4 20.8 36.7 46.4 28.1 25.5 51.1 21.2 27.7 56.2 26.3 17.5 

G Portugal Ghana 61.6 17.9 20.5 55.4 26.1 18.5 58.0 19.6 22.4 53.4 27.5 19.1 50.5 21.2 28.3 44.8 29.7 25.6 

H Belgium Algeria 49.1 20.2 30.7 44.1 29.9 26.0 44.6 21.9 33.5 43.9 29.1 27.0 44.1 22.2 33.7 44.2 29.9 25.9 

H Russia S Korea 54.8 19.3 25.9 48.6 28.5 22.9 67.4 17.3 15.2 52.2 27.1 20.7 67.1 16.0 16.9 48.9 28.2 22.9 

H Belgium Russia 47.1 20.3 32.6 42.9 30.6 26.6 49.6 20.6 29.7 43.7 30.0 26.3 49.3 20.7 30.0 43.3 29.8 26.9 

H Algeria S Korea 54.5 18.9 26.6 48.2 28.3 23.5 72.6 15.3 12.1 50.9 27.7 21.4 71.3 14.8 13.9 48.4 28.1 23.6 

H Belgium S Korea 63.3 17.0 19.7 56.2 26.1 17.6 80.0 11.6 8.4 59.5 24.9 15.6 77.8 12.2 9.9 56.3 25.9 17.8 

H Algeria Russia 38.7 20.2 41.2 32.2 30.2 37.6 48.5 20.6 30.9 33.3 30.1 36.6 48.3 20.2 31.6 32.1 30.4 37.5 

 
 R2       R2     

Braz QF 1     Braz QF 1    

RU B Chile Braz     RU B Chile Braz    

W C Col Col SF 1    W C Col Col SF 1   

RU D Italy  Braz    RU D Eng  Braz   

W E Switz QF 2 Ger    W E Switz QF 2 Ger   

RU F Bosn Switz     RU F Bosn Switz    

W G Ger Ger  Final   W G Ger Ger  Final  

RU H Russ   Ger   RU H Russ   Ger  

W B Spain QF 3  Spain   W B Spain QF 3  Spain  

RU A Croat Spain     RU A Mex Spain    

W D Urug Urug SF 2    W D Urug Urug SF 2   

RU C Greece  Spain    RU C Greece  Spain   

W F Arg QF 4 Arg  1st Spain  W F Arg QF 4 Arg 1st  Spain 

RU E France Arg   2nd Ger  RU E Fr Arg  2nd  Ger 

W H Belg Belg   3rd Arg  W H Belg Belg  3rd  Arg 

RU G Port    4th Braz  RU G Port   4th  Braz 

Figure 1(a) All tournaments-1 Variable- 

Violating Assumptions. 

 Figure 1(b) All tournaments-1 Variable- 

Satisfying Assumptions. 
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 R2       R2     

Braz QF 1     Braz QF 1    

RU B Chile Braz     RU B Chile Braz    

W C Col Col SF 1    W C Col Col SF 1   

RU D Italy  Braz    RU D Eng  Braz   

W E Switz QF 2 Ger    W E Switz QF 2 Ger   

RU F Bosn Switz     RU F Bosn Switz    

W G Ger Ger  Final   W G Ger Ger  Final  

RU H Alg   Braz   RU H Russ   Braz  

W B Spain QF 3  Spain   W B Spain QF 3  Spain  

RU A Mex Spain     RU A Mex Spain    

W D Urug Urug SF 2    W D Urug Urug SF 2   

RU C Greece  Spain    RU C Greece  Spain   

W F Arg QF 4 Arg  1st Spain  W F Arg QF 4 Arg 1st Ar
g 

Spain 

RU E France Arg   2nd Braz  RU E Fr Arg  2nd Fra
nce 

Braz 

W H Belg Belg   3rd Arg  W H Belg Belg  3rd Bel
g 

Arg 

RU G Port    4th Ger  RU G Port   4th Por
t 

Ger 

Figure 1(c) All tournaments-2 Variables- 

Violating Assumptions. 

 Figure 1(d) All tournaments-2 Variables- 

Satisfying Assumptions. 

 

 R2       R2     

Braz QF 1     Braz QF 1    

RU B Chile Braz     RU B Chile Braz    

W C Col Col SF 1    W C Col Col SF 1   

RU D Italy  Braz    RU D Eng  Braz   

W E Switz QF 2 Ger    W E Switz QF 2 Ger   

RU F Bosn Switz     RU F Bosn Switz    

W G Ger Ger  Final   W G Ger Ger  Final  

RU H Alg   Braz   RU H Russ   Braz  

W B Spain QF 3  Spain   W B Spain QF 3  Spain  

RU A Mex Spain     RU A Mex Spain    

W D Urug Urug SF 2    W D Urug Urug SF 2   

RU C Greece  Spain    RU C Greece  Spain   

W F Arg QF 4 Arg  1st Spain  W F Arg QF 4 Arg 1st Ar
g 

Spain 

RU E France Arg   2nd Braz  RU E Fr Arg  2nd Fra
nce 

Braz 

W H Belg Belg   3rd Arg  W H Belg Belg  3rd Bel
g 

Arg 

RU G Port    4th Ger  RU G Port   4th Por
t 

Ger 

Figure 1(e) All tournaments-3 Variables-
Violating Assumptions. 

 Figure 1(f) All tournaments-3 Variables- 

Satisfying Assumptions. 

 R2       R2     

Braz QF 1     Braz QF 1    

RU B Chile Braz     RU B Chile Braz    

W C Col Col SF 1    W C Col Col SF 1   

RU D Italy  Braz    RU D It  Braz   

W E Switz QF 2 Ger    W E Switz QF 2 Ger   

RU F Bosn Switz     RU F Bosn Switz    

W G Ger Ger  Final   W G Ger Ger  Final  

RU H Russ   Ger   RU H Russ   Ger  

W B Spain QF 3  Spain   W B Spain QF 3  Spain  

RU A Croat Spain     RU A Croat Spain    

W D Urug Urug SF 2    W D Urug Urug SF 2   

RU C Greece  Spain    RU C Greece  Spain   

W F Arg QF 4 Arg  1st Spain  W F Arg QF 4 Arg 1st Ar
g 

Spain 

RU E France Arg   2nd Ger  RU E Fr Arg  2nd Fra
nce 

Ger 

W H Belg Belg   3rd Arg  W H Belg Belg  3rd Bel
g 

Arg 

RU G Port    4th Braz  RU G Port   4th Por
t 

Braz 

Figure 1(g) Inter-continental only-1 Variable- 

Violating Assumptions. 

 Figure 1(h) Inter-continental only-1 Variable- 

Satisfying Assumptions. 

Figure 1. Modal predictions for knockout stages (continued on next page). 
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 R2       R2     

Braz QF 1     Braz QF 1    

RU B Chile Braz     RU B Chile Braz    

W C Col Col SF 1    W C Col Col SF 1   

RU D Eng  Braz    RU D Italy  Braz   

W E Switz QF 2 Ger    W E Switz QF 2 Ger   

RU F Bosn Switz     RU F Bosn Switz    

W G Ger Ger  Final   W G Ger Ger  Final  

RU H Alg   Braz   RU H Russ   Braz  

W B Spain QF 3  Arg   W B Spain QF 3  Spain  

RU A Mex Spain     RU A Croat Spain    

W D Urug Urug SF 2    W D Urug Urug SF 2   

RU C Ecuad  Spain    RU C Greece  Spain   

W F Arg QF 4 Arg  1st Braz  W F Arg QF 4 Arg 1st Ar
g 

Spain 

RU E France Arg   2nd Arg  RU E Fr Arg  2nd Fra
nce 

Braz 

W H Belg Belg   3rd Spain  W H Belg Belg  3rd Bel
g 

Ger 

RU G Port    4th Ger  RU G Port   4th Por
t 

Arg 

Figure 1(i) Inter-continental only-2 Variables- 

Violating Assumptions. 

 Figure 1(j) Inter-continental only-2 Variables- 

Satisfying Assumptions. 

 

 R2       R2     

Braz QF 1     Braz QF 1    

RU B Chile Braz     RU B Chile Braz    

W C Col Col SF 1    W C Col Col SF 1   

RU D Eng  Braz    RU D Eng  Braz   

W E Switz QF 2 Ger    W E Switz QF 2 Ger   

RU F Bosn Switz     RU F Bosn Switz    

W G Ger Ger  Final   W G Ger Ger  Final  

RU H Alg   Braz   RU H Russ   Ger  

W B Spain QF 3  Arg   W B Spain QF 3  Spain  

RU A Mex Spain     RU A Croat Spain    

W D Urug Urug SF 2    W D Urug Urug SF 2   

RU C Greece  Spain    RU C Greece  Spain   

W F Arg QF 4 Arg  1st Braz  W F Arg QF 4 Arg 1st Ar
g 

Spain 

RU E Ecuad Arg   2nd Arg  RU E Fr Arg  2nd Fra
nce 

Ger 

W H Belg Belg   3rd Spain  W H Belg Belg  3rd Bel
g 

Braz 

RU G Port    4th Ger  RU G Port   4th Por
t 

Arg 

Figure 1(k) Inter-continental only-3 Variables-
Violating Assumptions. 

 Figure 1(l) Inter-continental only-3 Variables- 

Satisfying Assumptions. 

Figure 1. Modal predictions for knockout stages (continued from Previous page). 

Results 

Table 4 shows the percentage of simulated tournaments where pool matches were correctly 
predicted by each of the 12 models. Table 5 shows the percentage of simulated World Cups 
where teams were correctly predicted to reach different rounds of the knockout tournament. 
Table 6 shows the marks awarded using the evaluation scheme for pool matches, knockout 
matches and for the overall tournament. All 12 models predicted a greater number of pool 
matches correctly than the 18.6 out of 48 expected by random chance. The correctness of 
predictions of the knockout structure was more difficult because the matches within the 
knockout stages were unknown prior to the tournament commencing.  
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Table 4. Percentage of simulated tournaments where the correct result for pool matches was predicted. 

Pool Team 1 Team 2 Result 1 Variable 2 Variables 3 Variables 

    Violating 
Assumptions 

Satisfying 
Assumptions 

Violating 
Assumptions 

Satisfying 
Assumptions 

Violating 
Assumptions 

Satisfying 
Assumptions 

    All Inter-C All Inter-C All Inter-C All Inter-C All Inter-C All Inter-C 

A Brazil Croatia Win 58.1 54.9 58.4 49.0 65.3 73.3 62.9 52.0 64.7 72.0 63.7 49.3 

A Mexico Cameroon Win 56.7 53.9 56.8 48.2 56.9 51.3 57.2 48.4 57.3 51.7 56.7 48.0 

A Brazil Mexico Draw 20.1 18.0 23.3 28.8 19.2 16.2 20.9 27.1 19.2 13.4 23.6 25.4 

A Croatia Cameroon Win 58.6 55.0 58.0 48.7 56.2 48.0 57.1 48.2 53.7 56.6 56.7 58.6 

A Brazil Cameroon Win 75.5 70.4 70.3 61.2 80.5 82.0 73.6 64.2 79.7 86.6 72.7 70.5 

A Croatia Mexico Lose 38.2 40.0 38.4 33.0 39.8 47.8 38.9 33.2 39.3 55.2 37.6 40.5 

B Spain Holland Lose 15.5 20.5 13.2 18.1 14.3 17.8 13.9 17.5 15.2 17.0 13.6 18.0 

B Chile Australia Win 66.0 62.5 65.0 56.2 75.3 82.1 68.5 57.7 75.2 81.3 68.2 54.9 

B Spain Chile Lose 17.0 21.8 15.6 19.1 19.0 30.4 16.6 20.8 20.2 29.9 16.4 19.3 

B Holland Australia Win 64.2 60.4 63.3 54.2 68.1 70.1 64.2 55.1 68.4 69.2 64.8 54.3 

B Spain Australia Win 86.5 80.0 77.4 70.8 89.5 90.2 79.5 73.2 89.5 89.5 79.0 71.6 

B Holland Chile Win 36.2 38.8 34.9 31.8 31.8 27.6 33.5 30.8 31.2 28.5 32.5 32.0 

C Columbia Greece Win 41.9 42.0 40.9 38.8 45.7 52.8 42.7 41.7 46.1 52.1 42.7 38.6 

C Ivory C Japan Win 48.3 46.7 49.0 42.8 59.4 72.1 54.1 47.2 59.0 71.8 53.8 43.0 

C Columbia Ivory C Win 56.9 54.1 58.6 49.0 58.1 56.9 58.2 48.5 57.5 56.1 58.4 48.6 

C Greece Japan Draw 19.1 18.6 22.3 28.3 17.4 14.4 20.9 25.8 17.0 14.0 22.6 26.8 

C Columbia Japan Win 67.3 62.7 64.9 55.4 78.1 86.6 68.6 58.8 77.0 85.2 68.9 56.2 

C Greece Ivory C Win 53.3 51.2 54.0 46.6 49.4 38.6 52.3 44.8 48.8 39.4 52.1 46.2 

D Uruguay C Rica Lose 20.1 24.4 16.6 20.6 17.9 19.5 16.8 20.1 17.8 20.6 16.5 20.5 

D England Italy Lose 38.8 40.4 34.0 37.3 39.5 35.6 33.4 37.1 38.0 36.7 33.5 37.0 

D Uruguay England Win 40.9 40.4 39.1 39.0 45.3 53.0 41.8 40.5 45.9 52.9 42.1 39.7 

D C Rica Italy Win 21.6 25.6 18.7 22.7 23.2 33.7 18.9 23.5 24.3 34.3 19.5 22.6 

D Uruguay Italy Win 39.6 40.7 36.9 37.9 45.1 52.7 39.8 40.6 44.3 60.3 39.3 46.5 

D C Rica England Draw 20.1 19.0 22.9 28.2 21.9 21.1 24.4 28.6 22.1 21.4 24.7 25.1 

E Switzerland Ecuador Win 58.7 56.4 59.1 50.2 54.7 43.1 57.0 47.9 54.0 42.7 56.7 49.3 

E France Honduras Win 47.6 47.1 48.4 43.3 44.7 37.7 47.9 41.6 44.9 38.1 47.6 43.0 

E Switzerland France Lose 26.0 31.2 21.5 25.6 26.6 31.8 21.1 26.0 26.6 32.0 23.0 25.9 

E Ecuador Honduras Win 40.9 42.6 40.1 39.6 41.8 42.2 40.4 38.5 41.2 41.7 39.2 38.6 

E Switzerland Honduras Win 61.8 58.2 61.1 52.1 59.5 50.5 59.8 51.2 59.1 49.8 59.4 51.9 

E Ecuador France Draw 23.5 20.8 27.3 30.1 23.5 21.7 27.1 29.7 23.6 21.4 27.1 30.3 

F Argentina Bosnia Win 55.3 53.1 56.3 48.4 62.0 67.5 58.7 49.6 61.2 66.3 58.7 47.8 

F Iran Nigeria Draw 22.6 20.2 27.4 30.5 22.9 19.2 27.3 30.1 23.4 20.3 27.5 30.3 

F Argentina Iran Win 68.7 65.0 66.1 57.0 74.8 81.3 69.5 59.1 74.0 85.4 68.0 65.1 

F Bosnia Nigeria Lose 27.3 30.2 22.3 25.9 28.8 39.2 23.9 26.6 30.0 30.3 24.3 19.1 

F Argentina Nigeria Win 68.8 64.2 65.7 57.1 71.6 70.8 67.4 57.8 72.3 70.9 67.0 56.0 

F Bosnia Iran Win 51.9 49.5 52.7 44.8 53.7 52.4 53.9 45.6 54.5 52.8 53.5 44.6 

G Germany Portugal Win 44.2 43.2 43.9 40.9 42.2 35.8 44.3 40.2 41.9 36.9 42.8 40.4 

G Ghana USA Lose 57.7 53.6 58.1 48.9 55.8 51.5 56.7 47.5 56.9 51.1 57.0 49.7 

G Germany Ghana Draw 16.4 16.1 19.2 25.1 17.8 19.5 21.3 25.5 16.8 18.1 20.4 24.9 
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G Portugal USA Draw 23.3 20.5 26.2 30.8 22.7 22.6 27.2 30.8 22.8 21.9 26.6 30.4 

G Germany USA Win 53.3 50.9 53.8 45.7 51.0 42.4 53.6 46.4 49.4 51.1 52.6 56.2 

G Portugal Ghana Win 66.3 61.6 64.6 55.4 64.9 58.0 63.2 53.4 66.0 50.5 64.5 44.8 

H Belgium Algeria Win 49.7 49.1 51.6 44.1 48.3 44.6 51.1 43.9 48.6 44.1 50.9 44.2 

H Russia S Korea Draw 19.8 19.3 23.4 28.5 19.0 17.3 23.2 27.1 18.9 16.0 22.9 28.2 

H Belgium Russia Win 48.0 47.1 49.0 42.9 50.1 49.6 50.1 43.7 50.5 49.3 49.8 43.3 

H Algeria S Korea Win 55.8 54.5 56.4 48.2 63.4 72.6 58.5 50.9 63.3 71.3 59.1 48.4 

H Belgium S Korea Win 68.0 63.3 65.5 56.2 74.2 80.0 68.0 59.5 73.8 77.8 68.4 56.3 

H Algeria Russia Draw 23.1 20.2 26.9 30.2 23.4 20.6 27.3 30.1 23.3 20.2 27.3 30.4 

 

Table 5. Percentage of simulated tournaments where correct teams were predicted to reach different stages of 
knockout tournament. 

Knockout stage condition 1 Variable 2 Variables 3 Variables 

 Violating 
Assumptions 

Satisfying 
Assumptions 

Violating 
Assumptions 

Satisfying 
Assumptions 

Violating 
Assumptions 

Satisfying 
Assumptions 

 All Inter-C All Inter-C All Inter-C All Inter-C All Inter-C All Inter-C 

Brazil reach Quarter Finals 46.5 42.5 47.4 41.7 53.4 62.6 53.0 45.3 53.5 63.0 52.6 45.6 

Columbia reach Quarter Finals 39.7 37.2 41.7 37.5 44.9 48.7 43.8 38.8 45.4 47.2 44.9 37.6 

Germany reach Quarter Finals 53.8 46.5 55.6 47.4 51.1 37.7 55.4 46 50.7 42.1 53.9 50.3 

France reach Quarter Finals 24.6 25.6 25.1 27.1 21.7 16.7 23.8 25.4 22.1 16.8 24.0 26.5 

Holland reach Quarter Finals 21.9 23.6 22.1 23.7 17.3 12.9 19.1 22.1 17.0 13.2 18.9 22.8 

Costa Rica reach Quarter Finals 8.0 10.7 6.2 11.2 8.0 14.2 6.7 11.0 8.5 12.5 6.7 9.0 

Argentina reach Quarter Finals 53.4 48.2 54.5 47.3 60.7 63.8 58.1 49.5 60.4 64.4 57.8 49.9 

Belgium reach Quarter Finals 33.8 33.9 33.7 33.4 34.7 33.8 33.9 33.5 34.5 34.4 34.0 33.5 

Brazil reach Semi Finals 27.5 24.6 29.5 24.9 34.3 42.3 34.4 27.9 34.0 42.3 34.1 26.8 

Germany reach Semi Finals 35.9 29.6 37.5 30.6 33.3 20.5 36.7 29.3 32.3 23.9 36.0 32.6 

Holland reach Semi Finals 9.7 11.2 9.8 11.1 7.4 5.0 8.2 10.0 7.0 5.4 7.8 10.3 

Argentina reach Semi Finals 29.4 26.6 30.0 25.3 36.5 43.0 33.7 28.0 36.3 42.9 33.5 26.6 

Germany reach Final 20.5 16.7 21.9 17.2 17.9 8.8 20.5 16.0 16.9 10.6 19.9 18.8 

Argentina reach Final 14.0 13.5 14.4 12.7 18.2 23.5 16.4 14.7 18.3 24.0 16.5 13.9 

Holland finish 3rd 2.4 2.8 2.5 2.6 1.8 1.1 1.9 2.3 1.6 1.4 1.9 2.4 

Germany win the tournament 11.7 9.6 12.7 9.9 9.6 3.9 11.6 9.6 9.1 5.0 11.3 11.4 

 

Table 6. Percentage correctness score for each prediction for different stages of the tournament. 

Stage 1 Variable 2 Variables 3 Variables 

 Violating 
Assumptions 

Satisfying 
Assumptions 

Violating 
Assumptions 

Satisfying 
Assumptions 

Violating 
Assumptions 

Satisfying 
Assumptions 

 All Inter-C All Inter-C All Inter-C All Inter-C All Inter-C All Inter-C 

Pool 21.4 20.8 21.2 19.7 22.1 22.5 21.6 19.9 22.1 22.6 21.5 19.9 

Knockout 4.3 4.0 4.4 4.0 4.5 4.4 4.6 4.1 4.5 4.5 4.5 4.2 

All 25.7 24.8 25.6 23.7 26.7 26.8 26.1 24.0 26.6 27.0 26.1 24.1 
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Figure 2 shows that the methods based on data where the modelling assumptions were violated 
earned higher evaluation scores than when the assumptions were satisfied. The evaluation 
score was also higher when previous data from all matches was used to produce the models 
than when data from just inter-continental tournaments was used. Despite difference in World 
ranking points (PD) being the only significant predictor of goal difference within matches, 
models restricted to this variable earned 1 evaluation point less than those based on 2 or 3 
variables. The mean of 25.95 ranking points achieved by models using all three predictor 
variables was only marginally greater than the 25.90 when two of the variables (PD and DD) 
were used. 

 

Figure 2. Evaluation scores for different sets of models. 

Discussion 

Predicting the outcomes of international soccer matches remains a difficult task as is evidenced 
by the evaluation scores being below 50% of the marks available for all 12 models. The pool 
stage matches have three different outcomes with the most likely outcome of some matches 
having a lower probability of occurring than 0.5. While the actual tournament winners, 
Germany, were predicted to be semi-finalists by all 12 models, no more than 13% of simulated 
tournaments were won by Germany according to any of the models. The FIFA World Cup 
remains a wide open tournament with many close matches and some knockout stage matches 
being decided after extra time and penalty shoot outs. There are many similarities between the 
modal predictions from the models with all 12 including the same 8 quarter-finalists and the 
same 4 semi-finalists. This is because the FIFA World ranking points of teams is the dominant 
variable within the models. Brazil were the winners and Argentina were the runners up in the 
modal simulated tournaments derived from the two models with the highest evaluation scores. 
The main difference between these two models and the remaining models (all of which had 
Spain winning more simulated tournaments than any other team) is the weighting they placed 
on distance travelled. These two models violated some modelling assumptions and were 
created using data from previous inter-continental tournaments only. Table 1 shows that the 
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weighting given to distance travelled in these two models was 3 times that in the 
corresponding models created using previous data from all international tournaments. The 
negative association of distance travelled with goal difference within matches meant that these 
two models favoured teams from South and Central America more than other models.  

The difference in the evaluation scores between the models based on data satisfying and 
violating the assumptions is very little. The models where the assumptions were violated by 
the data used to create them were slightly more accurate. This makes it difficult to justify the 
effort of transforming data in order to satisfy the assumptions of multiple linear regression. 
This agrees with the conclusions of previous predictive modelling studies (O’Donoghue and 
Williams, 2004; O’Donoghue, 2005, 2006, 2010). The differences between these two sets of 
models can be explained in terms of the variability in predicted outcomes. In order to satisfy 
the assumptions of multiple linear regression, outliers had to be removed in the dependent goal 
difference variable (Fallowfield et al., 2005, p180). This excluded high scoring matches from 
the data used to create the models and artificially reduced the spread of goal differences that 
were predicted. The excluded matches were real matches and the goal difference values did not 
result from measurement error. Tables 2 and 3 present models where the assumptions were 
violated beside the corresponding models where the assumptions were satisfied. These tables 
show fewer drawn matches within the simulations where the assumptions were violated than 
when they were satisfied. This is the case for all 48 pool matches in each of the 6 pairs of 
models. Furthermore, Table 1 shows that the residual values for each model violating the 
assumptions had a higher variability (SD) than the corresponding model where the 
assumptions were satisfied. The variables were not transformed using methods recommended 
by Nevill (2000) within the models that violated the assumptions. This meant that the negative 
impact of distance travelled was considered to be linear within these models as opposed to 
curvilinear (taken to the power of 2/3 in two of the models where the assumptions were 
satisfied). This amplified the chances the simulator gave to teams from North and Central 
America meaning that methods where the assumptions were violated gained more evaluation 
points from Argentina’s, Brazil’s, Columbia’s, Uruguay’s and Costa Rica’s progress in the 
actual World Cup than other models.  

The models based on 2 or all 3 predictor variables achieved higher evaluation scores than those 
based on just FIFA World ranking points. The very slight difference in evaluation score 
between models based on 2 and 3 predictor variables suggests that recovery days has little 
impact on the accuracy of prediction with the higher evaluation scores of these models being 
attributed to distance travelled. This supports the evidence that home advantage is still 
important in soccer and agrees with existing research concluding the prevalence of home 
advantage in sport (Corneya and Carron, 1992; Nevill et al., 1996, 2002; Pollard and Pollard, 
2005; Pollard and Gómez, 2009; Goumas, 2014). Spain winning the 2010 World Cup in South 
Africa and Germany winning the 2014 World Cup in Brazil are anecdotal evidence that the 
impact of home advantage is diminishing. However, the success of teams from South and 
Central America in the 2014 World Cup was reflected in the evaluation scores of models that 
included distance travelled as a predictor variable. 

While the 96 matches from previous inter-continental tournaments may be more representative 
of the FIFA World Cup than Continental tournaments, the models based on all tournament data 
achieved higher evaluation scores than those based only on inter-continental tournament data. 
This is possibly explained by the greater volume of matches in the wider data set being more 
representative of international soccer than the inter-continental data which ultimately came 
from just 3 tournaments. 
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The models can be used to investigate the effect of different factors on results. For example, 
there has been speculation about the effect of playing in the Amazonia Arena in Manaus on 
teams’ performances in the next matches. There were 4 pool matches played in this stadium. 
Seven of the 8 teams involved played subsequent matches; Honduras’s match in the Amazonia 
Arena was their final match of the tournament. The next match of the other 7 teams can be 
considered in terms of goal difference and expected goal difference according to the models. 
The difference between these two variables indicates how much better a team did than 
expected. As an example, the expected results from the most successful model were used (all 3 
variables, the previous data used to create the model coming from inter-continental 
tournaments only and violating the assumptions of multiple linear regression). Only one of the 
7 teams that played in the Amazonia Arena did better than expected in the next match; 
Portugal. The seven teams had a goal difference that was 0.384 less than the expected goal 
difference in their first match after playing in the Amazonia Arena. This example is limited 
because of actual goal difference results being integer numbers while predicted goal difference 
results are real numbers. However, where factors are investigated using a greater number of 
matches, individual matches will have less impact on the mean observed goal difference 
making such investigations more meaningful. 

In conclusion, the current investigation has provided evidence that models based on more than 
one predictor variable are more accurate than those based on a single variable and that 
predictive accuracy is increased by using a larger data set of previous cases to create the 
models. The results also suggest that removing outliers from variables and transforming 
variables so that data satisfy the modelling assumptions does not lead to improved accuracy of 
match outcome prediction in soccer. 
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Abstract 

Head up displays (HUD) are beneficial in diving situations when the diver uses 
both hands for an activity, e.g. photography, scientific work, operating a diver 
propulsion vehicle or during diver training. They remove the need to locate a 
submersible pressure gauge or remember to look at a personal dive computer. A 
new model of HUD, one that can easily be retrospectively fitted to a recreational 
diver’s regulator hose outside the mask lens, has been developed. A pilot study of 
93 open circuit recreational dives was conducted over one week in Croatia, to 
assess the HUD-user interface. An electronic survey was developed and 
completed twice after 16 dives. Mean maximum depth was 23 m and mean total 
dive time 38 mins. 34 dives (37%) were made with the HUD and 59 made with 
traditional submersible pressure gauges. There was good test-retest agreement 
(kappa score=0.9) between repeated surveys. The HUD was relatively easy to 
attach and could be operated without the necessity of reading the user manual. 
The HUD has two potential mechanisms for preventing rapid ascent injuries. 
Firstly, displaying an ascent rate warning directly in the divers’ field of vision 
and, secondly, by reducing the likelihood of an out-of-gas situation. 

KEYWORDS: ASCENT WARNING, COMPUTERS – DIVING, INJURY PREVENTION, 
LOW AIR, RECREATIONAL DIVING, RISK FACTORS 
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INTRODUCTION 

Established risk factors for recreational diving injuries include running out of gas and/or rapid 
ascent (Buzzacott, Pikora, Rosenberg, & Heyworth, 2012; Buzzacott, Rosenberg, Heyworth, & 
Pikora, 2011). Reasons for either of these events to occur were suggested by a panel of diving 
experts (Buzzacott, Rosenberg, & Pikora, 2009). Failing to monitor the submersible pressure 
gauge (SPG) was the most likely reason given for running out of gas while recreational diving 
(Buzzacott et al., 2009). Among 1032 recreational dives in Western Australia, 183 ended with 
less than 50 bar remaining in the cylinder (Buzzacott et al., 2011). Concurring with expert 
opinion, surprise at the remaining air pressure was significantly associated with returning with 
less than 50 bar in reserve (Buzzacott et al., 2011). Not only is the last 50 bar shaded in red on 
popular SPGs but it is also the minimum pressure at which manufacturers must ensure each 
SPG displays pressure within a tolerance specified by European standard EN250:2000. 

Rate of ascent is now also more commonly displayed on personal dive computers (Buzzacott et 
al., 2012) either as a vertical column graph or numerically. Regardless, displayed pressure or 
rate of ascent will not assist recreational divers avoid related injuries if divers fail to physically 
look at the appropriate display. The inability of commercial and military divers to read diving 
information displays during conditions of very low visibility, coupled with the advantages of 
hand-free operation, has led to the development of Head-Up Display (HUD) dive computers. 
Head up displays are also beneficial in other diving situations such as when the diver uses both 
hands for a certain activity, e.g. underwater photography, scientific work, operating a diver 
propulsion vehicle (DPV) or during diver training such as controlled emergency ascent 
practice.  

The CompuMask ® and DataMask ® HUDs (American Underwater Products, San Leandro, 
CA) are recreational diving computers which are fully integrated into a traditional diving mask 
based on an LCD display together with an optical system (Sieber, Kuch, Enoksson, & 
Stoianova-Sieber, 2012). They feature a single colour LCD screen and wireless tank pressure 
readout.  Potential disadvantages of this system include the limited range of face profiles each 
mask is suited to and that the life of the dive computer is tied to the life of the mask. The US 
Navy Experimental Diving Unit has developed a variety of head up displays (Gallagher, 1999) 
however the units are costly and available only as military equipment. 

An alternative model of HUD, one that can be retrospectively fitted to a recreational diver’s 
regulator hose outside the mask lens, has been under development for military rebreather 
divers, as previously reported (Koss & Sieber, 2011a, 2011b; Sieber, Schuster, Reif, Madden, 
& Enoksson, 2013). It was originally designed to be located inside a full face mask, which 
required the installation of a port on the side window of the full face mask visor (Sieber et al., 
2012). Installing such a port however is a major change of a full face mask, thus a new CE 
certification would be required.  As a consequence, the device was redesigned to be located 
outside of the visor. A further adaptation now allows it to be attached to a second stage 
regulator. 

A typical HUD for diving is mounted in close vicinity (5 to 10 cm) from the diver’s eye. A 
person with normal eyesight cannot focus on such short distances, thus an optical system has to 
be introduced. In its simplest form, it consists of a single convex lens placed between the 
screen and the eye. Attachment of the HUD to either full face mask or second stage regulator is 
shown in Figure 1.The core component is a tiny colour OLED screen with a diagonal of 24 
mm. A two lens system consisting of a plano-convex lens and a bi-concave lens creates a 
virtual image of the OLED display with a size of 20x30cm at a distance of approximately 1m. 
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The plane side of the convex lens is in contact with water.  

 

 

 

Figure 1: The HUD fitted to a full-face mask and to a second stage regulator 

The HUD screen shows depth, decompression information including remaining no 
decompression time, decompression ceiling and time to surface, tilt-compensated compass 
heading, cylinder pressure reading and ascent and descent rate graphs (Figure 2). The 
decompression algorithm is a pure unmodified Bühlmann ZH-L16C  for either air or nitrox 
diving, with diver selectable gradient factors (Bühlmann, 1995). The tank pressure sensor 
housing includes a 350 bar ceramic pressure sensor and a rechargeable Li Ion battery with a 
capacity of 500 mAh. 

 

 

Figure 2: Typical display as seen by the diver. In this case maximum depth 39.5m, current depth 25.1m, dive 
time 20:50min, heading SE 145°, battery OK (green), remaining no decompression time 
15min, cylinder pressure 62bar, ascent rate warning (red >10 m/min) and temperature 19°C. 

The aim of this pilot study was to assess the utility of this portable HUD among a group of 
recreational divers.. 

Methods 

As part of the Marie Curie Initial Training Network Phypode program (Buzzacott, 2013) a 
group of 12 early career researchers and postdoctoral fellows met with the manufacturer of the 
new HUD in Labin, Croatia.  Prior to the experiments the HUD was tested and CE certified 
against EN13319. The tank pressure sensor was tested according to the relevant parts of 
EN250 by DEKRA, (Essen, Germany) a notified body for personal protective equipment.  The 
team had two days to familiarise themselves with the equipment during test dives. Each diver 
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wearing a HUD and/or a full face mask was accompanied by at least one dive buddy not 
wearing test equipment.  During this familiarization period a user survey was drafted to assess 
display readability, clarity of information, ease of use and comfort. After each test dive the 
survey questionnaire was assessed for face and content validity and refined as needed. To 
assess the intuitiveness of the HUD no instruction manuals were provided. On day three the 
survey was pilot-tested and any last, minor revisions were made as needed, to ensure they were 
understood by divers from non-English speaking backgrounds. 

The revised version was then transformed into an electronic format and uploaded to the 
internet survey site SurveyMonkey (Finley, 1999) which provides a popular internet-based 
electronic survey program. Four divers then tested two HUD units during a dive at night. 
Thereafter divers either wore the HUD or did not, and repeated dives were made during the 
day, from shore or from a commercial dive charter boat, with full face masks or regular dive 
masks and independent second stage regulators. The intention was to test the HUD in a wide 
variety of conditions including night/day, poor/good visibility, from shore or in ‘blue water’ 
from a boat. 

Immediately following each dive the diver had dive details logged on the day’s manifest and 
those wearing the HUD then also anonymously completed the electronic survey online.  One 
hour later each diver repeated the online survey.  On each occasion the diver nominated a 
fictional nickname so that the two surveys could be matched.  No personal information was 
collected. 

This training exercise conformed with the approved work plan of the Phypode Project and, as a 
research training exercise, no Human Research Ethics Committee approval was required. 

Analysis 

A Cohen’s kappa coefficient(k) was calculated to assess agreement between the first and 
second time each person completed the post-dive survey (Smeeton, 1985).  The kappa-statistic 
measure is a value between -1 and 1, with 0 corresponding to the value expected by chance and 
1 perfect agreement. Interpretation of the values (suggested by Landis and Koch) are given as: 
below 0.00 – Poor, 0.00–0.20 – Slight, 0.21–0.40 – Fair, 0.41–0.60 – Moderate, 0.61–0.80 – 
Substantial and 0.81–1.00 – Almost perfect (Landis & Koch, 1977a, 1977b). 

Results 

Ninety-three open circuit recreational dives were made to assess the utility of the HUD, with 
mean dive time of 38 mins and mean maximum depth of 23 m. Eleven (12%) were made from 
a boat and 82 (88%) from shore, 15 of those (16%) by divers wearing a full face mask. 34 
dives (37%) were made with the HUD, the remainder were made by accompanying buddies 
not wearing test equipment. All dives finished with at least 50 bar remaining in the cylinder, as 
per local regulations, which prevented the less-than-50 bar warning from being observed 
underwater but two divers simulated this by closing the dive cylinder’s pillar valve and 
inhaling, to lower the pressure in the first stage below 50 bar. Lifetime diving experience 
(number of post-certification open water dives) of the divers ranged from 4~1500. 

Matched pairs of post-dive surveys were collected from divers making the last 16 HUD-
wearing dives, after the survey questionnaire had been pilot-tested on the third day. One 
subject failed to complete the re-test survey on the same day as the initial post-dive survey so 
this dive was excluded from further statistical analysis. Mean agreement (k) between the 
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remaining 15 pairs of tests was 0.9, implying high reliability. A summary of the first responses 
of the group is presented in Table 1.  
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Table 1: Post-dive questionnaire responses by divers wearing the HUD  

 First Response Second Response 

Survey question Yes No N/a Yes No N/a 

Was the HUD bright enough? 15 0 - 15 0 - 

Was maximum depth clear to you? 10 5 - 10 5 - 

Was your current depth clear to you? 15 0 - 15 0 - 

Was the compass clear to you? 15 0 - 15 0 - 

Were the compass bearings clear to you? 15 0 - 12 3 - 

Was tank pressure clear to you? 13 2 - 13 2 - 

Was the remaining no decompression time clear to you?   13 2 - 14 1 - 

Was ascent rate and bar graph clear to you? 6 9 - 6 9 - 

Was the water temperature clear to you? 10 5 - 11 4 - 

Was the HUD convenient to set up? 13 2 - 11 3 1 

During the entry into the water, did the HUD stay in place? 6 9 - 5 9 1 

During the dive, did HUD stay in place? 9 6 - 8 6 1 

Did the HUD restrict your vision? 4 11 - 3 12 - 

Did you notice the Low on Air warning? 2 13 - 3 12 - 

Did you notice a rapid ascent warning? 4 11 - 1 11 3 

If both of your hands were occupied during the dive were you 
still able to read the display? 

14 1 - 15 0 1 

Was the HUD comfortable to wear? 14 1 - 14 1 - 

Did the HUD run out of battery? 0 15 - 0 15 - 
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From the comment section it was identified that the ascent rate warning (a coloured column 
graph) was not displayed clearly enough to be immediately obvious. However with repetitive 
use, the displayed information became clearer as the wearer became more familiar with the 
HUD. Concurring with the responses in Table 1, divers wearing ordinary masks and regulators 
reported experiencing more movement of the HUD during dives compared with full face mask 
divers, especially while entering the water or clearing the mask. It was suggested that a safety-
stop countdown at the end of each dive might be added to the dive computer’s software. 

Discussion 

Despite the obvious pilot-trial nature of this study, to our knowledge this is the first report on 
the utility of a retrofitted HUD among recreational divers.  HUD masks with in-built dive 
computers have been marketed to recreational divers in recent years but this is the first 
recreational dive computer of its kind that can be retrospectively fitted to either a full-face 
mask or else to an ordinary scuba second-stage regulator and then viewed through an existing 
recreational diving mask. 

Given the developmental nature of the models tested there were some improvements 
suggested, including a more obvious ascent-rate warning and greater stability of the display 
during entry to the water. Despite these, we propose this HUD has the potential to reduce the 
likelihood of unintentionally running low on gas, in particular because an obvious warning is 
displayed (a flashing screen) at 50 bar. At this early stage this is speculative however and a 
human trial comparing returning gas pressures between HUD and SPG users may help 
determine what effect the HUD has upon running low on gas. In one anecdotal report an 
inexperienced diver was offered the loan of a DPV in a confined shallow bay.  After five 
minutes the diver reported having only 140 bar left in his dive cylinder and after a further five 
minutes of circling the small bay he reported having only 50 bar left. At this time it was 
observed that his ‘octopus’ (reserve second stage regulator) was trailing behind him, releasing 
the contents of his cylinder while he was being propelled through the water. This highlighted 
an advantage of the HUD over an SPG while operating a DPV. 

Overall the HUD added substantially to the total mass of the second stage regulator held in the 
mouth which reduced the comfort of divers, especially those with the least experience, who 
reported diving usually only while on vacation.  There was high agreement (14/15 divers, 
93%) that it would require more experience diving with the HUD before comfort levels 
returned to normal. The majority of dives were made with regular masks and second-stage 
regulators while the HUD was originally designed for use with full-face masks. Once 
underwater, however, the HUD is essentially neutrally buoyant. 

Conclusion 

The effect a HUD with an obvious ascent-rate warning might have upon actual ascent rate 
during recreational dives cannot be predicted from this pilot trial alone.  Ascending rapidly has 
been found associated with losing buoyancy control among West Australian recreational divers 
though which is causal requires further research.  Previous research established that running 
out of gas was significantly more likely to implicate diving injuries when associated with a 
rapid ascent (Acott, 1994).  Therefore, the HUD described in this study has two potential 
mechanisms focussed upon prevention of rapid ascent injuries. Firstly, by displaying an ascent 
rate warning directly in the divers field of vision and, secondly, by potentially reducing the 
likelihood of any rapid ascent occurring in conjunction with an out-of-gas situation. Further 
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research and development will continue to address the occurrence of these known risk factors 
for diving injuries among recreational divers. 
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Abstract 

American football is played primarily as a sequence of two types of plays – runs 
and passes, determined before the play by the team that has the possession of the 
ball. All other plays are much less frequent, and considered “special plays”. In 
this study we show that the type of play can be predicted using pattern 
recognition methods with accuracy higher than random chance based on several 
indicators that reflect the status of the game such as the down, time left in the 
game, score difference, etc. These values were used to predict the next play by 
using Support Vector Machine and Weighted Nearest Distance classification 
schemes. Experiments with data from all plays in 11 National Football League 
(NFL) seasons show that the ability to predict the next offensive play can be as 
high as 74% for an entire season of a single team. 

KEYWORDS: AMERICAN FOOTBALL, NFL, MACHINE LEARNING, PATTERN 
RECOGNITION 

Introduction 

American football is currently the most popular sport in North America. The popularity of the 
game can be reflected by the TV rating of the National Football League championship finals – 
the “Super Bowl” – which is North America‘s most viewed television broadcast. According to 
Forbes, the annual revenue of the National Football League alone is $9.5B, and the combined 
value of the NFL teams is over $37B. These numbers exclude college and high school 
American football, as well as other American football leagues inside and outside North 
America. 

As a highly technical game, personal accolades and team records within each game and season 
are inevitable. Forecasting and effective analysis of players, plays, and team efficacy under 
different game conditions would benefit team owners, head coaches, and defensive and 
offensive coordinators. The ability to predict what the opposing team will do under certain 
game conditions can provide an edge over the competition during the game, and a tool to 
simulate and prepare the defense for a match. 

The American football “passing premium” is defined as the existence of a balance between the 
number of passing and running plays, even though there is a greater expected return in passing 
plays (Alamar, 2007). That is, a passing play is expected to earn on average more yardage than 
a running play, while also having more risk for turnovers or change of possession due to 
inability of the team to advance ten yards in order to keep possession of the ball. Rockerbie 
(2008) produced an optimal model of balance between passing and running plays, and tested it 
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using the actual share of running plays in 2006 NFL season. The results also confirmed the 
tradeoff between yardage return and risk (Rockerbie, 2008). 

The ability to make accurate forecasting and analysis of sequence of plays is of high value in 
sports (Rudelsdorfer, 2014). For example, Boulier and Stekler (2003) predicted the outcome of 
American football games based on power scores, and showed experimental results using the 
outcome of the NFL seasons of 1994-2000 and power scores provided by the New York Times, 
as well as some naïve models, the betting market, and the opinions of sports editors. Results 
showed that the betting market is the best predictor, followed by the predictions based on 
power scores (Boulier and Stekler, 2003). 

In this study we show that individual American football plays can be predicted based on 
several numerical values that reflect the status of the game. The ability to predict the play can 
be used to gain an advantage during the game, as well as to better prepare for the game or 
improve game simulations. 

Methods 

Data 

The raw data used in this study was taken from advancedfootballanalytics.com. The data 
include information about all plays in the regular season, such that each play is one raw in the 
table. Each raw includes a short text description about the play, from which the information 
used in this study was extracted. Kicking plays and penalties were ignored in this study. 
Interceptions were considered as an attempt of a pass play. The information extracted for each 
play is described in Table 1. 

Table 1. The variables used as indicators for each play. 

Variable Units     

Range 

       Type 

The time until half seconds 0-3600 integer 

The time left in the game seconds 0-1800 integer 

Down count 1-4 integer 

Distance to a first down yards 1-10 integer 

Quarter of play count 1-4 integer 

Scoring difference count Unlimited integer 

Yard line (distance to the goal) yards 1-100 integer 

Offensive team score count Unlimited integer 

Defensive team score count Unlimited integer 

 

Time left to the end of the quarter was not used because unlike other sports such as basketball, 
the second quarter of each half starts exactly from where the previous quarter ended. 

Each play also had the ground truth, which is whether the play started from the position 
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described by the variables in Table 1 was a running or a passing play. The plays were 
separated to seasons, and the plays of each season was separated to teams, such that the 
offensive plays of each of the 32 NFL teams in each of the 11 seasons (2002-2012) provided 
the dataset. 

Pattern recognition 

Two methods were used to predict the play based on the status of the game: Weighted Nearest 
Distance (WND) and Support Vector Machine (SVM). WND (Shamir, 2008; Shamir et al., 
2008) is a pattern recognition method designed for large feature spaces. WND works by first 
computing Fisher discriminant scores (Bishop, 2006) for all features, as defined by 

)* =	∑ -.*/ −	.*,01111123405�∑ 6*,03405� ∙ 88 − 1 

where Wf is the Fisher discriminant score, N is the total number of classes, Tf is the mean of 
the values of feature f in the entire dataset, Tf,c is the mean of the values of feature f in the class 

c, and α 2
f,c  is the variance of feature f among all samples of class c. The distance between a 

test sample x and a class c is then measured by: 

 	

:��, ;	 = ∑ <∑ )*3-�* − =*23|�|*5� ?@A∈CD |.0|  

where T is the training set, Tc is the training set of class c, t is a feature vector from Tc, |x| is the 
length of the feature vector x, xf is the value of image feature f, Wf is the Fisher discriminant 
score of feature f, |Tc| is the number of training samples of class c, d(x,c) is the computed 
distance from a given sample x to class c, and p is the exponent, which is set to −5 as 
thoroughly discussed with experimental results in (Orlov et al., 2008). More information about 
the WND method is provided in (Shamir, 2008; Shamir et al., 2008). 

The experiments were performed using 700 plays, 350 passing plays and 350 running plays. 
Three hundred plays from each type were randomly allocated for training, and the remaining 
plays were used for testing. Each experiment was repeated 20 times such that in each run 
different plays were randomly allocated to training and test sets. 

The second classification method used was Support Vector Machine (Vapnik, 1995). SVM is a 
supervised learning method for binary classification that divides a high-dimensional feature 
space to determine the hyperplanes with the maximal margin between samples of different 
classes.  

A linear Support Vector Machine can be defined as an optimization problem under constraints 
as described in the equation: min‖H‖ 

Under the constraint 	IJ�H ∙ � − K	 ≥ 1 

where i is the index of the sample, yi is the class of the sample {-1,1}, x is the feature vector of 
sample i, and w is the normal vector to the hyperplane. The problem can be solved by replacing 

||w|| with 0.5*||w||2, and with the Lagrange multiplier α producing the equation  



International Journal of Computer Science in Sport – Volume 13/2014/Edition 2              www.iacss.org 

   

 

62 

arg 	NOPH NQ�� ≥ 0 R12 ‖H‖3 − T�JUIJ�H ∙ � − K	 − 1VW
J5� X 

Once the hyperplane is determined using the training data, a new sample point can be 
classified based on the area of the feature space they are in, as divided by the hyperplane. More 
information about SVM is provided in (Vapnik, 1995). In this study we used the SVMlight 
(Joachims, 2008) implementation of the SVM algorithm. 

Results 

The ability to predict the type of play based on the status of the game was measured by the 
number of plays that the method predicted correctly, divided by the total number of attempts to 
predict the type of play. Since the number of passing plays in the dataset is equal to the number 
of running plays, random guessing of the next play would provide 50% of accuracy. The 
experimental results indicate that in many teams the next offensive play can be predicted based 
on the status of the game in accuracy higher than random guessing. For instance, in the season 
of 2002 the offensive plays of the Baltimore Ravens were predicted in ~69% of the cases, 
while the plays of the Chicago Bears could not be predicted with accuracy higher than random 
guessing of 50%. While the play prediction accuracy changed between teams, it did not change 
substantially between seasons. In all seasons the average play prediction accuracy (of all 32 
teams) was consistent, and ranged between ~59% to ~60%. 

SVM provided slightly better accuracy in predicting the next play. The highest prediction 
accuracy of ~74% was observed in the offensive plays made by the Detroit Lions in the season 
of 2011 and Saint Louis Rams in 2004, but six other teams also had play prediction accuracy 
of over 70% (Arizona in 2010 and 2009, Colts in 2009, Eagles in 2005, Vikings in 2005, and 
Raiders in 2005). Figure 1 shows the number of teams that their offensive plays were predicted 
with accuracy higher than different thresholds. Since the data cover 11 seasons, and there are 
32 different teams in the NFL, the total number of teams is 352. 
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Figure 1. The number of teams that their offensive plays can be predicted with accuracy above a certain 
threshold. 

As the graph shows, WND and SVM are about equally informative for predicting the next play 
in an American football play, but overall SVM performed better than WND. While in some 
teams the selection of offensive plays is less systematic and cannot be predicted with accuracy 
beyond random guessing, in some cases the offensive plays over a certain season can be 
predicted with accuracy higher than 70%. 

Conclusion 

In this study we showed that the next play in an American football game can be predicted with 
accuracy above random guessing by analyzing the status of the game. Clearly, the type of play 
cannot be predicted with perfect accuracy, as the selection of the play is a human decision, and 
therefore depends on intuition in addition to the complex analysis of the game status. Also, the 
analysis does not take into consideration injuries, as well as weather conditions such as wind or 
rain that might also affect the decision regarding the offensive play. Future research will focus 
on the analysis of the predictability of offensive plays and its association to characteristics of 
the offense such as the identity of the offensive coordinators, offense productivity, quarterback 
ranking, etc. 
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