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Editorial 

Arnold Baca 

Department of Biomechanics, Kinesiology and Applied Computer Science, 

ZSU, University of Vienna 

 

 

Dear readers: 
 

Welcome to the winter issue 2013 of the International Journal of Computer Science in 

Sport (IJCSS). 
 

Four research papers and one project report have been included within this issue. 

 

Allan Z. Maymin, Philip Z. Maymin, and Eugene Shen introduce a new framework to 

measure and to analyse the on-court synergy of basketball teams, which allows to optimize 

the composition of rosters. 

  

Ralf Schneider, Oleksandr Kalentev, Tatyana Ivanovska, and Stefan Kemnitz studied the 

influence of an increased ball size as well as an increased net height on table tennis player and 

the game by computer simulations. 

  

Nicole Ruch, Johanna Hänggi, Stephanie Zurbuchen, and Urs Mäder investigated the 

validity of the ActiSmile, a physical activity feedback device.  

 

Moritz Vetterli and Nicole Ruch present a comparison of the energy expenditure estimates 

of activity-specific regressions, random forest, and regression trees using acceleration data 

from children. 

  

The project report by Robert H. Schmicker demonstrates the application of SaTScan, a 

software for the the spatial, temporal, and space-time scan statistics, to evaluate the spatial 

distribution of corner kick goals. 

 

If you have any questions, comments, suggestions, or points of criticism, please send them to 

me.  

 

Best wishes for 2014! 

 

Arnold Baca, Editor in Chief 

University of Vienna, arnold.baca@univie.ac.at 

 

mailto:arnold.baca@univie.ac.at
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NBA Chemistry:  
Positive and Negative Synergies in Basketball 

Allan Z. Maymin
1
, Philip Z. Maymin

2
 & Eugene Shen

1
  

1
AllianceBernstein 

2
NYU-Polytechnic Institute 

 

Abstract 

We introduce a novel Skills Plus Minus (“SPM”) framework to measure on-court 

chemistry in professional basketball.  First, we evaluate each player’s offense and 

defense in the SPM framework for three basic skill categories: scoring, 

rebounding, and ball-handling.  Next, we simulate games using the skill ratings of 

the ten players on the court.  Finally, we calculate the synergies of each NBA 

team by comparing their 5-player lineup’s effectiveness to the “sum-of-the-parts.”  

We find that these synergies can be large and meaningful.  Because skills have 

different synergies with other skills, our framework predicts that a player’s value 

depends on the other nine players on the court.  Therefore, the desirability of a 

free agent depends on the current roster. Indeed, our framework generates 

mutually beneficial trades between teams.  Other ratings systems cannot generate 

ex-ante mutually beneficial trades since one player is always rated above another.  

We find more than two hundred mutually beneficial trades between NBA teams, 

situations where the skills of the traded players fit better on their trading partner’s 

team.  We also find that differences in synergies between teams explain as much 

as six wins and that teams are no more likely to exhibit positive chemistry than 

negative chemistry.   

KEYWORDS: NBA, SYNERGY, CHEMISTRY, SKILLS PLUS-MINUS 

Introduction 

“My model for business is The Beatles. They were four guys who kept each other’s 

negative tendencies in check. And the total was greater than the sum of the parts. 

Great things in business are not done by one person; they are done by a team of 

people.”  

– Steve Jobs 

Basketball, one of the world’s most popular and widely viewed sports, is a timed game played 

by two teams of five players on a rectangular court1.  While the exact playing regulations vary 

across different governing bodies, we focus on the National Basketball Association (“NBA”), 

which is widely considered the premier men’s professional basketball league in the world.  

Teams alternate possession of the basketball and attempt to score points by shooting a ball 

through a hoop 18 inches in diameter and 10 feet high mounted to a backboard at each end of 

the floor.  The team with the most points at the end of the game wins the game.  In the NBA, 

                                                 
1
 Background information on the game of basketball draws from http://en.wikipedia.org/wiki/Basketball. 

http://en.wikipedia.org/wiki/Basketball
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teams have 24 seconds to attempt a field goal.  A successful field goal attempt is worth two 

points for the shooting team, or three points if the shooting player is behind the three-point line.  

A free throw is awarded to an offensive player if he is fouled while shooting the ball.  A 

successful free throw attempt  is worth one point.  Each possession ends with either a field goal 

attempt, free throw attempt, or a turnover (if a player loses possession to the opposing team).  

Turnovers can occur when the ball is stolen (a “steal”) or if the player steps out of bounds or 

commits a violation (“non-steal turnover”).  A missed field goal attempt or free throw attempt 

results in a rebounding opportunity, where the teams fight to gain possession of the ball.  Each 

possession ends with a finite number of possible outcomes, making the simulation of a game 

feasible.   

The rules of basketball do not specify any positions whatsoever, and there are no special 

positions such as goalie.  Over time, positions have evolved, where shorter and quicker players 

play “guard”, a position that requires more ballhandling, passing and outside shooting.  

Meanwhile, taller and stronger players typically play “forward” or “center”, operate closer to 

the basket, and grab more rebounds.  Traditionally, teams play with two guards, two forwards, 

and one center, but it is possible to play with five guards or five centers, if a team so desires.   

A box score summarizes the statistics of a game, detailing player contributions such as minutes 

played, field goal attempts, successful field goals, free throw attempts, successful free throws, 

rebounds, assists, steals, blocks and turnovers.  Assists are awarded when a player passes the 

ball to a teammate who then scores a field goal.  A block occurs when a defensive player 

legally deflects a field goal atatempt by an offensive player.  In general, guards accumulate 

more assists, while centers block more shots.  There have been many attempts to rate individual 

basketball players using box score statistics.  Examples include Wins Produced or Win Shares 

(see Oliver 2004).  These ratings systems generally agree with expert opinions on the best 

players in the league.  For example, during the 2012-2013 season, both Wins Produced and 

Win Shares suggested that LeBron James and Kevin Durant were the two best players in the 

NBA.  These two players also finished first and second in Most Valuable Player (“MVP”) 

voting for that season.   

While these box score ratings can measure an individual’s contributions, they do not 

necessarily explain how players interact on the court.  For example, it is possible that the five 

best players in the NBA are all centers.  In this case, a team with five centers may not be the 

optimal lineup, since there would be no one to bring the ball up the court or guard the quicker 

opposing guards.  Therefore to determine the optimal lineup, we would want to measure the 

“synergies” among players, and predict which players play well with each other.  Our paper 

attempts to address this issue by introducing a Skills Plus Minus (“SPM”) framework that 

decomposes a player’s contributions into three skills:  scoring, rebounding and ball-handling. 

In sports, synergies are not often applied to individual athletes.  Bollinger and Hotchkiss (2003) 

in evaluating baseball define team synergy as firm-specific productivity such as the signals and 

strategies unique to the team.  MacDonald and Reynolds (1994) explicitly avoid attention to 

“synergy” or “chemistry” and focus only on the value of each baseball player on his own.  

Indeed, they hypothesize “a reasonably efficient market in player talent and a consequently 

quasi-efficient assignment of players among teams and within team line-ups.” Idson and 

Kahane (2000) begin the path of testing this hypothesis by separating out the effects of 

individual and team productivity on salary determination in the National Hockey League, and 

indeed find that team attributes not only directly affect individual pay, but can also diminish 

certain individual productivity effects.  Their results in fact hint at synergies: they find 

complementarity across some productive attributes but not others and they hypothesize that 

“larger, more significantly positive interactions might follow if certain positions are paired.”  
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They leave this open as a fruitful subject of future research. 

Here we are able to actually test this hypothesis by using a large dataset of repeated interactions 

combined with our Skills Plus Minus model and framework to decompose the players into their 

constituent skill groups and evaluate the synergies resulting from various combinations of those 

skill groups.  We find that the allocation of players within teams is not efficient, and that there 

are hundreds of trades that would have benefitted both trading teams because of the effects on 

team chemistry. 

An example helps frame our argument.  With the third pick in the 2005 NBA draft, the Utah 

Jazz selected Deron Williams, a 6’3” point guard who played collegiately at Illinois.  Using the 

very next pick, the New Orleans Hornets drafted Chris Paul, a 6’0” point guard from Wake 

Forest.  Since the moment they entered the league, the careers of Williams and Paul have often 

been compared.  Countless debates and discussions sparked about who is the better point guard.  

There are arguments for both sides.  

The box score statistics seem to favor Paul.  His career statistics (18.7 points per game, 4.6 

rebounds, 9.9 assists, 2.4 steals, 0.571 true shooting percentage (“TS%”)) are better than 

Williams across the board (17.2 points, 3.2 rebounds, 9.2 assists, 1.1 steals, 0.560 TS%).  Paul 

has played in more All-Star games (4 vs. 2) and appeared on more All-NBA teams (3 vs. 2).   

Meanwhile, supporters of Williams point to his better regular season record (0.590 winning 

percentage vs. 0.555 for Paul), relative playoff success (20 playoff wins vs. 10), head-to-head 

record against Paul, size, strength, and durability.  They argue that Williams is a stronger one-

on-one defender who does not gamble for steals. 

At the end of the 2009-2010 season, if Utah had traded Deron Williams for Chris Paul, would 

they have been better off?  If New Orleans had traded Chris Paul for Deron Williams, would 

they have been better off?  Using the framework introduced in this paper, we can answer these 

questions: surprisingly, the answer is YES to both.  A Williams-for-Paul swap would have 

made both teams better off and is an example of a mutually beneficial trade.  Such a trade 

should not have been possible if team composition were efficient; at the very least, such a trade 

should have been consummated, but it never was. 

This paper introduces a novel Skills Plus Minus framework to measure on-court chemistry in 

basketball.  This SPM framework builds upon the Advanced Plus Minus (“APM”) framework 

first introduced by Rosenbaum (2004).  While APM evaluates each player based on the points 

scored while they are in the game, SPM evaluates each player based on the offensive and 

defensive components of three basic categories of skills:  scoring, rebounding and ball-

handling.  For example, a player’s “steal” ratings (part of the ball-handling category) are 

determined by how many steals occur while he is in the game.  Like APM, SPM considers the 

other nine players on the court.  A benefit of the APM and SPM framework is the ability to 

capture skills that are not found in traditional box score measures, such as off-the-ball defense, 

boxing out, and setting picks.  Also, in contrast to other ratings such as Wins Produced, APM 

and SPM do not make position and team adjustments to the player ratings.  

We use the SPM framework to simulate games using the skill ratings of the ten players on the 

court.  These simulations incorporate how each play starts: out-of-bounds, steal, defensive 

rebound or offensive rebound.  We find these starting conditions materially affect the outcome 

of the possession.  The simulations are then used to measure the effectiveness of individual 

players and 5-player lineups. 

We investigate which basketball skills have synergies with each other.  Traditionally, team 

chemistry has been difficult to measure.  Berri and Jewell (2004) use roster stability as a proxy 
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for chemistry.  While they acknowledge the “potential impact of disruptive players,” (which we 

would call negative synergies in our framework) they note that “identifying and quantifying the 

impact of such players appears problematic.”  Our framework solves this problem.  

Another method to measure chemistry compares the “lineup APM” versus the sum of the 

constituent single player APM’s.  The problem with that approach is that there are too many 

possible five-player lineup combinations.  The APM’s of the five-player lineups have small 

sample problems since the minutes played of any given five-player lineup can be small.  Our 

innovation is that we are able to predict synergies while avoiding this problem. 

We calculate the synergies of each NBA team by comparing their 5-player lineup’s 

effectiveness to the “sum-of-the-parts.” These synergies can be large and meaningful. Because 

skills have different synergies with other skills, a player’s value depends on the other nine 

players on the court.  Therefore the desirability of a free agent depends on the players currently 

on the roster. 

Finally, our framework is able to generate mutually beneficial trades.  Other ratings systems 

cannot generate mutually beneficial trades, since one player is always rated above another, c.f. 

Kubatko, Oliver, Pelton, and Rosenbaum (2007) for a review of most of them, or Berri (1999) 

or Berri (2008) for more detail on Wins Produced.  Berri and Brook (1999) investigate whether 

trades are ex-post mutually beneficial and argue that trades can be ex-ante mutually beneficial 

if the ex-post distribution of minutes is known and different.  In contrast, our framework 

generates ex-ante mutually beneficial trades without a change in the distribution of minutes 

played. Using our framework, we find many mutually beneficial trades, when the skills of the 

traded players fit better on their trading partner’s team.  One such mutually beneficial trade is 

Chris Paul for Deron Williams. 

Methods 

Description of the Data 

While our primary innovation is a theoretical framework to model on-court chemistry, we use 

data to illustrate. Berri and Schmidt (2010) criticize APM because the player ratings are not 

stable from year-to-year. They favor ratings that use box score statistics (e.g. Wins Produced), 

because the ratings are more predictable from year-to-year. We acknowledge Berri and 

Schmidt’s criticism and therefore use data from four NBA seasons (2006-2007 through 2009-

2010) to achieve better estimates for player skills. While Fearnhead and Taylor (2011) allow 

their APM ratings to be time-varying, we estimate one rating for all four years.  

The data we use is from basketballgeek.com, maintained by Ryan J. Parker, and represents a 

processed version of the play-by-play information from the NBA and ESPN. The data includes 

the names of all players on the court at each time, the location of the shots taken, result of 

possession, and more. The data set includes 4,718 games and 987,343 plays.   

Tables 1-4 display summary statistics from our data set. 
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Table 1. Possession Start Variables  

Possession Start Count Percent 

Defensive Rebound 256,589 26.0% 

Offensive Rebound 104,903 10.6% 

Steal 59,329 6.0% 

Out of Bounds 566,522 57.4% 

Total 987,343 100.0% 

 

Table 2. Possession Outcomes 

Possession Outcomes Count Percent 

Steal 68,460 6.9% 

Non-steal turnover 66,912 6.8% 

Missed FT – 2 pts 5,953 0.6% 

Missed FT – 1 pt 15,068 1.5% 

Missed FT – 0 pts 7,161 0.7% 

Made FT – 3 pts 16,650 1.7% 

Made FT – 2 pts 59,746 6.1% 

Made FT – 1 pt 19,908 2.0% 

Missed 3 FG 108,651 11.0% 

Made 3 FG 60,652 6.2% 

Missed 2FG 298,416 30.3% 

Made 2 FG 257,524 26.1% 

Total 985,101 100.0% 

 

 

Table 3. Offensive Rebounds 

Type OReb Missed Shots OReb% 

Field Goal 127,489 407,154 31.3% 

Free Throw 3,749 28,218 13.3% 
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Table 4. Players Involved in the Most Plays in Our Data Set. 

 

Description of the Model 

In our Skills Plus Minus (“SPM”) framework, we run a series of nested probit regressions to 

estimate the likelihood of various events for a given play.  We order a series of events {EVTi, i 

= 1,…n} sequentially.  We then define       , the conditional probability of each EVTi 

occurring, as: 

 

                 

 ∑             ∑                 

   

   

∑                 

   

   

 

 

   

 

 

       is the probability of the event i, conditional on all prior events in the sequence not 

occurring (since only one event can occur per play).      is the cdf of the standard normal 

distribution,       is a constant associated with the event,    is the home court dummy 

variable,     is the possession start variable, and      and      are player dummy 

variables.    is 1 if the home team has possession, and 0 if the away team has possession.  

    are dummy variables for either “Defensive Rebound”, “Offensive Rebound”, or “Steal”.  

Name Plays Name Plays Name Plays Name Plays Name Plays Name Plays

1 Andre Iguodala 53,798 Samuel Dalembert 39,505 Ronnie Brewer 29,750 Brook Lopez 22,937 Mike James 17,691 Kris Humphries 12,515

2 Kobe Bryant 50,783 LaMarcus Aldridge 39,388 Antonio McDyess 29,712 Jason Maxiell 22,841 Michael Beasley 17,603 Josh Powell 12,290

3 Dwight Howard 49,297 Zach Randolph 39,098 Zydrunas Ilgauskas 29,589 Aaron Brooks 22,826 Eddy Curry 17,458 Leon Powe 12,131

4 LeBron James 49,254 Carlos Boozer 38,806 Luke Ridnour 29,559 Carlos Delfino 22,801 Jamaal Tinsley 17,428 Renaldo Balkman 12,010

5 Antawn Jamison 48,399 Allen Iverson 38,764 T.J. Ford 29,412 Jason Williams 22,734 C.J. Miles 17,399 Tony Battie 11,894

6 Jason Kidd 47,746 Mike Miller 38,742 Luis Scola 29,352 Jordan Farmar 22,712 Marko Jaric 17,225 Tyreke Evans 11,793

7 Andre Miller 47,515 Mike Bibby 38,565 Peja Stojakovic 29,175 Linas Kleiza 22,674 Josh Childress 17,156 Jamaal Magloire 11,681

8 Rudy Gay 47,238 Kevin Durant 38,436 DeShawn Stevenson 29,124 Daniel Gibson 22,402 Wally Szczerbiak 17,126 Ersan Ilyasova 11,617

9 Joe Johnson 47,209 Kirk Hinrich 38,322 Andres Nocioni 28,806 Dahntay Jones 22,334 Fabricio Oberto 17,051 Brent Barry 11,546

10 Dirk Nowitzki 47,053 Derek Fisher 38,318 Ricky Davis 28,802 Antoine Wright 22,124 Bobby Jackson 17,040 Joel Anthony 11,468

11 Vince Carter 46,936 Marvin Williams 38,152 Al Thornton 28,749 Darko Milicic 22,106 Sasha Vujacic 16,880 Ronnie Price 11,402

12 Deron Williams 46,845 Troy Murphy 38,081 Charlie Villanueva 28,184 Darius Songaila 22,103 Carlos Arroyo 16,803 Malik Allen 11,259

13 Stephen Jackson 46,780 Rafer Alston 37,792 Kyle Korver 28,084 Zaza Pachulia 22,071 Mark Blount 16,769 Chris Quinn 11,230

14 Raymond Felton 46,622 Kevin Martin 36,967 Brendan Haywood 27,983 Spencer Hawes 21,991 Kevin Love 16,669 Dan Gadzuric 11,164

15 Steve Nash 46,241 Andrea Bargnani 36,872 Kenyon Martin 27,980 Kelenna Azubuike 21,909 Joey Graham 16,504 Ruben Patterson 11,139

16 Danny Granger 44,800 Earl Watson 36,624 Trevor Ariza 27,905 Ime Udoka 21,876 Lou Williams 16,432 Mardy Collins 11,109

17 Rashard Lewis 44,796 Steve Blake 36,609 Michael Finley 27,314 Ronny Turiaf 21,834 Tony Allen 16,380 Hilton Armstrong 11,098

18 Carmelo Anthony 44,607 Corey Maggette 36,458 Maurice Evans 27,273 Desmond Mason 21,825 J.J. Redick 16,281 Shaun Livingston 11,069

19 Richard Jefferson 44,195 Udonis Haslem 36,362 Mickael Pietrus 27,156 Jamario Moon 21,783 Matt Harpring 16,124 Brandon Jennings 11,028

20 Amare Stoudemire 44,009 Devin Harris 36,074 Erick Dampier 27,145 Devin Brown 21,695 Jannero Pargo 16,092 Greg Buckner 10,956

21 John Salmons 43,992 Richard Hamilton 35,991 Mike Conley 27,132 Marc Gasol 21,243 Johan Petro 16,085 Louis Williams 10,837

22 Caron Butler 43,968 Kevin Garnett 35,817 Tracy McGrady 27,095 Luke Walton 21,210 Daequan Cook 16,052 Tyronn Lue 10,799

23 Baron Davis 43,896 Brad Miller 35,648 Andray Blatche 27,074 Marquis Daniels 21,140 Anthony Morrow 16,044 Sam Cassell 10,783

24 Josh Smith 43,851 Tony Parker 35,389 Elton Brand 26,906 Kurt Thomas 20,910 Brandon Bass 16,016 Shannon Brown 10,719

25 David West 43,690 Chris Duhon 35,372 O.J. Mayo 26,888 Gilbert Arenas 20,868 Jerry Stackhouse 15,986 Antoine Walker 10,706

26 Shawn Marion 43,629 Jeff Green 34,935 Thaddeus Young 26,800 Eddie House 20,834 DeSagana Diop 15,962 Jonny Flynn 10,695

27 Hedo Turkoglu 43,429 Rasheed Wallace 34,399 Nate Robinson 26,773 Trenton Hassell 20,735 Stephon Marbury 15,942 Travis Diener 10,637

28 Gerald Wallace 43,407 Rasual Butler 34,381 Travis Outlaw 26,601 Eric Gordon 20,699 Dorell Wright 15,676 Damon Jones 10,551

29 Ray Allen 43,312 Jose Calderon 34,105 Sebastian Telfair 26,548 Anthony Carter 20,679 Nazr Mohammed 15,627 Yakhouba Diawara 10,507

30 Chris Bosh 43,234 Raja Bell 34,066 Damien Wilkins 26,462 Joe Smith 20,623 Earl Boykins 15,455 Louis Amundson 10,496

31 Jamal Crawford 43,109 Nick Collison 33,773 Thabo Sefolosha 26,415 Antonio Daniels 20,580 Sergio Rodriguez 15,429 Ryan Hollins 10,496

32 Chauncey Billups 43,101 Andrew Bogut 33,578 Michael Redd 26,288 Vladimir Radmanovic 20,564 Brevin Knight 15,427 Gerald Green 10,446

33 Boris Diaw 42,703 Ben Wallace 33,548 Andrew Bynum 26,127 Joel Przybilla 20,361 Jose Juan Barea 15,270 Donte Greene 10,406

34 David Lee 42,058 Beno Udrih 33,220 Shaquille O'Neal 26,077 Quinton Ross 20,277 Bobby Simmons 15,147 Brian Scalabrine 10,220

35 Jason Terry 42,027 Charlie Bell 32,791 Francisco Garcia 25,833 Jason Thompson 20,148 Luc Richard Mbah a Moute 14,977 Damon Stoudamire 10,033

36 Jason Richardson 41,972 Chris Kaman 32,745 Mikki Moore 25,590 Corey Brewer 19,934 Rashad McCants 14,961 J.J. Hickson 10,000

37 Lamar Odom 41,838 Mike Dunleavy 32,577 Keith Bogans 25,362 Rasho Nesterovic 19,823 James Jones 14,839 Will Bynum 9,989

38 Monta Ellis 41,190 Andrei Kirilenko 32,491 Roger Mason 25,261 Luther Head 19,741 George Hill 14,710 Marco Belinelli 9,987

39 Anthony Parker 41,146 Matt Barnes 32,362 Derrick Rose 25,171 Morris Peterson 19,736 Chucky Atkins 14,471 Chris Douglas-Roberts 9,683

40 Al Harrington 41,112 Leandro Barbosa 32,337 Channing Frye 25,100 Jared Dudley 19,490 Chris Andersen 14,460 Marreese Speights 9,650

41 Emeka Okafor 41,065 Paul Millsap 32,061 Jason Kapono 25,015 Nenad Krstic 19,399 Juan Dixon 14,353 Kevin Ollie 9,635

42 Tayshaun Prince 40,991 Kendrick Perkins 31,802 Ronald Murray 24,884 Yi Jianlian 19,211 Jason Collins 14,319 Nicolas Batum 9,630

43 Ben Gordon 40,867 Nene Hilario 31,676 Bruce Bowen 24,745 Carl Landry 19,159 Devean George 14,240 Julian Wright 9,560

44 Paul Pierce 40,827 J.R. Smith 31,579 Chris Wilcox 24,716 Brandon Rush 18,997 Glen Davis 14,098 Taj Gibson 9,535

45 Pau Gasol 40,827 Jermaine O'Neal 31,564 Wilson Chandler 24,707 Nick Young 18,976 Danilo Gallinari 13,895 Eddie Jones 9,527

46 Shane Battier 40,740 Jameer Nelson 31,478 Tyrus Thomas 24,604 Matt Carroll 18,958 Rudy Fernandez 13,885 Ryan Anderson 9,435

47 Jarrett Jack 40,737 Tyson Chandler 31,467 Jeff Foster 24,261 Sasha Pavlovic 18,891 Stephen Curry 13,801 Goran Dragic 9,414

48 Mo Williams 40,617 Al Horford 31,233 Rodney Stuckey 24,191 Anthony Johnson 18,781 Shelden Williams 13,731 Jonas Jerebko 9,322

49 Tim Duncan 40,522 Josh Howard 31,201 Russell Westbrook 24,190 Ramon Sessions 18,706 Brian Skinner 13,715 Darren Collison 9,252

50 Chris Paul 40,417 Manu Ginobili 31,152 Jarvis Hayes 23,956 Reggie Evans 18,599 D.J. Augustin 13,689 James Singleton 9,169

51 Luol Deng 40,259 Anderson Varejao 31,125 Cuttino Mobley 23,915 Eduardo Najera 18,416 Roy Hibbert 13,626 JaVale McGee 9,120

52 Ryan Gomes 40,214 Andris Biedrins 30,943 Chuck Hayes 23,911 Josh Boone 18,415 Amir Johnson 13,586 Eric Snow 9,088

53 Al Jefferson 40,184 Quentin Richardson 30,442 Yao Ming 23,740 Arron Afflalo 18,406 Kwame Brown 13,554 Solomon Jones 9,052

54 Marcus Camby 40,171 Hakim Warrick 30,398 Jared Jeffries 23,737 Rodney Carney 18,385 Royal Ivey 13,401 Omri Casspi 8,748

55 Dwyane Wade 40,132 Willie Green 30,335 Craig Smith 23,697 Matt Bonner 18,327 Bostjan Nachbar 13,294 Kenny Thomas 8,659

56 Brandon Roy 40,028 James Posey 30,109 Kyle Lowry 23,638 Courtney Lee 17,996 Dominic McGuire 13,117 Stromile Swift 8,634

57 Ron Artest 39,947 Randy Foye 29,993 Keyon Dooling 23,530 Mario Chalmers 17,965 Marcus Williams 13,086 Juan Carlos Navarro 8,621

58 Mehmet Okur 39,831 Drew Gooden 29,973 Martell Webster 23,281 C.J. Watson 17,950 Adam Morrison 13,011 Jacque Vaughn 8,568

59 Rajon Rondo 39,647 Larry Hughes 29,899 Joakim Noah 23,155 Juwan Howard 17,883 Francisco Elson 12,653 Bonzi Wells 8,544

60 Grant Hill 39,532 Delonte West 29,880 Tim Thomas 23,000 Fred Jones 17,789 Smush Parker 12,626 Anthony Randolph 8,543
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“Out of Bounds” has been normalized to 0.       are the dummy variables that indicate the 

offensive players on the court during the play, while      are the dummy variables that 

indicate the defensive players.   

We have dummy variables for the 360 players
2
 who have participated in the most plays in our 

data sample, and define all others to be “replacement level” players.         ,         , 

         , and           are coefficients associated with the variables, for event i. Each 

player has two ratings in any given event: offense and defense.  Table 5 displays the regression 

results for steals. 

Table 5. Probit Estimation of Steals 

                ∑            ∑                

   

   

∑                

   

   

 

 

   

 

 
Estimate Std. Err. z value Pr(>|z|) 

     
(Intercept) -1.4230 0.0187 -76.02 0.0% 

      
Home Court -0.0128 0.0039 -3.29 0.1% 

      
Dreb 0.0598 0.0045 13.39 0.0% 

      
Oreb -0.1336 0.0069 -19.29 0.0% 

      
Steal 0.0130 0.0082 1.57 11.5% 

      

           
Offense Estimate Std. Err. z value Pr(>|z|) Defense Estimate Std. Err. z value Pr(>|z|) 

Chris Paul -0.1483 0.0269 -5.51 0.0% 
 

Thabo Sefolosha 0.1169 0.0207 5.66 0.0% 

Vince Carter -0.0927 0.0191 -4.85 0.0% 
 

Trevor Ariza 0.1045 0.0201 5.19 0.0% 

Leandro Barbosa -0.0951 0.0200 -4.76 0.0% 
 

Renaldo Balkman 0.1348 0.0265 5.09 0.0% 

Kobe Bryant -0.1149 0.0247 -4.65 0.0% 
 

Gerald Wallace 0.1063 0.0214 4.96 0.0% 

Joe Johnson -0.1141 0.0249 -4.59 0.0% 
 

C.J. Watson 0.1156 0.0239 4.84 0.0% 

Tyreke Evans -0.1521 0.0343 -4.43 0.0% 
 

Chuck Hayes 0.1051 0.0226 4.66 0.0% 

Stephon Marbury -0.1132 0.0293 -3.86 0.0% 
 

Ronnie Brewer 0.0970 0.0209 4.63 0.0% 

LeBron James -0.0856 0.0223 -3.84 0.0% 
 

Monta Ellis 0.0856 0.0190 4.50 0.0% 

Rajon Rondo -0.0959 0.0254 -3.78 0.0% 
 

Devin Harris 0.0929 0.0211 4.41 0.0% 

Jannero Pargo -0.0982 0.0261 -3.77 0.0% 
 

Thaddeus Young 0.0939 0.0215 4.36 0.0% 

… best 10 above, worst 10 below … 
 

… best 10 above, worst 10 below … 

Dwight Howard 0.0739 0.0232 3.18 0.1% 
 

J.J. Hickson -0.1060 0.0340 -3.11 0.2% 

Bonzi Wells 0.0981 0.0304 3.22 0.1% 
 

Fabricio Oberto -0.0835 0.0260 -3.21 0.1% 

Brook Lopez 0.0955 0.0293 3.26 0.1% 
 

Andres Nocioni -0.0672 0.0198 -3.39 0.1% 

Shaquille O'Neal 0.0652 0.0199 3.28 0.1% 
 

Jermaine O'Neal -0.0739 0.0203 -3.63 0.0% 

Louis Amundson 0.1078 0.0327 3.30 0.1% 
 

Wally Szczerbiak -0.0909 0.0245 -3.71 0.0% 

Andris Biedrins 0.0712 0.0206 3.45 0.1% 
 

Joel Anthony -0.1145 0.0301 -3.80 0.0% 

Ryan Hollins 0.0993 0.0279 3.56 0.0% 
 

Andrea Bargnani -0.0809 0.0207 -3.91 0.0% 

Andrew Bogut 0.0866 0.0242 3.57 0.0% 
 

Amare Stoudemire -0.1041 0.0241 -4.31 0.0% 

Chris Kaman 0.0921 0.0204 4.51 0.0% 
 

Erick Dampier -0.1109 0.0248 -4.48 0.0% 

Eddy Curry 0.1471 0.0286 5.15 0.0% 
 

Mike Miller -0.0918 0.0202 -4.54 0.0% 

 

For example, if Rajon Rondo plays on the road on a team with four other replacement level 

players, against a team with five replacement level players, the probability of a steal for a 

possession that started out-of-bounds would be: 

                                     if Rondo’s team has the ball 

                                     if Rondo’s opponent has the ball 

                                                 

2 We use 360 players since there are 30 NBA teams and twelve players are allowed to play in a given game.  Thus, replacement 

players are those who would likely be the worst player on any team.  If we change the number of players, then the PORP 
numbers will change, since the cutoff for a replacement player will be different.  The other results, including synergies calculated, 
however, will not be materially different.   
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We bucket each event into the following “skill” categories: 

Ball-handling Category: Steal, Non-steal turnover 

Rebounding Category: Rebound of a missed field goal, Rebound of a missed free throw 

Scoring Category: Made field goal (2 or 3 points), Missed field goal, Made free throw (1, 2, 3, 

or 4 points), Missed free throw (0, 1, 2, or 3 points). 

Features of the Model 

Uses simulations to estimate both mean and variance of outcomes 

The SPM framework estimates how the start-of-play state variable (defensive rebound, 

offensive rebound, steal or out of bounds) affects the probability of an outcome.  If we start a 

game with an out of bounds play, we are able to simulate an entire basketball game, since we 

can use the estimated coefficients to estimate the probability of every possible outcome and the 

resultant end-of-play state variable.  We can then convert these simulations into winning 

percentages and point differentials.  To rate each player, we simulate games with the player and 

four “replacement-level” players on one team, and five “replacement level” players on the 

other team.   

 

Figure 1. Flow chart of events.
34

 

Figure 1 shows the “flow chart” of the simulations.  The probabilities associated with each 

node in the chart are calculated using the point estimates of the nested probit model we 

estimated.  For the analysis done in this paper, we do not simulate games since each simulation 

is computationally time-consuming.  Instead, we calculate a “steady-state” level of outcomes 

which would occur if a game has infinite length.  We rank each player by the estimated point 

differential of an average length game that starts and ends in this “steady state.”  The results are 

not materially different from a simulation that starts with an out-of-bounds play.  Using this 

                                                 

* Free throw events include “and-1” situations.  

** Steals, Oreb, and Dreb sometimes end with an OOB situation if a timeout is taken or a non-shooting foul is committed, for 
example. 

Possession

Start Event Sub-event Points Sub-event Change End**

Steal Steal 0 Yes Steal \

/

OOB Non-Steal 0 Yes OOB \

Turnover /

Made 2,3 Yes OOB \

Oreb FGA /

Oreb No Oreb \

Missed 0 /

Dreb Yes Dreb \

/

Made 1,2,3,4 Yes OOB \

Dreb FTA* /

Oreb No Oreb \

Missed 0,1,2,3 /

Dreb Yes Dreb \

/
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“steady state” approach, we do not calculate a range of outcomes.  Instead, we calculate 

expected point differentials using the point estimates of the player skill parameters. 

Models at the “play” level instead of the “possession level” 

Imagine a situation where a team misses five consecutive field goals, and grabs five 

consecutive offensive rebounds, before finally making a field goal.  Traditional APM will 

consider that sequence of events one possession which results in two points.  Our SPM 

framework will instead count six plays, five of which end in missed field goals and offensive 

rebounds, and the sixth resulting in a made field goal.  SPM will determine that the team with 

the ball has poor scoring skills but excellent offensive rebounding skills.  Our framework 

distinguishes this sequence of events from a situation where the team immediately scores a 

field goal, since the outcomes were achieved in dramatically different ways.  In the former 

scenario, the defensive team may want to counter with a defensive rebounder, while in the 

latter scenario, the defensive team could counter with a stronger on-the-ball defender. 

Considers how a play starts 

Unlike traditional APM, our framework identifies how each play starts:  out-of-bounds, steal, 

defensive rebound or offensive rebound.  We find that the start variable materially affects the 

outcome of the play.  For example, we find that if a play starts with a steal, the average points 

scored increases from 0.83 to 1.04.  

Reveals the strengths and weaknesses of each player 

SPM provides granularity to a player’s offensive and defensive ratings.  If a player is a strong 

defender, is it because they create steals, prevent scoring, or grab defensive rebounds? 

Results and Discussion 

Individual Player Ratings 

In this section we provide the results of the skill ratings of the 360 players who participated in 

the most plays in our data sample. See the Appendix for the various tables of player ratings.  To 

estimate the contribution of each skill (e.g. steals), we isolate a player’s “steals” ratings, and set 

his other skills to replacement levels.  For example, we create a fictional player who has 

Ronnie Brewer’s “steals” ratings, but is replacement level in all other skills.  We then simulate 

games where one team consists of the fictional player and four replacement players, and their 

opponent utilizes five replacement players.  The estimated point differential of this game is the 

player’s ratings for that particular skill.  For example, we estimate that Ronnie Brewer’s 

defensive ball-handling skills are worth 3.2 points per game.  

We rank the players by Points Over Replacement Player (“PORP”), the average expected point 

differential if the player plays an entire game with replacement players. For instance, a team 

with LeBron James and four replacement players would outscore a team with five replacement 

players by 15.1 points per game on average. The weighted average PORP across our data set is 

2.82 points.  The high rating of LeBron James provides some validation of our model, since 

many experts considered him the best player in the NBA during the four seasons in our data 

set
5
.  Also, not surprisingly, a point guard (Chris Paul)  is rated the best ball-handler, while the 

                                                 
5
 LeBron James received the most total votes for Most Valuable Player from 2006-2007 to 2009-2010.  Source:  

www.basketball-reference.com.   

http://www.basketball-reference.com/
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best rebounders are generally power forwards and centers (e.g Jason Collins). 

SPM Can Predict Which Skills Go Well with Each Other 

To investigate synergies, we took the best players in the six skills and isolated their skills by 

setting their other skills to zero, or replacement level.  We then tested          

combinations to see which skills have synergies.  The six players are shown in Table 6. 

Table 6. The best players in each of the six skills. 

 Offensive Defensive 

Ballhandling Chris Paul Ronnie Brewer 

Rebounding Reggie Evans Jason Collins 

Scoring Steve Nash Kevin Garnett 

 

We measured synergies by how many additional points a combination of two skills create.  For 

example, Chris Paul's offensive ballhandling is worth 4.8 points, while Reggie Evans' offensive 

rebounding is worth 3.1 points.  We calculate that a team with Chris Paul's offensive 

ballhandling and Reggie Evans’ defensive rebounding will have a 8.1 point advantage.  

Therefore we calculate synergies as worth 0.2 points (8.1-4.8-3.1).  Synergies are the difference 

between the point differential of the combined team and the sum of the two individual players; 

they tell us which types of players work well with one another.  Table 7 has the results.  We 

highlight a few of the bigger numbers.   

Table 7. Synergies between skills. 

 

 

Offensive ballhandling (preventing turnovers) has negative synergies with itself (-0.825) 

because a lineup with one great ballhandler does not need another.  Defensive ballhandling 

(creating turnovers) has positive synergies with itself (0.307) because defenders who create 

turnovers feed off each other, creating more turnovers than they would individually.  Offensive 

scoring has negative synergies with itself (-0.826) because players must share one ball. 

Defensive scoring has negative synergies with itself (-0.284) because most defensive stands 

end with a stop anyway.  

Offensive rebounding has positive self-synergies (0.293), while defensive rebounding has 

negative self-synergies (-0.394).  This differential sign illustrates a larger aspect of SPM. 

Because synergy is the excess to the total beyond the sum of the individual parts, any skill that 

adds to an event that is already likely to happen (such as securing a defensive rebound) will not 

give as much benefit as a skill that adds to an event that is unlikely to happen (such as securing 

an offensive rebound).  

The cross-terms are more complex. Offensive ballhandling has positive synergies with 

offensive rebounding (0.550) because offensive ballhandling helps a team convert possessions 

into shot attempts, and offensive rebounding increases the number of possessions over which 

the ballhandler can protect the ball.  Similarly, offensive ballhandling has positive synergies 
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with offensive scoring (0.550) because the team receives more scoring opportunities, and those 

opportunities are good ones. 

Offensive scoring has positive synergies with defensive rebounding (0.254) and negative 

synergies with offensive rebounding (-0.191) because defensive rebounding increases the 

number of potential scoring opportunities while offensive rebounding is more valuable when 

offensive scoring is low, since poor offensive players generate more offensive rebounding 

opportunities. 

Empirical Evidence Suggests that Synergies Exist 

Our framework predicts that skills that affect rare events (e.g. steals, offensive rebounds) will 

have positive synergies, while skills that contribute to common events (e.g. defensive 

rebounds) will have negative synergies.  This feature is a result of our nested probit 

specification.  Is this specification realistic?  Do two players with strong defensive ballhandling 

skills create more turnovers than one?  In this section, we investigate empirical evidence to 

validate our model. 

We sorted the 987,343 observations into one hundred buckets, ordered by predicted steals.  

Within each bucket (each with 9873 or 9874 observations), we calculated the total predicted 

steals and the total actual steals.  In the following scatterplot, we graph the one hundred data 

points, each representing a bucket of actual steals and predicted steals.  If positive synergies in 

steals do not exist, then we would see that actual steals are less than predicted steals, for both 

low and high levels of predicted steals.  For medium levels of predicted steals, we would see 

actual steals are higher than predicted steals.  Instead, we see that actual steals are well within 

the 95% confidence intervals of predicted steals across all levels: only three points out of one 

hundred fall outside, two below and one above.  This evidence suggests that our choice of 

probit to model the synergies in steals is a reasonable one.   

 

 

Figure 3: Actual Steals (y-axis) versus Predicted Steals (x-axis), with 95% probability confidence bands 
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Figure 4: Actual Offensive Rebounds (y-axis) versus Predicted Offensive Rebounds (x-axis), 

with 95% probability confidence bands 

Our framework also predicts that offensive rebounding has positive synergies with itself.  

Using the same methodology, we plot actual offensive rebounds versus predicted offensive 

rebounds.  We have 407,154 missed field goals in our data set, so that each bucket contains 

4,071 or 4072 observations.  The above scatterplot shows that only four points out of one 

hundred fall outside the 95% confidence bands.  These two scatterplots suggest that positive 

synergies do exist for both steals and offensive rebounds, as our framework predicts. 

SPM Can Be Used to Calculate Synergies for Each NBA Team 

For each NBA team, we formed lineups using the top five players in terms of plays played in 

our data sample.  We calculated their ratings individually and as the 5-player lineup.  For a 

given lineup of players x1, x2, x3, x4 and x5, define PORP(x1,x2,x3,x4,x5) to be the estimated 

point differential between a game played by this team of players against a lineup of 

replacement players (“RP”).   

We then define synergies as the difference of the sum-of-the-parts from the team total: 

 

                                                              
                                          
                      

 

The results are in Table 8.  Orlando’s lineup has the highest amount of synergies, over one 

point per game, while Minnesota’s negative synergies cost their lineup just under one point per 

game.  Using the Pythagorean expectation formula with coefficients between 14 and 16.5 (c.f. 

Morey 1993), 1-2 points per game can translate into 3-6 wins per season (for a team that would 

otherwise score and allow 100 points per game). Thus a team that consistently fields a highly 

positively synergistic lineup will win up to six games more than if it consistently fields a highly 

negatively synergistic lineup.  Such a differential could be the difference between making or 

missing the playoffs.   

To investigate why Orlando’s lineup has positive synergies, we replace players from their 

lineup one-by-one with replacement players and see how the synergies change.  We find that 

Jameer Nelson and Hedo Turkoglu play well together.  Our framework suggests that Nelson’s 

superior ballhandling skills complement Turkoglu’s offensive skills, since Nelson gives 



International Journal of Computer Science in Sport – Volume 12/2013/Edition 2 www.iacss.org 

   

 

16 

Turkoglu more chances to score.   

Using the same method, we find that Minnesota’s Ryan Gomes and Randy Foye are not good 

fits since they are both good offensive players who protect the ball well.  As noted earlier, our 

framework predicts negative synergies for both offense (since the players must share the ball) 

and offensive ball-handling (since one good ball-handler is enough for one lineup). 

 

Table 8. Synergies within teams. 

 

SPM Gives Context Dependent Player Ratings 

An implication of the SPM framework is that player values depend upon the other players on 

the court.  To illustrate this concept, we took the top four players in terms of plays played for 

each team.  We then put everyone else into a "free agent" pool.  For each team, we calculated 

which free agent would be the best fit for the remaining four players.  In this analysis, Kevin 

Garnett is a “free agent” because he switched teams from Minnesota to Boston in our data 

sample, and played only the fifth highest number of minutes for Boston.  Not surprisingly, he 

would be the most coveted free agent by every single team.  Russell Westbrook, a “free agent” 

because he played only two seasons in our data sample, is likewise highly coveted. There are, 

however, significant differences among the more marginal players.  For example, Eddie Jones, 

although retired, would fit well in a team like Minnesota (who rank him the fourth most 

desirable free agent), but would not fit in on the Spurs (who rank him seventeenth).  Likewise, 

Marcus Camby would be coveted by the Knicks or Nets (ranked sixth), but not by the Pacers 

(ranked nineteenth).   

Player1 Player2 Player3 Player4 Player5 Separate Combined Synergies

ORL D. Howard R. Lewis H. Turkoglu J. Nelson K. Bogans 24.3 25.6 1.2

CLE L. James A. Varejao Z. Ilgauskas D. Gibson M. Williams 30.7 31.8 1.1

IND D. Granger T. Murphy M. Dunleavy J. Foster B. Rush 18.2 19.3 1.1

DEN C. Anthony N. Hilario J. Smith K. Martin A. Iverson 14.9 16.0 1.1

SAC K. Martin B. Udrih J. Salmons F. Garcia B. Miller 12.9 14.0 1.0

NOK D. West C. Paul P. Stojakovic T. Chandler R. Butler 23.0 23.8 0.8

DAL D. Nowitzki J. Terry J. Howard J. Kidd E. Dampier 25.4 26.0 0.6

LAL K. Bryant L. Odom D. Fisher P. Gasol A. Bynum 28.1 28.6 0.4

NJN V. Carter D. Harris B. Lopez R. Jefferson J. Kidd 23.6 24.0 0.4

SEA K. Durant J. Green N. Collison E. Watson R. Westbrook 18.6 18.8 0.2

DET T. Prince R. Hamilton R. Wallace R. Stuckey J. Maxiell 15.4 15.5 0.1

BOS P. Pierce R. Rondo R. Allen K. Perkins K. Garnett 29.4 29.5 0.0

UTA D. Williams M. Okur C. Boozer A. Kirilenko P. Millsap 25.0 25.0 0.0

HOU S. Battier L. Scola R. Alston T. McGrady C. Hayes 22.3 22.3 0.0

GSW M. Ellis A. Biedrins S. Jackson B. Davis K. Azubuike 18.0 18.0 0.0

PHI A. Iguodala S. Dalembert A. Miller W. Green T. Young 18.6 18.5 -0.1

CHA R. Felton G. Wallace E. Okafor B. Diaw M. Carroll 13.2 13.1 -0.2

LAC C. Kaman A. Thornton C. Mobley E. Gordon B. Davis 10.2 10.0 -0.2

TOR C. Bosh A. Bargnani J. Calderon A. Parker R. Nesterovic 19.1 18.9 -0.2

CHI L. Deng K. Hinrich B. Gordon D. Rose J. Noah 19.8 19.5 -0.3

MIA D. Wade U. Haslem M. Chalmers M. Beasley D. Cook 18.0 17.7 -0.4

NYK D. Lee N. Robinson W. Chandler J. Crawford J. Jeffries 14.3 13.9 -0.4

ATL J. Johnson J. Smith M. Williams A. Horford M. Bibby 20.0 19.6 -0.4

PHX S. Nash A. Stoudemire L. Barbosa G. Hill R. Bell 26.2 25.6 -0.6

POR B. Roy L. Aldridge T. Outlaw S. Blake M. Webster 19.6 19.0 -0.6

MEM R. Gay M. Conley O. Mayo H. Warrick M. Gasol 10.0 9.4 -0.6

WAS A. Jamison C. Butler D. Stevenson A. Blatche B. Haywood 18.2 17.6 -0.6

MIL A. Bogut C. Bell M. Redd C. Villanueva M. Williams 14.6 13.9 -0.7

SAS T. Duncan T. Parker M. Ginobili M. Finley B. Bowen 25.8 25.1 -0.7

MIN R. Gomes A. Jefferson R. Foye C. Brewer C. Smith 8.2 7.3 -0.8
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Table 9 shows the “free agent” fits for each team. 

Table 9: “Free agents” and synergies. 

 

Using SPM to Find Mutually Beneficial Trades 

Other player rating systems like WP or Win Shares (see Oliver 2004) cannot generate ex-ante 

mutually beneficial trades because one player is always ranked higher than another (unless the 

distribution of minutes is changed).  In contrast, the SPM framework can generate mutually 

beneficial trades because each potential lineup has different synergies.  We examined every 

possible two player trade from one team’s starting five to another team’s starting five.  There 

are a total of             possible team trading partners.  Each pair of teams has     
   possible trades, so there are               possible trades.  We found 222 mutually 

beneficial trades, or 2% of all possible trades.  These trades do not consider the distribution of 

minutes or the composition of the team’s bench.  Table 10 lists a few trades. 

Figure 2 shows the network of the 222 mutually beneficial trades among the various teams.  

Not surprisingly, the teams with the lowest synergies (Minnesota and San Antonio) have the 

most possible trading partners and are near the interior of this “trade network”.  Meanwhile the 

teams with the highest synergies (Orlando and Cleveland) have the fewest trading partners and 

are on the perimeter. 

Why is Chris Paul for Deron Williams a mutually beneficial trade?  Overall, our SPM ratings 

rate Chris Paul and Deron Williams nearly the same, but with differences in skills.  Paul is a 

better ballhandler, Williams a slightly better rebounder, and Williams is better at offense and 

defense. See Table 11. 

Top Choice 2nd Choice 3rd Choice 4th Choice 5th Choice 6th Choice

CHI K. Garnett R. Westbrook A. Johnson N. Batum R. Hibbert C. Billups

PHX K. Garnett R. Hibbert A. Johnson R. Westbrook N. Batum B. Jennings

ATL K. Garnett A. Johnson R. Westbrook R. Hibbert N. Batum E. Jones

HOU K. Garnett A. Johnson R. Westbrook R. Hibbert N. Batum T. Young

IND K. Garnett R. Westbrook A. Johnson N. Batum C. Billups B. Jennings

LAC K. Garnett A. Johnson R. Westbrook N. Batum R. Hibbert C. Billups

MIL K. Garnett A. Johnson R. Westbrook R. Hibbert N. Batum T. Young

NOK K. Garnett A. Johnson R. Westbrook N. Batum R. Hibbert C. Billups

NYK K. Garnett R. Westbrook A. Johnson R. Hibbert N. Batum M. Camby

POR K. Garnett R. Westbrook A. Johnson N. Batum R. Hibbert C. Billups

TOR K. Garnett R. Westbrook A. Johnson R. Hibbert N. Batum C. Billups

WAS K. Garnett R. Westbrook A. Johnson R. Hibbert N. Batum C. Billups

DEN K. Garnett R. Westbrook C. Billups N. Batum A. Johnson B. Jennings

SAS K. Garnett A. Johnson R. Westbrook R. Hibbert N. Batum Y. Ming

CHA K. Garnett A. Johnson R. Westbrook N. Batum R. Hibbert T. Young

CLE K. Garnett R. Westbrook A. Johnson N. Batum R. Hibbert C. Billups

DET K. Garnett A. Johnson R. Westbrook R. Hibbert N. Batum T. Young

MIN K. Garnett A. Johnson R. Westbrook E. Jones N. Batum R. Hibbert

NJN K. Garnett R. Westbrook A. Johnson N. Batum R. Hibbert M. Camby

PHI K. Garnett A. Johnson R. Westbrook R. Hibbert N. Batum T. Young

SAC K. Garnett R. Westbrook N. Batum C. Billups A. Johnson R. Hibbert

SEA K. Garnett R. Westbrook A. Johnson R. Hibbert C. Billups N. Batum

UTA K. Garnett R. Westbrook A. Johnson R. Hibbert N. Batum T. Young

BOS K. Garnett R. Westbrook A. Johnson N. Batum R. Hibbert T. Young

DAL K. Garnett R. Westbrook N. Batum A. Johnson R. Hibbert C. Billups

MEM K. Garnett R. Westbrook A. Johnson C. Billups N. Batum E. Jones

LAL K. Garnett R. Westbrook A. Johnson R. Hibbert N. Batum C. Billups

MIA K. Garnett R. Westbrook A. Johnson N. Batum R. Hibbert E. Jones

ORL K. Garnett R. Westbrook A. Johnson N. Batum R. Hibbert B. Jennings

GSW K. Garnett R. Westbrook A. Johnson N. Batum R. Hibbert T. Young
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Table 10. Some mutually beneficial trades. 

 

Table 11. Comparison of Chris Paul and Deron Williams 

 

 

Figure 2. Trade network of mutually beneficial trades. 

The SPM framework predicts that Chris Paul is a better fit for Utah because he creates a lot of 

steals (3.1 steals per 48 minutes (“SP48M”)), while no one else in the New Orleans lineup does 

(West 1.0 SP48M, Stojakovic 1.1, Chandler 0.7, Butler 0.9).  Utah, on the other hand, has 

Off Def Off Def Off Def

Ballhand. Ballhand. Rebound. Rebound. Scoring Scoring

Chris Paul 4.8 1.2 -0.4 -1.4 4.7 -0.9

Deron Williams 1.9 -0.3 -1.7 0.1 6.5 1.4
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many players who create steals (Kirilenko 2.0, Boozer 1.5, Millsap 1.7, Okur 0.9, Williams 

1.4).  Because defensive steals has positive synergies in our system, Chris Paul's ballhawking 

skills fit better in Utah, where he can team up with others and wreak havoc to opponents' 

ballhandlers.   

Conversely, why would New Orleans trade for Deron Williams?  Our framework predicts that 

Williams is a better offensive fit with New Orleans.  There are negative synergies between two 

good offensive players since they must share only one ball, and the New Orleans starters take 

fewer shots than Utah’s.  At New Orleans, Deron Williams would not need to share the ball 

with so many players.  

The Utah lineup of Williams (PG), Okur (F-C), Boozer (F-C), Kirilenko (F) and Millsap (F) 

may seem big.  The next player on Utah’s roster in terms of plays in our sample is Ronnie 

Brewer (G-F).  If we substitute Millsap for Brewer, the case for a Deron Williams for Chris 

Paul trade becomes stronger, since Brewer is good at steals (2.7 SP48M). 

Conclusion 

We provide a novel Skills Plus Minus (“SPM”) framework that can be used to measure 

synergies within basketball lineups, provide roster-dependent rankings of free agents, and 

generate mutually beneficial trades. To our knowledge, the SPM framework is the first system 

that can generate ex-ante mutually beneficial trades without a change in the minutes played. 

Other ranking systems cannot generate mutually beneficial trades because one player is always 

ranked ahead of another.   

Future research could use the SPM framework to calculate the optimal substitution patterns that 

maximize overall synergies given a fixed distribution of minutes played to each player, 

highlight the risks and exposures each team with respect to the specific skills, and evaluate the 

possibility of a separate synergy factor of players that may improve the skills of their 

teammates by even more than would be suggested by the synergies of the skills. 
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Appendix:  Player Ratings 

Best and Worst Overall  

 

Best and Worst Offensive Ballhandling (preventing steals and turnovers) 

 

Best and Worst Defensive Ballhandling (creating steals and turnovers) 

 

 

 

 

Best PORP Worst PORP

LeBron James 15.1 Johan Petro -3.3

Steve Nash 14.3 Gerald Green -3.3

Dwyane Wade 13.5 Joel Anthony -3.8

Kevin Garnett 13.3 Brian Skinner -4.5

Kobe Bryant 10.2 Dominic McGuire -4.5

Dirk Nowitzki 9.7 Hakim Warrick -4.9

Tim Duncan 9.6 Earl Boykins -5.4

Chris Bosh 9.5 Eddy Curry -6.7

Manu Ginobili 9.4 Josh Powell -7.8

Russell Westbrook 9.4 J.J. Hickson -8.8

Best PORP Worst PORP

Chris Paul 4.8 Mikki Moore -2.4

Brandon Jennings 4.6 Andrew Bogut -2.4

Kobe Bryant 4.3 Louis Amundson -2.5

Sasha Vujacic 3.8 Hilton Armstrong -2.7

Sam Cassell 3.6 Kwame Brown -2.8

LeBron James 3.3 Yao Ming -2.8

Chauncey Billups 3.2 Ryan Hollins -3.3

Mike Conley 3.1 Kendrick Perkins -3.4

Daequan Cook 3.1 Joel Przybilla -3.5

Jason Terry 3.0 Eddy Curry -6.3

Best PORP Worst PORP

Ronnie Brewer 3.2 Tim Duncan -2.0

Gerald Wallace 2.9 Michael Finley -2.3

Thabo Sefolosha 2.9 Brook Lopez -2.4

Devin Harris 2.9 Aaron Brooks -2.5

Monta Ellis 2.8 Andrew Bynum -2.5

Renaldo Balkman 2.8 Taj Gibson -2.6

Rajon Rondo 2.7 Joel Anthony -2.8

Luc Richard Mbah a Moute 2.7 Amare Stoudemire -3.3

C.J. Watson 2.7 Erick Dampier -3.6

Eddie Jones 2.7 J.J. Hickson -4.2
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Best and Worst Offensive Rebounding  

 

Best and Worst Defensive Rebounding 

 

Best and Worst Offense (assuming no turnovers) 

 

 

 

 

 

Best PORP Worst PORP

Reggie Evans 3.1 Chris Quinn -1.9

Matt Harpring 3.0 Jannero Pargo -2.0

Kevin Love 2.9 Donte Greene -2.0

Jeff Foster 2.7 Brandon Rush -2.1

Jason Maxiell 2.6 Rashard Lewis -2.3

Louis Amundson 2.5 Damon Stoudamire -2.3

Leon Powe 2.2 Danilo Gallinari -2.4

Amir Johnson 2.1 Travis Diener -2.5

Joakim Noah 2.0 Stephen Curry -2.8

Jared Jeffries 2.0 Jonny Flynn -2.8

Best PORP Worst PORP

Jason Collins 3.0 Francisco Garcia -1.5

Tim Duncan 2.6 Sasha Vujacic -1.5

Joel Przybilla 2.5 Eddie House -1.6

Jeff Foster 2.5 Josh Childress -1.6

Andrew Bogut 2.3 Dominic McGuire -1.6

Zydrunas Ilgauskas 2.3 Darren Collison -1.6

Nene Hilario 2.2 Charlie Bell -1.7

Roy Hibbert 2.2 Jamaal Tinsley -1.8

Rasho Nesterovic 2.2 Travis Diener -2.1

Samuel Dalembert 2.0 Earl Boykins -2.1

Best PORP Worst PORP

Steve Nash 12.7 James Singleton -2.3

Dwyane Wade 9.4 Josh Powell -2.3

LeBron James 7.8 Hilton Armstrong -2.4

Deron Williams 6.5 Louis Amundson -2.4

Kevin Martin 6.4 Brian Skinner -2.4

Kobe Bryant 6.3 Ben Wallace -2.5

Goran Dragic 6.2 Jason Collins -2.7

Dirk Nowitzki 5.9 Eric Snow -3.0

Manu Ginobili 5.9 Renaldo Balkman -3.4

Danny Granger 5.9 Nene Hilario -3.7
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Best and Worst Defense (assuming no turnovers) 

 

Best PORP Worst PORP

Kevin Garnett 6.2 Damien Wilkins -3.0

Brendan Haywood 5.7 Josh Powell -3.0

Tim Duncan 5.4 Kevin Martin -3.0

Joel Przybilla 5.2 Gerald Green -3.0

Amir Johnson 5.0 Marreese Speights -3.2

Andrew Bogut 4.8 Juan Carlos Navarro -3.2

Chris Andersen 4.5 Royal Ivey -3.4

Jacque Vaughn 3.9 Jose Calderon -3.4

Yao Ming 3.9 Sasha Vujacic -3.7

Kendrick Perkins 3.9 Will Bynum -4.2
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Abstract 

One possible measure to increase the medial appeal of table tennis is to slow down 

the game by using bigger balls or higher nets. Usually, an empirical approach is 

followed to study the effect of such changes on the players and the game. In this 

work, a different approach is taken, namely solving numerically the equation of 

motion for table tennis balls for systematical, statistical studies of the impact of 

ball size and weight as well as of net height on the distribution functions of 

successful strokes. 

The analysis confirms the empirical observation that the change of the ball in the 

year 2000 from a 38-mm to a 40-mm-ball can be compensated with other 

parameters such that their resulting trajectory distribution functions are nearly 

identical. This was also observed in reality, where adaptation of the player’s 

technique compensated the larger ball size. A larger ball of 44 mm with small 

weight is one option for suppressing high velocities, coupled also to a reduction of 

the influence of spinning. As an alternative an increase of the net height is 

possible. A small increase of the net height could be one future option, where the 

basic character of the game is not strongly modified, but especially the influence 

of the service could be reduced. 

KEYWORDS: SPORTS EQUIPMENT, PHYSICS COMPUTING, MONTE CARLO 

METHODS 

Introduction 

The medial appeal of table tennis seems to go down in terms of TV hours, at least outside Asia. 

One of the reasons is the fact that the speed of the game is nowadays so high that it is very hard 

for spectators to follow the balls (Nelson 1997, Djokic 2007). Possible counteractions to slow 

down the game are to use bigger balls or higher nets. Usually, empirical studies are done to 

study the effect of such changes on the players and the game. An alternative approach, 

followed in this work, is the use of computer simulations. The equation of motion for table 

tennis balls is solved numerically to allow systematical, statistical studies of the impact of ball 

size and weight as well as of net height on the distribution functions of successful strokes. 

One key problem for the medial appeal of table tennis is that the spin of the ball, the rotation, is 

not visible for spectators, because they see only its effect. This makes it difficult to understand 

why a simple looking ball of the opponent leads to a mistake for the other player. Therefore, 
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one intention of possible rule changes is to reduce the impact of spin on the game. Another goal 

is to reduce the speed of the balls to allow a better visual tracking during the rallies (Djokic 

2007). Some rule changes, like a larger ball, different counting system, stricter limits for 

rubbers or new service rules, were already implemented and new modifications are under 

discussion (Djokic 2007). For the players all rule or technical changes have strong impacts on 

their techniques and strategies, requiring usually adaptations of their individual training 

programs. Therefore, players are rather hesitant to new rules. 

The 40-mm-ball played today is 2 mm larger and 0.2 grams heavier than the 38-mm-ball used 

before. It has a larger air drag due to its larger cross sectional area reducing the maximum 

velocities (Bai 2005). The mass distribution of the larger ball is shifted further away from the 

center compared with the 38 mm ball. This creates a larger inertial moment and reduces the 

spin. The larger 40-mm-ball results in a velocity and spin reduction of about 5 to 10 percent (Li 

2005, Iimoto 2002). However, the larger ball had practically no impact on the characteristics of 

table tennis, because larger exertions of forces by the players compensated the effects of the 

size increase (Liu 2005, Li 2005). As a consequence of the modified technique, the fitness of 

the individual player got more important. In modern table tennis the forces for a stroke are 

created not only by the arms but the whole body is used to support this. A stronger athletics 

allows more pronounced use of the legs producing larger forces on the ball, which are needed 

to compensate the size increase. In addition, the wrist has to be used more effective to produce 

spin. For the larger ball only the use of the forearm is no longer sufficient for spin, as it was the 

case for the 38-mm-ball. The needs for larger exertion of forces amplify possible technical 

mistakes, because the individual movement execution gets extended (Kondric 2007).  

One obvious strategy to reduce the maximum velocity in table tennis rallies is to increase the 

net height. However, such a change will have a severe impact on the characteristics of table 

tennis, because this will limit very directly fast spins, shots and service. Therefore, up to now 

this change of rule was avoided and ball size was the preferred correction action. Nevertheless, 

a scientific data base is still missing for a decision. 

In this work the impact of larger balls or higher nets on table tennis trajectories is studied using 

computer simulations. A data base is created to quantify the influence of such changes. 

Modifications in technique, tactics, strength and fitness are not considered in this analysis.  For 

a huge number of initial conditions the effect on successful strokes is studied. This delivers the 

maximum amount of possible strokes for different conditions in terms of statistical 

distributions which can be compared and analyzed. This represents already the best possible 

adaptation to the changes, independent of what this would mean for the players in terms of 

changes in their training. In particular the impact of the changes on the ball velocity 

distributions will be discussed as motivated before. 

After a short discussion of the effects of larger balls and higher nets as measures to slow down 

table tennis, the forces acting on a moving ball are introduced. The computer code solving the 

equation of motion is described and statistical analysis of trajectory distribution functions for 

different balls and net heights is done. Using for this a GPU (Graphics Processing Unit) by 

CUDA (Compute Unified Device Architecture, CUDA 2013) coding gives a very large speed-

up compared to CPUs. Results for different cases are compared and analyzed. Finally, the 

results are summarized and discussed. 

Methods 

For a quantitative analysis of ball size and net height effects a computational approach is 

followed. The basic element of the simulation is the solution of the equation of motion for table 
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tennis balls. The equation of motion needs a mathematical description of the acting forces.  The 

flight trajectory of a table tennis ball is determined by the gravitational force of the earth and 

aero dynamical forces. 

The gravitational force   

gmFG 


 

alone results in a parabolic trajectory. This force acts towards the centre of the earth and 

depends on the mass m of the ball and the gravitational constant g (9.81 m/s²). 

The aero dynamical forces modify the simple parabola by air drag and lift. Air drag acts as 

friction force against the direction of the movement of the ball. A simple example for this force 

is the back pushing of a hand held out of a driving car. A larger velocity gives stronger force 

acting against the direction of the car. This force also gets larger if one puts out not only a part 

of the hand, but the full hand. It scales with the cross sectional area. The mathematical 

expression is 

vvACF DD  
2
1



, 

with the density of air ρ, the cross sectional area A for a ball with radius r  (  ²rA ), the ball 

velocity v and an air drag coefficient  CD. This coefficient can be measured, e.g. in wind tunnel 

experiments.  

The second important aero dynamic force is the air lift. The so-called “Magnus effect”, named 

after his discoverer Heinrich Gustav Magnus (1802-1870), is the reason that a rotating ball 

experiences a deviation from its flight path. A famous example for this is a free kick goal from 

the Brazilian soccer player Roberto Carlos in a friendly game with France at the 3
rd

 of June 

1997. Carlos gave a lot of spin to the ball during the free kick hitting the ball right from the 

center of gravity with his left foot. The flight path of the ball got extreme passing around the 

defenders who formed a wall into the goal. 

The Magnus effect is a surface effect, because around the spinning ball a co-rotating air layer is 

formed at the surface of the ball. The flying and spinning ball induces a pressure imbalance, 

because on one side the ball is rotating with the air flow created by the movement of the ball in 

the air, the other side opposite to it. On the side where counter-rotation exists, the total velocity 

of the air flow is reduced, because both velocities compensate partly. On the co-rotation side a 

larger flow velocity is created, because both velocities add up. Higher velocity in a flow means 

lower pressure and the pressure differences on the two sides lead to the deviating Magnus 

force, mathematically expressed with an air lift coefficient CL as   

vevACF LL  
2
1



 

The air lift force acts perpendicular to the axis of rotation  e
and to the velocity v . 

Air drag and lift coefficients of a rotating ball (see Figure 1) as a function of the ratio of 

spinning velocity to translational velocity are implemented into the computer code as a fit of 

experimental data (Achenbach 1972, Bearman 1976, Davies 1949, Maccoll 1928, Mehta 1985) 

as a rational function y(x) 

 



International Journal of Computer Science in Sport – Volume 12/2013/Edition 2 www.iacss.org 

   

 

27 

³²1

³²
)(

xgxfxe

xdxcxba
xy






 

 

Figure 1: Air drag coefficient CD (upper green curve) and air lift coefficient CL (lower red curve) as a function 

of the ratio of spinning velocity u to the translational velocity v. 

 

During a topspin shot with forward rotation the lift force acts downwards, during a backspin 

with backward rotation it acts upwards.  

Swirling balls, often quoted in soccer and volleyball, can be created when the ball is hit with a 

critical velocity leading to the access of the inverse Magnus effect. It shows up in Figure 1 for 

low spinning velocities as a negative value of the air lift coefficient. This can lead also in table 

tennis to swirling balls, because during the flight path the regime of positive and negative air 

lift coefficients can change resulting in a swirling. However, for table tennis balls negative air 

lift coefficients exist only where the coefficient itself is already quite small. Therefore, the 

effect exists, but gives only deviations of some millimeters. The frequently quoted swirling 

balls with long pimples are therefore more a psychological effect than physics: the pre-

programmed movement of the player anticipates a flight path of a strongly rotating ball from a 

normal rubber sponge. The balls from the long pimples with reduced rotation have a different 

flight path with less lift and fall down earlier such that the player is missing the ball and he 

complains, that the ball was swirling. 

The computer code solves the equation of motion of table tennis balls for given initial 

positions, velocities and spins. An Euler solver was used, because its algorithmic simplicity 

allowed an easy transfer onto the GPU with CUDA. A commonly used Runge-Kutta algorithm 

was not chosen, because it has larger computational costs. A fourth order Runge Kutta 

approach needs to calculate four times the forces, which slows down the code performance in 

our case compared to the simple Euler method. This was not compensated by the larger time 

step possible with the Runge-Kutta method compared to the Euler method. The dependence of 

the aero dynamic forces on the velocity also does not allow the use of a Verlet algorithm. 

Therefore, we decided to stay with the Euler method. 

One example of a table tennis ball trajectory is shown as a red line in Figure 2. The table tennis 

table region is marked in green, the net is blue. The orange sphere is the initial point of the 

trajectory, where the ball is hit. The spinning of the ball is taken constant during the flight. x 
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and y are the spatial coordinates within the plane of the table tennis table. z is the height 

coordinate above the table. A time step of 0.0001 seconds was used. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: 3D trajectory of a table tennis ball 

The ball in Figure 2 is hit at the baseline (x = 0 m) in the forehand part of the table (y = 0.6 m) 

on the height of the table (z = 0 m). The black arrow shows the rotation axis of the ball, which 

is here purely pointing into positive y-direction: the ball was a pure topspin without any 

sidespin. 

Results 

For a statistical analysis of the effects of ball sizes and net heights on trajectories of table tennis 

balls a Monte Carlo procedure was used. Many different initial conditions were solved: x was 

varied between 0.3 m to -3 m, representing hitting locations from 30 cm above the table to 3m 

behind the table.  y was kept constant at 0.381 m, which is  ¼ of  the width of the table tennis 

table. This was chosen as a representative position, the exact location of the hitting point in y 

(forehand or backhand position) is not important for this numerical test. Initial height z was 

sampled from 0.4 m to  -0.4 m. The direction of the initial velocity was determined in the 

following way: the horizontal angle was sampled between the limiting angles of the starting 

point to the net posts, the elevation angle was chosen randomly. The spin axis was also 

sampled randomly, that means topspin, backspin and sidespin were included.  

The analysis was particularly aiming at fast shots. Therefore, only balls passing the net within 

30 cm height distance were accepted. The absolute values of the translational velocities were 

limited from 20 to 200 km/h, the spinning velocities from 0 to 150 turns/s (which is equal to 

9000 turns/min). These values were determined empirically before as limits for 38 mm balls 

(Wu 1993). These limits are probably different for other balls sizes and net heights, but in all 

case studies successful hits were not restricted by the accessible parameter space chosen here.  

A ball is counted as a successful ball if it passes the net within the height limit and hits the 

other side of the table tennis table. 

Monte Carlo studies using random numbers were done for the 38-mm-ball with a weight of 2.5 

g, used in tournaments until end of 2000, the actual 40-mm-ball with 2.7 g and a 44-mm-ball 

with a weight of 2.3 g, which was tested already in Japan. For the 40-mm-ball an increase of 

the net height for 1 and 3 cm was analyzed, too. 
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The sampling of such a large number of initial conditions guarantees to cover all possible 

combinations of initial parameters (positions, translational and spinning velocities) for the 

different cases creating  a successful stroke. Clearly, for different balls and net heights the 

parameter space of initial conditions leading to successful strokes will be different. The 

database created in this study allows also an analysis of this effect.  

For each case 5*10
8
 initial conditions were sampled and trajectories calculated. Initially this 

was done on a Linux Cluster with 32 cores. The run-time for each core was 20 hours resulting 

in a total run time of 640 hours. Alternatively, GPU computing with CUDA was used on a Dell 

Precision T7500 Desktop with NVIDIA Quadro FX3800. Here, only 3 hours for the same 

calculation are needed. CUDA (CUDA 2013) is a programming interface to use the parallel 

architecture of NVIDIA GPUs for general purpose computing. CUDA library functions are 

provided as extensions of the C language, which allows for convenient and rather natural 

mapping of algorithms from C to CUDA. A compiler generates executable code for the CUDA 

device. The CPU identifies a CUDA device as a multi-core coprocessor. For the programmer, 

CUDA consists of a collection of threads running in parallel. A collection of threads, which is 

called a block, runs on a multiprocessor at a given time. The blocks form a so-called grid. They 

divide the common resources, like registers and shared memory, equally among them. All 

threads of the grid execute a single program called the kernel. All memory available on the 

device can be accessed using CUDA with no restrictions on its representation. However, the 

access times vary for different types of memory. Shared and register’s memory are the fastest, 

as they locate on the multiprocessor (on chip).The shared memory has the lifetime of the block 

and it is accessible by any thread on the block from which it has been created. This 

enhancement in the memory model allows programmers to better exploit the parallel power of 

the GPU for general purpose computing. Additionally, the texture memory which is off-chip 

allows for faster reading compared to the global memory due to caching. 

Our implementation consists of two main procedures. First, a predefined number of trajectories 

are initialized on the CPU side. Thereafter, the ball movements are implemented on the GPU. 

One step of the equation of motion for the ball’s trajectory, which includes the speed and the 

position of the ball, is computed in a kernel. The input parameter of the kernel function is the 

previous trajectory point. The calculations run for a maximal number of iterations. In each 

iteration step, the updates of the ball’s position and velocity are computed, if the trajectory has 

not stopped earlier, e. g., when the ball flew beyond the table. 

Figure 3 shows as a function of initial position in y and z the number of successful trajectories. 

The number of successful trajectories from half distance is nearly constant for all balls and net 

heights. Only for distances below one meter the number of successful strokes decreases 

continuously, because balls in this region have smaller probabilities hitting the table due to the 

smaller angle. Balls hit above the table can again reach easier the other side. There is 

practically no difference for the 38 and 40-mm-ball. Changes of the balls are compensated by 

other parameter changes. The 44-mm-ball allows more successful strokes even for negative 

height, because of its lighter weight and its higher air drag. A higher net affects strongly the 

balls hits above the table limiting there the number of successful trajectories. 

In general, the differences between the different cases get more pronounced the higher the 

hitting point of the balls. A ball hit below the table must have a large spinning to reach the 

other table side within the height limit. Larger velocities are not possible, because then the balls 

are not able to reach the other table side and will pass beyond the baseline. Balls hit above the 

table, even above the height of the net, can be hit with much higher velocities for a successful 

strike. 
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Figure 3: Number of successful trajectories as a function of initial y- and z-conditions 

In Figures 4 and 5 the influence of the ball velocity on the distribution functions of the number 

of successful strokes is shown. Figure 4 shows the dependence on the initial velocity, Figure 5 

the dependence on the final velocity. The velocity range used for sampling the initial velocity 

of 20-200 km/h is identical to 5.6-55.6 m/s. 

 

 

Figure 4: Number of successful trajectories as a function of initial velocity of the balls 
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Figure 5: Number of successful trajectories as a function of final velocity of the balls 

Again, the results for the 38 and 40 mm ball differ only marginally. For the 44-mm-ball one 

gets more successful trajectories compared to the 38 and 40-mm-ball for higher initial velocity, 

the distributions for the final velocities are nevertheless very close again. However, very high 

velocities above 35 m/s are suppressed earlier for the 44-mm-ball. A stronger influence is 

visible for the 40-mm-ball increasing the net height. Already for smaller initial and end 

velocities of about 10 m/s a reduction of successful trajectories shows up being equivalent to a 

slowing-down of the game. For very low velocities the impact of the air drag is not yet 

important resulting in larger number of successful trajectories. 

 

Figure 6: Number of successful trajectories as a function of spinning velocity 

Figure 6 demonstrates that the influence of spin is rather weak, because all differences are 

within 20 percent. The number of successful trajectories is biggest for the 44-mm-ball, 

followed by nearly identical numbers for the 38 and 40 mm ball and the case with a 1 cm 

increase of the net height. As expected the highest net gives the smallest number of successful 



International Journal of Computer Science in Sport – Volume 12/2013/Edition 2 www.iacss.org 

   

 

34 

trajectories. The ratio of successful trajectories with strong spinning to those with little 

spinning is nearly the same in all cases with the exception of the 44-mm-ball. Here, the 

influence of spinning on the distribution is strongly reduced. 

Conclusions 

Statistical analysis of the influence of ball size and net height on the number of successful table 

tennis trajectories using computer modeling is used to quantify the effects on trajectory 

distribution functions. The analysis confirm the empirical observation that the change of the 

ball in the year 2000 from a 38-mm to a 40-mm-ball can be compensated such that their 

resulting trajectory distribution functions are nearly identical. This was achieved in reality by 

adaptations of the technique and the material. A larger ball of 44 mm with small weight is one 

option for suppressing high velocities, resulting also in a reduction of the influence of spinning. 

As an alternative option an increase of the net height is possible. For this, the character of the 

game will change more strongly, because the possibilities for successful trajectories are 

reduced limiting technical and tactical alternatives. A small increase of the net height could be 

one option, where the basic character of the game is not too strongly modified, but reducing 

especially the influence of the service. 

Modifications of basic rules of table tennis like ball size and net height can reduce the 

maximum velocities, but such modifications will be linked with severe changes in the 

characteristics of table tennis: dynamics, technique and strategy will change strongly, too. The 

question is if a possible gain in attractivity of table tennis for TV by such changes is worth the 

loss of key elements of existing table tennis. 
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Abstract 

The aim of this study was to investigate the validity of the ActiSmile (AS), a 

physical activity feedback device. Twenty-five participants (age: 36.5 ± 14.3 y) 

performed nine different activities including standing, running, cycling, playing 

badminton, sweeping the floor with a broom, and several types of walking for 3 

min 25 s each. Each participant received two AS devices, one attached at the hip 

(AShip) and one carried in the trouser pocket (ASpocket). The AS classifies each 

min as inactivity, walking, or running. Recognized activity time was compared to 

observed activity. Indirect calorimetry was used to validate the energy expenditure 

(EE) estimated by the AS. The AShip correctly recognized 100% of standing as 

inactivity, between 97 and 100% of different walking modes and 97% of running. 

The ASpocket correctly recognized 100% of standing as inactivity, between 88% 

and 96% of different walking modes, and 96% of running. Good estimates of EE 

were reached for moderate walking (bias: < 1.1 kcal/min). The AS is therefore 

valid for recognizing both walking at individual intensities and running. It 

provides good group estimates of the EE during moderate walking. Therefore, the 

AS has the accuracy to be an effective tool for intervention studies. 

KEYWORDS: VALIDITY, ACCELEROMETER, PHYSICAL ACTIVITY 

Introduction 

Physical activity (PA) is associated with a sustained energy balance and with improved 

cardiorespiratory, metabolic, musculoskeletal, and mental health (U.K. Department of Health, 

Physical Activity, Health Improvement and Protection, 2011; Haskell et al., 2007; Nelson et al., 

2007; O’Donovan et al., 2010; U.S. Department of Health and Human Services, 2008). The 

accurate assessment of free-living PA has always been a challenge in studies that aim to 

identify the dose-response relationship between PA and health outcomes, describe the changes 

of PA levels in populations, investigate the effects of PA interventions and monitor adherence 

to PA guidelines. Numerous methods have been used to measure PA for these purposes. 

Generally, methods to assess PA fall into four different classes: subjective reports and 

observations, indirect calorimetry, double-labeled water, and portable monitors. The field of 

applications of these methods varies greatly and includes epidemiological research, 

intervention studies, clinical practice, and personal assessment (Chen et al., 2012). Doubly 

labelled water is an expensive method that is usually used for long- term investigations in small 

samples (Plasqui & Westerterp, 2007) and indirect calorimetry is not applicable for long-term 
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measurements due to its burdensome setup. Self-reports and observations are influenced by 

subjective opinion and by social desirability (Adams et al., 2005). Therefore, the application of 

small, portable PA monitors has increased in recent years (Freedson, Bowles, Troiano & 

Haskell, 2012), as they allow a convenient, inexpensive, but objective assessment of PA. 

According to Chen et al. (2012), current PA monitors can be assigned to three different 

categories, movement sensors (e.g. Pedometers, inclinometers, gyroscopes, goniometers and 

accelerometers), physiological sensors (e.g. heart rate monitors, temperature and heat flux 

sensors) and contextual sensors (e.g. global and local contextual sensors, pressure sensors, 

passive infrared sensors). Integrated multisensory systems combine sensors of different 

categories described above (van Reemortel et al., 2012). Pedometers are monitors that estimate 

the number of steps taken based on mechanical or digital measurements of only the vertical 

plane. Ankle and hip-worn pedometers have been validated in measuring the number of steps 

(Foster et al., 2005; Le Masurier & Tudor-Locke, 2003; Oliver, Schofield, Kolt & Schluter, 

2007; Tudor-Locke et al., 2004; Tudor-Locke, 2002), but they were reported to not accurately 

assessing distance or energy expenditure (EE) (Crouter, Schneider, Karabulut & Bassett, 2003; 

Foster et al., 2005). Moreover, pedometers cannot distinguish between steps performed during 

different types of activity such as running or walking. Uni-, bi- or triaxial accelerometers have 

been widely used to assess PA in children (Andersen et al., 2006; Bringolf-Isler et al., 2009; 

Ekelund et al., 2004) and adults (Troiano et al., 2008; Colley et al., 2011). They are an accepted 

method to measure the intensity, duration and frequency of activities in large populations 

(Bassett et al., 2012; Welk et al., 2012). Today, devices from different manufacturers are 

available and have been validated against a criterion measurement such as indirect calorimetry 

or doubly labelled water (Welk et al., 2012; van Remoortel et al., 2012). Integrated 

multisensory systems that measure the combination of heart rate and accelerometers have been 

increasingly used and been reported to precisely estimate the EE (Assah, Ekelund, Brage, 

Wright, Mbanya & Wareham, 2011; Brage et al., 2004; Brage, Franks, Ekelund & Wareham, 

2005; Ojiambo et al., 2012). However, the measurement of heart rate might be burdensome for 

the user in long-term measurements, as the device usually has to be worn on the skin. Devices 

that include accelerometers and various other sensors are mainly used to identify PA types 

(Aminian & Najafi, 2004; Nawab, Roy & De Luca, 2004); Pärkkä et al., 2006). However, these 

setups have to be attached to different sites of the body (Aminian et al., 2004; Nawab et al., 

2004; Pärkkä et al., 2006), which is burdensome for the user and therefore not applicable for 

long-term PA measurements. Accelerometers (Hendriksen, Lund, Moe-Nilssen, Biddal & 

Danneskiod-Samsoe, 2004) or their combination with other sensors (Bamberg, Benbasat, 

Scarborough, Krebs & Paradiso, 2008; Mayagoita, Nene &Veltink, 2002) have also been used 

for gait analysis. Although all of the mentioned devices have been reported to measure different 

aspects of PA accurately, they were developed for research purposes and were not designed to 

give simple feedback to the everyday user. On the contrary, these devices have been designed 

to be a black box for the user in order not to influence his usual PA or gait behavior. Therefore, 

accelerometers alone or combinations of accelerometers with other sensors that are designed 

for the use in research are not applicable for interventions as they provide no feedback to the 

user and store raw data that has to be further processed by the researcher, before the 

information on PA is accessible. 

In contrast to accelerometer based devices, heart rate monitors have been used as a user 

feedback for the control of the personal training or the EE in the fitness sector for many years 

(Achten & Jeukendrup, 2003; Laukkanen & Virtanen, 1998). Recently, portable feedback 

monitors have been developed that monitor the daily PA of the inactive to moderately active 

user. Compared to PA monitors that are currently used in research, these devices are not sealed 

but provide real-time monitoring, feedback on activities performed and access to established 
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measurement outputs (time spent in activitiy, steps, distance, EE). These monitors are 

developed for personal use and the everyday application. They could be effective PA 

intervention tools to increase the user’s overall activity level since they meet several criteria 

identified to be effective in changing PA behavior. These criteria include providing a feedback 

on PA performance, prompting a specific PA goal, and setting graded tasks (Abraham & 

Michie, 2008; Michie, Johnston, Francis, Hardeman, & Eclles, 2008; Michie, Ashford, 

Sniehotta, Dombrowski, Bishop, & French, 2011). Some of these factors were previously 

mentioned in pedometer studies, which also emphasize the importance of keeping an activity 

diary (Bravata et al., 2007; Clemes & Parker, 2009; De Cocker, De Bourdeaudhuij, Brown, & 

Cardon, 2008; McKay et al., 2009; Rooney, Smalley, Larson, & Havens, 2003). However, only 

a few of accelerometer-based feedback monitors for the home use were validated so far. 

Products that were released recently include the Nike fuel band, the Fitbit, the Personal 

Activity Monitor (PAM), the Polar Activity Watch 200 and the Polar FA20 activity watch, and 

the ActiSmile (Brugniaux et al., 2008; Kinnunen, Tanskanen, Kyröläinen, & Westerterp, 2012; 

Slootmaker, Chin A Paw, Schuit, van Mechelen & Koppes, 2009; Krauss, Solà, Renevey, 

Maeder, & Buchholz, 2008). The EE estimation of the PAM has been validated for different 

speeds of treadmill and stair walking (Slootmaker et al., 2009). However, treadmill is a specific 

setting not frequently performed in daily life. As accelerations on the treadmill may not be 

similar to free-living walking, the application of the PAM in free-living conditions has to be 

further investigated. In contrast, the EE estimated by the Polar Activity Watch 200 was 

analysed during long continuous hiking periods, which let to high correlations with measured 

values (r = 0.92-0.96) (Brugniaux et al., 2008). The EE estimation of the Polar FA20 has been 

reported to not significantly differ from the measured EE by doubly labelled water over the 

week (Kinnunen et al., 2012). The validation of the total EE over a week is very useful, 

however, might not reveal differences of the estimated versus measured EE during single 

activities, a fact that might be recognized by the everyday user. A device that especially fulfils 

the theory-linked techniques to increase PA in the user is the ActiSmile (AS) (ActiSmile, 

Kiesen, Switzerland), a portable feedback device that was developed to determine three types 

of activity and estimate EE (Krauss et al., 2008). The AS assesses inactivity, walking, and 

running. Furthermore, it gives feedback for a user-specific activity goal for graded, continuous 

activity bouts of five, ten, fifteen or twenty min depending on the fitness level of the user. The 

feedback is provided in the form of an icon resembling a smiling face with a growing smile for 

each bout of activity achieved. Compared to other personal monitoring devices, the AS is 

relatively low in cost and provides information on intensity and activity type, which has been 

mentioned as important in recent PA guidelines (Oja et al., 2010, Strong et al., 2005). Its 

feedback in the form of a smiley face, which is independent of age, language, or culture, makes 

it an especially interesting device for PA interventions. With the AS software, the accumulated 

activity can be recorded in an activity diary. By displaying the performed PA in a simple way, 

by enabling the user to set his activity goal graded to his fitness level, and by offering the 

opportunity to keep an activity diary, the AS seems to meet the conditions to be an effective 

intervention tool. As precise measurements are crucial in ensuring the credibility of the AS, the 

aim of the present study was to validate the AS for its classification of daily activities as 

inactive, walking, or running; for its EE estimates; and for its assessment of continuous bouts 

of activity. 
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Methods 

Participants 

Participants were recruited through personal contacts from the local area. The target population 

was adults age 20 to 65 with sedentary lifestyles, which is in accordance with the target 

population of the AS. Each participant was contacted by phone before the start of the study to 

assess if these requirements were met. Twelve women (age: 34.7 ± 13.5 y, height: 167.9 ± 5.8 

cm, weight: 63.3 ± 7.3 kg, BMI: 22.5 ± 2.5) and thirteen men (age: 37.5 ± 15.8 y, height: 178.6 

± 7.0 cm, weight: 79.2 ± 9.0 kg; BMI: 24.8 ± 2.3) participated in the study. The local ethical 

committee of the canton Berne approved the study. All participants signed a written informed 

consent.  

Measurement procedures 

After the participants arrived at the laboratory, their weight and height were measured. The 

participants were then provided with two AS devices and a portable indirect calorimeter. The 

devices were worn during the entire measurement procedure. Nine different activities were 

performed in random order. Standing, moderate and fast walking, moderate walking uphill and 

downhill, and running were included since the AS was originally developed to recognize such 

activities (Krauss et al., 2008). All these activities were performed outdoors on a running track. 

Walking uphill and downhill was performed on a road with an approximate 8% incline. Other 

activities, such as cycling on a bike on a country lane, playing noncompetitive badminton 

without a net, and sweeping the floor (approx. 10x10m) with a broom, were included in the 

study to show how the device classifies activities other than locomotor activities. Participants 

were instructed to perform all activities at their own moderate pace giving them standardized 

instructions such as “walk in as speed as if you were walking to your work” for moderate 

walking and “walk as if you were late on your way to work” for fast walking to allow a natural 

variety in the speed as it would occur in field conditions. Instructions for all other activities 

were the similar to that for moderate walking. All activities were performed for 3 min and 25 s. 

The AS records blocks of 60 s and only the total number of minutes classified in each of the 

activity classes can be downloaded from the device. We therefore decided to give the device 

the tolerance time of 25 s to ensure that there was no influence of the start or end of the activity 

on the activity recognition or the EE estimation. The chosen activity length also allowed the 

measured EE to reach steady state conditions (Pearce & Milhorn, 1977; Whipp, Ward, 

Lamarra, Davis, & Wasserman, 1982). An additional continuous moderate walking bout was 

performed to validate the confirmative feedback that the AS shows the user after 5 min of 

continuous activity. Between all activities, the participants were given a break until their EE 

decreased to resting EE. The start and end of the activities were recorded in a protocol. 

Instruments 

Weight was measured to the nearest 0.1 kg using a standardized digital scale (Model 861, seca 

GmbH & Co., Hamburg, Germany). A stadiometer (Modell 213, seca GmbH & Co., Hamburg, 

Germany) was used to measure height to the nearest 0.5 cm. Participants were asked to remove 

their shoes and jackets and to empty their trouser pockets for both measures.  

Two AS devices (4.0 cm x 4.0 cm x 2.0 cm, 20 g) (ActiSmile, Kiesen, Switzerland) were used, 

one mounted on the hip (AShip) and one carried in the trouser pocket (ASpocket) since the 

manufacturer suggests these measurement sites. During cycling, an additional AS was placed 

on the ankle of the participant (ASankle) by inserting it into the sock, as suggested by the 

manufacturer. The AS contains a three-axial accelerometer that measures at a range of ±2g and 
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at a sampling frequency of 25 Hz with 12-bit precision. It assigns each time frame of 5 s to 

inactivity, walking, or running activities. Whenever a registered minute includes at least 11 

time frames of 5 s walking or running, the current minute is assigned to the corresponding 

activity. Otherwise, a minute is classified as inactivity. The detailed specifications and the 

classification algorithms of the device have been described elsewhere (Krauss, et al., 2008). 

The AS was personalized with the associated software (ActiSmile, Version 3.5.8, ActiSmile 

AG, Kiesen, Switzerland) to create a personal profile for each user (in terms of body weight, 

height, sex, and activity level). The activity level (beginner, standard, advanced, or sports level) 

determines how much active time the user has to accumulate to obtain feedback on the monitor 

of the AS. Feedback is given in the form of a smiley face with a smile divided in three stages 

(Figure 1). For a beginner, stage 1 is completed after 5 min of continuous moderate walking or 

running, while stages 2 and 3 are completed after two further 5-min activity periods. In the 

standard, advanced, and sports levels, a smiling face signaling completion of stage 3 appears 

after 3 continuous 10-, 15-, or 20-min blocks of walking or running. In the present study, 

activity time during the continuous walking bout was measured until the smiley face appeared 

at the end of stage 1 for a beginner. After each activity the AS was connected to a laptop so that 

the number of minutes recognized as inactivity, walking, or running as well as estimates of the 

activity’s EE could be calculated based on the user profile and displayed by the AS software. 

 

 
 

Figure 1: The four stages of ActiSmile feedback. 

EE was measured with the help of a light-weight (570 g) mobile indirect calorimetry (IC) 

device (MetaMax 3B, Cortex, Leipzig, Germany). A two-point calibration containing ambient 

and mixed gas was performed according to the manufacturer’s guidelines before each test. The 

data storage on the mobile device ensures a wide range of possible actions and a high degree of 

flexibility. The validity and reliability of this device have been reported to be adequate (Vogler, 

Rice, & Gore, 2010). Breath-by-breath VO2 and VCO2 of the last minute of the EE 

measurement of each activity was analyzed using the formula of Elia and Livesey, (1992). 

Data Analysis 

All values were given as mean and standard deviations unless otherwise stated. The time 

intervals recorded for inactivity, walking, or running were given as proportions of the observed 

time during which an activity was performed. A Fisher test was used to compare the 

proportions of recognized activities by the AShip and the ASpocket, respectively, to the 

observed activity time during standing, moderate and fast walking, and walking uphill and 

downhill. The same procedure was used to compare activity time recognized by the different 

AS devices for biking, badminton, and sweeping the floor. The time measured until the stage 1 

smiley icon appeared for a beginner was compared to the expected 5-min level by way of a 

Wilcoxon-signed-rank-test as a quantile comparison plot revealed that the data were not 

normally distributed. The agreement between the EE assessed by IC and the AShip and the 

ASpocket was determined using the Bland and Altman limits of agreement analysis (Bland & 

Altman, 1999) and %-bias from the mean measured values. A previous validation study 

reported 30-67% biases in the EE during treadmill and stair walking in the PAM (Slootmaker et 

al., 2009). In the present study, the bias will be considered to be accurate when <10%.  
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Coefficient of determinations for the estimated versus measured EE were r2 = 0.74-0.93 (which 

is equal to r = 0.86-0.96) (Slootmaker et al., 2008). These values were comparable to a study 

that investigated the EE during long, continuous hiking bouts estimated with the Polar Activity 

watch 200 (r = 0.92-0.96) (Brugniaux et al., 2008). When the estimated EE by the Polar FA20 

and measured EE by doubly labelled water during a week were compared, correlation 

coefficients of r = 0.80-0.86 were found (Kinnunen et al., 2012), which the authors considered 

as a strong prediction. To assess the linear relationship between the measured EE by IC and the 

EE estimated by the AS, Spearman correlations were calculated and in line with previous 

literature considered as strong when r ≥ 0.80 (Brugniaux et al., 2008; Kinnunen et al., 2012). 

They were considered as adequate when r ≥ 0.50 which is in line with Cohen (1988) that 

considered r ≥ as large. The main precision in the estimated compared to the measured EE was 

determined by a Wilcoxon- signed rank test with Bonferroni corrections for multiple 

comparisons over the different activities, All statistical analyses were performed on R (R 

Project for Statistical Computing, Version 2.14.0, Bell Laboratories, Murray Hill, NJ, USA). 

Results 

The AShip and the ASpocket were accurate in measuring inactivity as they classified 100% of 

the observed time spent in standing as inactivity (Table 1). Recognition of moderate (100%) 

and fast walking (99%) did not differ significantly from the observed activity in the AShip. 

With the ASpocket, recognition of moderate walking (95%) did not differ from the observed 

activity. However, the activity recognized as walking during fast walking was significantly 

different from observed walking time (p < 0.05). There was no significant difference between 

uphill and downhill walking (100%) recognized by the AShip and the observed activity time. 

With the ASpocket, walking uphill (100%) did not differ from the observed activity time, but 

walking downhill did differ significantly (88%) (p < 0.05). Running was recognized correctly 

by the AShip (97%) and the ASpocket (96%), respectively. Recognition of cycling was 

significantly different when the AShip was compared to the ASpocket (p < 0.05) and the 

ASankle (p < 0.05), respectively, with the AShip classifying more time as inactivity. No 

significant difference between the devices was found for playing badminton. Sweeping the 

floor was significantly different between the AShip and the ASpocket (p < 0.05). Stage 1 

(Figure 1) of the AS’s smiley face icon was displayed, on average, after 5 min 3.5 s ± 17.7 s 

and was not significantly different from the 5-min target.  
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Table 1: Time the ActiSmile classified as no activity, walking, or running during different activities  

of adults (n = 25). 

                Activity Classified by the ActiSmile 

Performed Activity Device        Inactivity (%)      Walking (%)        Running (%) 

Standing AShip 100 0 0 

 ASpocket 100 0 0 

Moderate walking AShip 0 100 0 

 ASpocket 0 95 5 

Fast walking AShip 0 99 1 

 ASpocket
a
 1 92 7 

Walking downhill AShip 0 100 0 

 ASpocket
a
 4 88 8 

Walking uphill AShip 0 100 0 

 ASpocket 3 96 1 

Running AShip 1 2 97 

 ASpocket 0 4 96 

Cycling AShip 73 21 6 

 ASpocket
b
 20 78 2 

 ASankle
b
 3 93 4 

Playing badminton AShip 0 100 0 

 ASpocket
b
 3 91 6 

Sweeping the floor AShip 84 16 0 

 ASpocket
b
 32 68 0 

AShip = ActiSmile worn on the hip; ASpocket = ActiSmile carried in trouser pocket; ASankle = ActiSmile worn on 

the ankle.  
a
Significantly different from observed activity time (p < 0.05).  

b
Significantly different from AShip (p < 0.05). 

 

Between the measured and estimated EE from both AS devices, Bland and Altman limits of 

agreement analysis revealed a mean bias close to zero, narrow limits of agreement, and equally 

distributed variances in the AShip and ASpocket for moderate walking (Table 2). The EE 

estimation of the two devices during this activity was not significantly different from measured 

values, whereas the EE estimation during all other activities was significantly different (p < 

0.05). It was the only activity, where the bias in the AShip (%-bias: 0.02%) and ASpocket (%-

bias: 0.0%) was smaller than 10% and therefore the estimation was considered as accurate. For 

standing (AShip and ASpocket: -35%), fast walking (AShip: -31%, ASpocket: -29%), walking 

downhill (AShip: 27% and ASpocket: 22%), and running (-33% AShip: -33%, ASpocket: -

32%), the bias was around one third of the measured values. For walking uphill (AShip and 

ASpocket: -45%), playing badminton (AShip: -42%, ASpocket: -43%), and sweeping (AShip: -

55%, ASpocket: -45%), the bias was large. For biking, the bias was smallest when the device 

was attached to the ankle (%-bias: -30%). When the device was attached to the hip, it was 



International Journal of Computer Science in Sport – Volume 12/2013/Edition 2 www.iacss.org 

   

 

43 

largest (%-bias: -73%). Correlations were strong during standing in both devices. Correlations 

were adequate during fast walking in both devices, and during walking uphill, moderate 

walking and badminton in the AShip (Table 2). For cycling, the EEs with the AShip, ASpocket 

and ASankle (EE: 4.9 ± 2.0 kcal/min; difference to IC: -2.1 kcal/min; 95% CI: (-2.9, -0.8); r = 

0.209; p = 0.473) were weakly correlated with the measurements of the IC. Likewise, 

correlation coefficients of the remaining activities were low. Correlation coefficient over all 

activities were r = 0.58 for the AShip and r = 0.59 for the ASpocket. 

Discussion 

This study found high validity in the AS, a physical activity feedback device used to detect 

standing and walking on different inclines and at varying intensities and to discriminate them 

from running. Furthermore, the AS gives accurate feedback on continuous walking or running 

bouts as well as a good estimate of the EE in moderate walking. Therefore, the AS has the 

potential to be an effective tool for future intervention studies.  

The AS detected correctly inactive behavior by classifying standing as inactivity. The correct 

detection of inactivity is important because it is closely associated with health problems (Blair, 

2009). However, when the device was attached to the hip or carried in the trouser pocket, other 

activities such as cycling were classified as inactivity although their intensity was high. 

Therefore, the AS might assign too much time to inactivity over the day depending on the 

activity types performed. The AS was able to recognize walking at individual intensities and on 

different inclines. However, for fast walking and downhill walking, we recommend wearing the 

AS on the hip since carrying the device in the trouser pocket during these activities leads to 

misclassifications. Nonetheless, the AS recognized most walking correctly, which is considered 

the most important activity to assess in typically sedentary populations (Masse et al., 1998) 

because it can provide essential health benefits (Morris & Hardman, 1997; Murphy, Nevill, 

Murtagh, & Holder, 2007). The AS successfully distinguished walking activities from running, 

a new feature in comparison to common pedometers, which cannot distinguish between 

different types of activities (Tudor-Locke & Myers, 2001). Correctly distinguishing between 

walking and running may serve as an important motivating factor for the user since the 

reliability of the device is increased. Given that the new PA recommendations focus more on 

the contribution of intensive activities to health benefits (Oja et al., 2010), the distinction 

between walking and running might be important for PA interventions that give participants 

precise PA guidelines concerning moderate and vigorous activities. In addition, recognizing the 

type of activity is important for PA recommendations in regard to certain health factors. For 

example, for bone health, PA guidelines recommend that children engage in high-impact 

activities such as running three times a week because of their bone strengthening effects 

(World Health Organization, 2010). 

This study determined not only the AS’s capability to recognize walking and running but also 

investigated the AS’s classification of other activities regularly performed in daily life. This 

constitutes important information for the user in regard to the credibility of the device. As an 

example, cycling was recognized as walking by the ASankle and ASpocket, whereas the AShip 

classified most of the cycling time as inactivity. Everyday cycling was moderate in this study 

(5.2 MET, Table 2), which is comparable to the findings in the related literature (Ainsworth et 

al., 2000). Therefore, it is suggested that the activity be identified with regard to its intensity 

when the AS is carried in the pocket or in the sock. These results might be due to the higher 

activity generated in the lower extremities during cycling compared to the more stable hip 

position evident during this activity, or they may result from the device’s loose position in the 

pocket, where it accumulates more acceleration than in a stable position on the hip. Similar
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Table 2: EE measured by IC and estimated by the Ahip and the ASpocket (n = 25). 

 IC AShip ASpocket Bias AShip  (95% CI) Bias ASpocket (95% CI) r
IC, AShip            r

IC,ASpocket                                     
 

Activity   (kcal/min)     (MET) (kcal/min) (kcal/min)       (kcal/min) (kcal/min)  (p-value)  (p-value) 

Standing 1.7 ± 0.4 1.3 ± 0.2 1.1 ± 0.2* 1.1 ± 0.2* -0.6 (-0.9, 0.17) -0.6 (-0.7, -0.4)  0.849 (< 0.001)  0.849 (< 0.001)  

Moderate walking 4.7 ± 1.0 3.7 ± 0.6 4.6 ± 0.8 4.6 ± 1.0 -0.1 (0.3, -0.5)         -0.0 (0.4, -0.5) 0.586 (0.002) 0.464 (0.020) 

Fast walking 6.8 ± 1.4 5.4 ± 0.8 4.7 ± 0.9* 4.9 ± 0.9* -2.1 (-1.7, -2.6) -2.0 (-1.6, -2.5) 0.621 (0.001) 0.576 (0.004) 

Walking downhill 3.7 ± 1.1 2.5 ± 0.4 4.7 ± 1.3* 4.5 ± 0.8* 1.0 (1.6, 0.5)           0.8 (1.3, 0.3) 0.444 (0.026) 0.275 (0.183) 

Walking uphill 8.3 ± 2.1 5.9 ± 0.8 4.6 ± 0.7* 4.6 ± 1.6* -3.7 (-3.0, -4.4) -3.7 (-2.8, -4.6) 0.642 (0.001) 0.332 (0.105) 

Running 11.3 ± 3.1 9.4 ± 2.2 7.6 ± 1.4* 7.7 ± 1.6* -3.7 (-2.5, -4.8) -3.6 (-2.5, -4.7) 0.466 (0.022) 0.481 (0.017) 

Cycling 7.0 ± 1.6 5.2 ± 1.3 1.9 ± 1.1* 3.7 ± 1.8* -5.1 (-7.5, -2.7) -3.3 (-2.3, -5.5) 0.207 (0.542) 0.295 (0.153) 

Badminton  8.3 ± 2.4 6.3 ± 1.5 4.8 ± 1.0* 4.9 ± 1.7* -3.6 (-2.8, -4.4) -3.5 (-2.5, -4.4) 0.557 (0.004) 0.428 (0.033) 

Sweeping  4.7 ± 1.5 3.6 ± 0.9 2.2 ± 1.9* 2.7 ± 2.5* -2.6 (-1.7, -3.4) -2.1 (-0.9, -3.3) 0.299 (0.146) 0.021 (0.920) 

EE = energy expenditure; AShip = ActiSmile worn on the hip; ASpocket = ActiSmile carried in trouser pocket. IC = indirect calorimetry. Bias AShip = AShip-IC. Bias ASpocket = 

ASpocket -IC.  r
IC, AShip 

= Spearman correlation coefficient between EE measured by IC and by AShip.  r
IC, ASpocket 

= Spearman correlation coefficient between EE measured by 

IC and by ASpocket. Sweeping = sweeping the floor with a broom. * = significantly different from measured EE (p < 0.05). 
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results were found for sweeping the floor, an activity that was performed at moderate intensity 

(4.7 MET), comparable to values in the literature (Ainsworth, et al., 2000), and was mainly 

recognized as walking by the ASpocket. By contrast, the intensity of playing badminton was 

higher in our study (6.3 ± 1.5 MET) than in the literature (4.5 MET) (Ainsworth, et al., 2000) 

and was mainly classified into the walking activity, which is of moderate intensity (3 MET) 

according to the literature (Ainsworth, et al., 2000). Therefore playing badminton was not 

classified correctly according to its intensity. Furthermore, the measured intensity of sweeping 

was within moderate intensity (3.6 MET) and therefore comparable to the values for mopping 

in literature of (3.5 MET) (Ainsworth, et al., 2000). Sweeping was mainly classified into 

inactivity by the AShip whereas in the ASpocket, sweeping was mainly assigned to walking, 

which is the activity that is in compliance with the moderate intensity. Therefore AS might 

provide more plausible results for sweeping and cycling when it is carried in the pocket or in 

the sock (during cycling).  

The AS gave feedback after the target time and is therefore a valid device for providing 

confirmative feedback to the user about his achievement of continuous PA bouts. The 

recognition of health-related activity bouts is crucial as they have been suggested to be 

important in previous PA recommendations (U.K. Department of Health, Physical Activity, 

Health Improvement and Protection, 2011; Haskell et al., 2007; Nelson et al., 2007; 

O’Donovan et al., 2010; U.S. Department of Health and Human Services, 2008). In newer PA 

recommendations the emphasis is on total weekly activity (Oja et al., 2010). However, the 

authors point out that the activity should be accumulated in at least in three weekly sessions to 

avoid overly large doses. Giving feedback about the length of time spent walking or runnning 

might help the user to accumulate activity time in reasonable amounts. Since the activity bout 

length can be graded according to the fitness level of the user, the AS has the potential to be a 

powerful tool for intervention studies (Abraham et al., 2008; Michie et al., 2008, 2011).  

The EE estimated by the AS was not significantly different from the measured values for a 

moderate level of walking, independent of where the device was worn (pocket or hip). The 

small bias found in the EE during walking (0-0.2%) indicated a high level of accuracy and was 

smaller than the lowest bias found in the different models applied to the data of the PAM (30%) 

(Slootmaker et al., 2009). The correlation coefficients between EE and IC were adequate for 

moderate walking in the AShip but not in the ASpocket. Both coefficients were lower 

compared to the correlation coefficients between EE estimated by pedometers and EE 

measured by reference methods (r = 0.68) (Tudor-Locke & Myers, 2001) and they were lower 

than the correlations found in the estimations of the Polar FA20 for the daily EE with measured 

values (r = 0.80-0.86) (Kinnunen et al., 2012). However, the analysis of daily EE estimation 

might mask the differences in single activities. Given the low bias but the low correlation in 

comparison to other studies, the EE estimation of moderate walking can therefore be 

considered as accurate on a group level but not for individual estimations. The strong 

correlation between measured and estimated EE during standing might be due to the AS’s 

estimation of resting EE by individual factors, which is a well-established method (Mifflin et 

al., 1990), however, the large bias and the significant difference in EE estimation for standing 

reveal that the AS does provide an estimation of the intensity of this activity performed by 

individuals but with a systematic bias. Likewise, the EE of fast walking was significantly 

different from the measured values and the bias was over 10%, however; the correlation 

coefficient was adequate in both devices. Therefore, the EE estimated by the AS during fast 

walking gives an estimate of the intensity on an individual level but with a systematic bias. 

Walking downhill was the only activity where EE was significantly overestimated by the AS. 

This might be due to its development for moderate walking and the lower EE during walking 

downhill. During walking downhill and running, biases were above 10%, and correlations were 



International Journal of Computer Science in Sport – Volume 12/2013/Edition 2              www.iacss.org 

   

 

46 

low, indicating that the feedback of the AS on EE during walking downhill and running should 

be interpreted carefully. The high relative bias during walking uphill is explainable as 

accelerations were lower during that activity concomitantly accompanied by a high EE. 

Nevertheless, correlation was adequate when the AS was worn on the hip, indicating that the 

device replicates the intensity of this activity performed by the individual but with a systematic 

bias. Cycling showed the best agreement between the EE assessed by IC and the AS when the 

AS was worn at the ankle. However, for all other cycling sites and during playing badminton, 

the devices underestimated EE with a large systematic bias. The correlation coefficients of 

badminton were adequate in the AShip. Therefore, the AShip gives an indication of the 

intensity of playing badminton in individuals but estimates the EE with a systematic bias. 

Biases were high and correlation coefficients were low for sweeping, indicating that estimates 

of EE by the AS are not valid for such an unstructured household activity. Therefore, the AS is 

valid in the prediction of EE for moderate walking when the device is worn on the hip and it 

provides accurate estimates on a group level when the AS is worn in the trouser pocket. The 

AS’ EE feedback for standing, fast walking (AShip and ASpocket), walking uphill (AShip) and 

playing badminton (AShip) is also closely related to measured values, which provides users 

with information on the general intensity level of the performed activity but the estimation is 

always adhered to an estimation error. 

The correlation coefficient between measured and estimated EE by the AS over all activities (r 

= 0.58 for the AShip and r = 0.59 for the ASpocket) was adequate but generally lower as in 

studies relating tri-axial accelerometer output to EE which were based on laboratory 

assessments of daily living activities. Correlation coefficients in these studies ranged from  r = 

0.70 to 0.95 (Van Remoortel et al., 2012), except for one study by Campbell et al. (2002) that 

showed a correlation coefficient of r = 0.48. In contrast to these PA monitors, which are mainly 

used by researchers, the AS was developed for personal use and does not require raw 

acceleration processing but comes along with an inbuilt algorithm that provides direct estimates 

of EE. The lower storage capacity and simpler algorithms due to the trade-off with long battery 

life and directly accessible feedback might explain the lower correlation coefficients between 

measured and estimated EE in the AS compared to PA monitors applied in research. The Polar 

Activity Watch 200 and the PAM, which were also developed for personal use, revealed 

stronger correlation coefficients for estimated versus measured EE (Polar Activity Watch: r = 

0.92-0.96; PAM: r2 = 0.74-0.93, which is r = 0.86-0.96). However these studies did only 

include locomotor activities such as hiking, walking and stair walking and did not include other 

daily activities as in our study. This might explain the stronger correlation found in their studies 

(Brugniaux et al., 2010; Slootmaker et al., 2009). When the estimated EE by the Polar FA20 

and measured EE by doubly labelled water during a week were compared, correlation 

coefficients of r = 0.80-0.86 were found (Kinnunen et al., 2012). However, analysing the EE of 

the user over a week might mask differences in the EE of single activities to measured values. 

Therefore, these values cannot be compared directly to our results. Concluding, the overall 

correlation found in our study was adequate. The lower values than in other studies result from 

limitations in the comparison with these studies and implicate that the EE of our included 

variety of activities is estimated adequately. 

This study is limited since the activities were performed under laboratory conditions. However, 

this study introduces a new device that recognizes walking on different inclines at individually 

chosen intensities correctly and distinguishes them from running. This study not only evaluated 

the AS’s capacity to recognize walking and running, which were the activities the AS was 

developed for, but also investigated the AS’s classification of other activities performed in 

daily life, which might be crucial for the credibility of the device for the user. Although the AS 

was not developed as a measurement device, it accurately recognized walking at different 
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intensities and inclines and precisely measured continuous bouts of walking or running. In 

addition, it provided a good estimate of EE for moderate walking. These results, in combination 

with its relatively low cost and its use of simple age-, language-, culture- independent feedback, 

indicate that the AS might be an effective PA intervention tool. Prompting a user to set a PA 

goal, specifying graded tasks, providing feedback on performed PA, and keeping a diary were 

suggested as the key motivational factors for increasing activity with pedometers and recent 

new technologies (Abraham et al., 2008; Bravata et al., 2007; Clemes & Parker, 2009; De 

Cocker, et al., 2008; McKay et al., 2009; Michie et al., 2008, 2011; Rooney et al., 2003). The 

AS fulfills these requirements by setting a graded goal according the user’s fitness level and 

provides a diary within the software; the AS appears to be a promising feedback device for 

future PA interventions. 

Conclusion 

The AS proved to be an easy-to-use and valid tool for the recognition of walking on different 

inclines at individually chosen intensities. It correctly distinguishes between walking and 

running, which makes it superior to ordinary pedometers and allows the user to follow recent 

guidelines that emphasize the importance of intensive activities. Furthermore, the AS gave 

reasonable estimates of time spent on inactivity, walking, and running during both, a household 

activity and a sport activity, which might be crucial information for the user in terms of the 

credibility of the device. It provides correct feedback about the continuous activity bouts 

accomplished by the user in a simple way that might be especially understandable by groups 

that are at risk with regard to PA. In addition the AS provided good estimates of EE during 

moderate walking on a group level. The AS’s smiley icon sets a user-specific activity goal and 

a feedback on fulfilled PA bouts might also support its potential as an intervention tool. 

Therefore, future research should investigate the effectiveness of the AS in increasing PA 

behavior in intervention studies.  
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Abstract 

The aim of this study was to compare the energy expenditure (EE) estimates of 

activity-specific regressions (ASR), random forest (RFEE) and regression trees 

(treeEE) from raw accelerometer data in children. Forty-one children (age: 9.9 ± 

2.2y) performed the activities of sitting, standing, walking, running, jumping, 

crawling, cycling and riding a scooter for 3.5 min., while 30 Hz raw accelerations 

were collected with one tri-axial hip-accelerometer and EE was measured using a 

portable device of spirometry. Twenty out of 42 accelerometer features calculated 

over 1-s windows were included into the prediction model of the RFEE according 

to their Gini-index. To provide the activity-specific information and the relevant 

features for the ASR, an a priori decision tree was used. The ASR accurately 

predicted the EE of sitting, walking, running, jumping, crawling and riding a 

scooter with biases of 0.04, 0.08, 0.33, 0.61, 0.08 and 0.41 MET, respectively. 

RFEE precisely estimated the EE of cycling, riding a scooter, jumping and 

running (bias: 0.18, 0.21, 0.57 and 0.29 MET) and the treeEE accurately 

predicted the EE of running and cycling (bias: 0.17 and 0.38 MET). The ASR 

predicted EE more accurately than RFEE or the treeEE. Using activity-specific 

information seems therefore to enhance the accuracy in assessing EE in children 

with raw accelerometer data. 

KEYWORDS: ENERGY EXPENDITURE, RAW ACCELEROMETER DATA, 

CLASSIFICATION, CHILDREN, DATA MINING 

Introduction 

Physical activity (PA) is known to have beneficial effects on the mental (Biddle & Asare, 

2011), bone (Boreham & McKay, 2011; Fuchs, Bauer, & Snow, 2001) and cardiovascular 

health of children (Andersen et al., 2006). Furthermore, it reduces the risk of overweight, 

obesity (Hills, Andersen, & Byrne, 2011) and type II diabetes (Boulé, Haddad, Kenny, Wells, 

& Sigal, 2001). Additionally, an active childhood is a good indicator of an active lifestyle in 

adulthood (Craigie, Lake, Kelly, Adamson, & Mathers, 2011; Telama et al., 2005). Activity 

guidelines for children based on self-reports recommend a minimum of one hour PA of 

moderate to vigorous intensity per day (Biddle, Sallis, & Cavill, 1998; Pate, 1995, Strong et al. 

2005). However, measurements based on accelerometry recommend 90 min of moderate to 

vigorous PA per day (Andersen et al., 2006). Therefore, more objective methods may lead to an 

increase in the recommended health-enhancing dose of PA. Furthermore, objective 
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measurements that define the exact amount of PA needed for each single health benefit are 

missing in the scientific literature (Biddle et al., 1998) and there is still no consensus on how to 

measure intermittent and spontaneous PA in children (Andersen et al., 2006; Biddle et al., 

1998). Therefore, methods which objectively assess PA should be improved to achieve a 

deeper understanding of activity behaviour in childhood (Andersen et al., 2006; Biddle et al., 

1998). 

In the past few years, accelerometers became widely accepted as a valid tool to measure PA as 

they provide information about the intensity, duration and frequency of activities (John & 

Freedson, 2012; Nilsson et al., 2009; Riddoch et al., 2004). Accelerometers are especially 

advantageous because they are comfortable to wear (Janz, 1994), have a large storage capacity 

to collect data over several days (Freedson, Pober, & Janz, 2005; John & Freedson, 2012) and 

do not affect the activities. Cut-off-methods determine the intensity of activities by providing 

thresholds in accelerometer counts for the corresponding values in the metabolic equivalent of 

task (MET), in order to measure the time spent in sedentary, light, moderate or vigorous 

activities (Freedson, Melanson, & Sirard, 1998; Hänggi, Phillips, & Rowlands, 2013; Puyau, 

Adolph, Vohra, & Butte, 2002; Treuth et al., 2004). However, the intensity classification by 

this approach strongly depends on the activities performed during the development of the 

thresholds (Puyau et al., 2002; Welk, 2005). To estimate EE, single linear regression models 

have often been developed using accelerometer data as an independent variable (Eston, 

Rowlands, & Ingledew, 1998; Freedson et al., 2005; Puyau, Adolph, Vohra, Zakeri, & Butte, 

2004; Trost et al., 1998) - though, it has been shown that this approach under- or overestimates 

the EE of certain activities (Freedson et al., 2005; Staudenmayer, Zhu, & Catellier, 2012) and 

the development of the regressions strongly depends on the included activities (Bassett, 

Rowlands, & Trost, 2012). The use of non-linear regression for the EE prediction led to 

comparable results as linear regressions (Tanaka, Tanaka, Kawahara, & Midorikawa, 2007). 

Two or more activity-specific regressions (ASR) have been shown to be more precise than 

single prediction equations (Brandes, Van Hees, Hannöver, & Brage, 2012; Crouter, Clowers, 

& Bassett, 2006; Crouter, Horton, & Bassett, 2012). In parallel, an artificial neural network 

(ANN) has recently been suggested as a promising approach to predict EE from accelerometer 

data (Trost, Wong, Pfeiffer, & Zheng, 2012). Advantages and disadvantages of ASR models 

and ANN to predict EE from accelerometer data were recently conversely debated (Bonomi & 

Plasqui, 2012; Freedson, Lyden, Kozey-Keadle, & Staudenmayer, 2012), but it is not clear so 

far, which of these methods leads to more accurate results.  

Most of the previous studies, which estimated EE by accelerometry, used counts per second. 

Recently features were extracted from accelerometer counts output over 10s windows to 

predict EE in children (Crouter et al., 2012; Trost et al., 2012). It has been suggested that the 

extraction of features from raw accelerometer data might be advantageous for assessing PA or 

EE (Liu, Gao, & Freedson, 2012). However, only a few studies measured raw accelerometer 

data to assess EE (Brandes et al., 2012; Van Hees et al., 2011). For EE predictions, they 

summed up the raw data to 1s window vector magnitude data. Until now, the extraction of 

multiple features and the selection of those that were most important for the EE determination 

has not been approached.  

The aim of the present study was to compare EE estimation methods such as ASR, which 

consisted of a prior activity recognition and a subsequent linear regression per activity, to 

straight-forward approaches such as random forest (RF) and a regression tree (treeEE) for 

several children-specific activities. The second aim of this study was to show the extraction of 

several different features directly from raw accelerometer data and the use of methods that help 

to choose the most important features for the EE estimation. 
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Methods 

Participants 

All children of a primary school and additionally, the participants of a voluntary sports week, 

where children could participate in a sports program every morning, were asked by an 

information letter to participate in the study. All children, who took part, and their parents 

signed an informed consent and the study was approved by the regional Ethics Committee. 46 

children between the ages of 5 and 13 years agreed to participate in the study. Data of five 

subjects were excluded because of missing or deficient data due to issues with the instruments. 

Data of 41 children (21 girls and 20 boys, age: 9.9 ± 2.2 years) were used for further analysis.  

Measurement devices 

Body weight was measured using a digital scale (Modell 861, Seca GmbH & Co, Hamburg, 

Germany) to the nearest 0.1 kg and height was measured using a stadiometer (Modell 213, Seca 

GmbH & Co, Hamburg, Germany) to the nearest 0.5 cm. A light (570 g) indirect device of 

spirometry (MetaMax 3B, Cortex Biophysik GmbH, Leipzig, Germany) with an attached 

breathing mask (Hans Rudolph, Inc., Kansas City, KS, USA) was used to measure breath by 

breath oxygen uptake (VO2) and carbon dioxide production (VCO2). The device of spirometry 

was calibrated before each measurement according to the manufacturer’s guidelines. Validity, 

reliability, and stability of the device were previously reported (Macfarlane & Wong, 2012). 

The collected data were downloaded to a laptop with the corresponding software (Metasoft, 

Version 3.9.8., CORTEX, Germany) and the equation of Elia and Livesey (1991) was used to 

determine EE from VO2 and VCO2. The values in the unit of MET were calculated relatively to 

the resting EE (REE). The REE was determined with the equations depending on weight and 

age from Schofield (1984), as it was recommended by Rodríguez, Moreno, Sarría, Fleta and 

Bueno (2002).  

The ActiGraph (Version, GT3X, The ActiGraph, Pensacola, Florida USA) was used to collect 

30 Hz raw acceleration data in three axes (longitudinal, anterior-posterior and lateral). The 

ActiGraph is a small (3.8 cm x 3.7cm x 1.8cm) and light (27g) accelerometer with a capacitive 

microelectromechanical sensor, which collects data in a range of ± 3 g (John & Freedson, 

2012). A digital clock was synchronized with the timeline of the ActiGraph and the device of 

spirometry in order to synchronize their data with the start and end time of the activities. 

Measurement procedure 

When the children arrived in the lab, their body weight, height and age was determined. The 

accelerometer was placed on the right hip with an elastic belt and the children were equipped 

with the device of spirometry. The following activities were performed: sitting, standing, 

walking moderately, walking fast, running, jumping, crawling, biking and riding a scooter. 

These activities were the most frequently performed by children in a video observation study in 

the free-living conditions of Ruch, Rumo and Mäder (2011). First, the children were asked to 

perform the activities sitting and standing in order to not influence their EE by other previously 

performed activities. Afterwards, the remaining activities were performed in random order. 

Between the activities, the children rested for about 3 min until EE was at baseline level. 

Except for sitting, standing, crawling and jumping, the activities were carried out on a flat 

space outside in similar weather conditions (no rain or strong wind). The children were 

instructed to perform all the activities in their self-selected, moderate pace. If possible, the 

children rode their own bike, otherwise there were two sizes of children’s bikes available. With 

the city scooter, the children rode around cones placed in a big eight. Jumping was exercised 
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over a rope on the floor to a beat of 1 Hz. To make crawling interesting, the children were 

asked to carry a table-tennis ball with a teaspoon in one hand and to place the other hand on the 

floor. All activities were performed for 3.5 min. The last seconds of the data of every activity, 

were cut according to visual inspection. The data of the last minute before the cut were used for 

the calculation, so as to obtain steady state conditions (Pearce & Milhorn, 1977; Whipp, Ward, 

Lamarra, Davis, & Wasserman, 1982). Always the same minutes of the data of the 

accelerometer and device of spirometry were used for the analysis. 

Statistical analyses 

Based on the 30 Hz acceleration raw data in three axes, 42 features with a window size of 1s 

were calculated according to the suggestions of Liu et al. (2012). The features are considered to 

filter specific information from the raw data by summing up every second of the measured raw 

data (30 acceleration values) in different ways in order to reduce the noise in the data. They are 

considered to have a better correlation to EE or the activity classes than the raw data (Figure 1). 

The following features were generated for every axis: mean, standard deviation (sd), 

coefficients of variation (CV), minimum (min), maximum (max), percentiles (10th, 25th, 50th, 

75th, 90th), sum, zero crossing (zc) and signal power (sp). Additionally, the vector magnitude 

(VM) and the distance between the minimum and the maximum of every second (d) were 

calculated (Table 1). 

 

Figure 1. Measured raw data, the features coefficient of variation (CV1), standard deviation (sd1) of the 

longitudinal axis and the vector magnitude (VM), as well as the measured oxygen uptake 

(VO2) and carbon dioxide production (VCO2). 
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Table 1. All features, calculated over a non-overlapping window size of 1s from the 30Hz raw accelerometer 

data. 

Feature Abbreviation Formula 

Mean mean 

̄s=
1

N
∑
i= 1

N

si  

si = raw acceleration 

Standard deviation sd 



s =  
1

N
 (si -  

1

N
 sj

j=1

N


i = 1

N

 )  

Minimum min min (si) 

Maximum max max (si) 

Distance between min and max d 



d1 = max(s1) + min(s1) , 



d =  d1
2 + d2

2 + d3
2

 

Vector magnitude VM 



VM =  a1
2 + a2

2 + a3
2

 
axes: 1 = longitudinal, 2 = anterior-posterior, 3= lateral 

Corrected vector magnitude 
(the acceleration, without the earth 

acceleration) 

VM2 



VM = (a1-1)2 + a2
2 + a3

2
 

(In units of g) 

Sum sum 
S=∑

i= 1

N

si  

Coefficient of variation CV 



CV =
i

s
 

Percentile (10
th

, 25
th

, 50
th

, 75
th
, 

90
th

) 

p_0.1, p_0.25, p_0.5, 

p_0.75, p_0.9 

p_x = Value, so that x of the measured |si| are 

below p_x 

Signal Power sp 
sp=∑

i= 1

N

si

2
 

Zero crossing zc Number of times the signal crosses 0 

 

Calculating a multitude of features requires a selection for the EE prediction models and most 

of the other methods do not provide an automatic feature selection. EE of the different 

activities was estimated with treeEE, RFEE and ASR. These approaches were chosen, because 

each of them offers a possibility for a feature selection. In addition to the selected features, age, 

body weight and the sex of the children were introduced into the EE prediction models, 

because personal factors have been reported to affect EE (Ekelund, Yngve, Brage, Westerterp, 

& Sjöström, 2004; Schofield, 1984). The activities of moderate and fast walking were merged 

into the activity walking.  
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The ASR prediction required two work steps. First, the activity type of every second was 

recognized and second, the EE was estimated with a separate linear regression for each activity 

type, including the most important features and personal factors as variables. The prior activity 

classification of the ASR was achieved by using a decision tree (treeClass), based on the 

calculated 1s window features. In each node of the tree the input data (all features of one 

second measured data) is disposed to one of the two sub braches, which end in another node 

with a new decision criterion, until the final decision is made and the activity class of the input 

data is determined. A cost complexity function was used as a measure for the proportion of the 

complexity of the tree and the error rate. It was chosen at 0.01 for the treeClass in the present 

study and led to a tree with ten splitting nodes and eleven branches (Figure 2).  

The treeClass chose its node criterions from all the available features according to the decrease of 

the Gini impurity, which measures the goodness of a variable as splitting criterion in a node of 

the tree. Gini impurity is: 

 i( ) = 1 – pa
2
 – pb

2
, where  = node, , (1) 

 n = number of data points in the sample, 

 nk = correctly classified data points to the class k (Menze et al., 2009).  

The decrease of the Gini impurity is: 

  i( ) = i( ) – pl i( l) – pr i( r), l/r = left/right subnode (2) 

 
 
(Menze et al., 2009) 

The decrease of the Gini impurity was calculated for every available variable (all features) and 

the one with the highest decrease was chosen as node criterion (Menze et al., 2009). According 

to the Gini impurity, standard deviation (sd1) and coefficients of variation of the longitudinal 

axis (CV1) were relevant features in the treeClass (Figure 2). The regressions for each activity 







 pk =
nk

n





















pl/r=
nl/r

n

Figure 2. Classification tree (treeClass). To read from the top to the bottom, if the node criterion is full field, 

following the left branch, otherwise the right one (seen from the viewer’s perspective). Scooter 

= riding a city scooter. Features: sd = standard deviation, CV = coefficient of variation, zc = 

zero crossing, p_x = xth percentile, max = maximum. Axes: 1 = longitudinal, 2= anterior-

posterior, 3= lateral.  
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were developed using the same two features; additionally, the ASR included the vector 

magnitude (VM) since this feature was considered to reflect the mechanical acceleration of the 

activity. In addition, the personal factors age, sex and weight were included in the regressions. 

From these selected features (sd1, CV1 and VM) and personal factors (age, sex and weight), 

the relevant variables for each regression were determined using multiple regressions models 

with backwards exclusions of the variables (Table 2). Hence, the ASR determined the activity 

type by the treeClass for each second of the measured data and applied the regression of the 

respective activity type to estimate EE. 

Table 2. Activity specific regressions (ASR) per activity. VM = vector magnitude, sd1 = standard deviation of 

the longitudinal axe, CV1 = coefficient of variation of the longitudinal axe. 

Activity Equation for the EE-prediction [kJmin
-1

] R
2 

SEE 
[kJmin-1] 

p-value 

Sitting 1.40434 + 0.21455 age + 0.05283 weight 0.56 0.87 <0.001 

Standing 0.81335 + 0.18471 age + 0.07587 weight 0.70 0.78 <0.001 

Walking 70.69992 – 68.81717 VM – 86.25837 sd1 +  0.52874 age + 

0.17639 weight 

0.64 2.81 <0.001 

Running 0.353 + 1.32144 age + 0.3436 weight  0.74 3.99 <0.001 

Jumping -1.01301 – 25.71135 sd1 + 25.83887 CV1 + 0.82935 age + 

0.4458 weight 

0.74 4.48 <0.001 

Crawling -2.05614 + 16.87322 sd1 + 1.06574 CV1 + 0.53126 age + 

0.22102 weight 

0.83 1.86 <0.001 

Scooter 87.30692 – 88.29084 VM + 32.52044 sd1 + 0.36355 weight 0.66 3.93 <0.001 

Cycling 0.85551 + 78.23134 sd1 + 0.20154 age 0.48 4.04 <0.001 

 

The treeEE worked analogue the treeClass and disposed the input data for each node into one of 

two smaller regions, based on the condition of one feature. In contrast to the treeClass that 

recognized the activity class, it finally determined directly the EE values. The used treeEE had a 

cost complexity of 0.0005 (77 nodes) and chose the splitting variables from all 1-s window 

features and the personal factors age, sex and weight, according to the decrease of the Gini 

impurity, as like the treeClass. 

The RFEE grows a defined amount of different regression trees based on a random vector of the 

input data (all features and personal factors) sampled independently for all trees of the forest. 

The result is the most supported class by the different trees (Breiman, 2001). RF can enhance 

the prediction because it is more robust in respect to noise and instabilities of small changes in 

the dataset than a single tree. But in the forest the influence of a variable becomes unclear and 

hard to interpret. Therefore, RF evaluates the feature according to their importance. One 

evaluation method is the decreases of the Gini index. The decrease of the Gini impurity (i(

)), used from the single trees to determine the splitting variable of every node, was accumulated 

over all nodes and all trees of the forest for each variable. Thus the Gini index of RF 

determines how often a variable was used for a splitting and how valuable the split was (Menze 

et al., 2009). RFEE was trained with 1000 trees per decision with the 20 most useful features 

according to the decrease of the Gini index (Figure 3). These included all features of the 

longitudinal axis, the standard deviation, coefficients of variation, zero crossing, sum, the 25th 

percentile of the anterior-posterior axis, the standard deviation of the lateral axis and the 

distance between the minimum and the maximum of every second. In order to compare the 

results of the treeClass, a classification by RF (RFClass) was performed. RFClass used a pre-defined 

amount of decision trees (1000 in this study) that were trained by a random set of the input 




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data, like as RFEE but determined in the end an activity class instead of an EE value. The model 

was developed the same way as the RFEE. If only the 10 most useful features of the Gini index 

or all 42 features were included, RFClass reached lower classification results than with 20 

selected features (overall recognition of RFClass: with all features: 72.7%; 10 selected features: 

71.7%, 20 selected features: 73.5%). 

Figure 3. The mean decrease of the Gini index of the features, calculated by RF to evaluate the features after 

their importance. The higher the decrease the more important is the feature. The Gini index is 

the accumulation of the decreases of the Gini impurites, which were calculated by the trees to 

determine the splitting variable of the single nodes, over all variables and all nodes of every 

tree in the forest. Abbreviations of the features according to table 1. 

A leave-one-out cross-validation was used to validate the activity recognitions and the EE 

estimations, as it was recommended by Staudenmayer et al. (2012). The method trains the 

algorithms with the data of n-1 children and tests it on the one left out. This procedure was 

repeated 41 times, so that the data of every child was tested once. Mean bias and root mean 

squared error (RMSE) of the estimated to the measured EE were determined for each activity. 

In order to compare the measured and estimated EE, a non-parametric Wilcoxon-Rank-Sum 

test with Bonferroni adjustments for multiple comparisons was used since the quantile-

comparison plots of the data revealed a deviance from the normal distribution. The same 

procedure was applied to compare the bias of the ASR to that of the RFEE and the treeEE. A 

Chi-square test was used to compare the correctly classified and misclassified proportions of 

each activity and of the overall result by the treeClass and RFClass. The feature calculation, all EE 

estimations by ASR, RFEE and treeEE, and activity classification by RFClass and the treeClass, as 

well as all statistical analysis were done using R project for statistical computing (R Project, 

Version 2.15.1, Statistics Department, University of Auckland, New Zeeland). In R, the 

package rpart was used for the treeClass and the treeEE and the package randomForest was used 

to perform RFEE and RFCLass. 
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Results 

Energy Expenditure 

The ASR accurately predicted EE of six activities, but they significantly underestimated EE 

during cycling and overestimated EE during standing (p < 0.05) (Table 3). RFEE significantly 

overestimated EE of sitting, standing and walking (p < 0.05) and precisely predicted the 

remaining activities. The treeEE determined EE of the activities running and cycling accurately; 

however, it underestimated riding a scooter and overestimated the remaining activities (p < 

0.05) (Figure 4, Table 3).  

Figure 4. Measured and predicted energy expenditure in kJ/min for all activities (mean and standard deviation). 

Table 3. Energy Expenditure, measured and predicted in MET (mean and standard deviation). * differs 

significantly from the measured value (p<0.05), scooter =  riding a city scooter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The mean bias of the EE of sitting, standing, walking and crawling estimated by the ASR were 

within 0.17 MET. Except for crawling, this was significantly lower than the biases of the treeEE 

 

Activity 

 

Measured EE 

Estimated EE 

ASR RF TreeReg 

Sitting 1.5 ±0.3 1.6 ±0.4 2.0 ±0.7* 2.0 ±1.0* 

Standing 1.5 ±0.2 1.7 ±0.6* 2.0 ±0.7* 1.9 ±0.9* 

Walking 3.9 ±1.3 3.9 ±1.4 4.3 ±1.2* 4.5 ±1.3* 

Running 7.1 ±1.3 6.8 ±1.6 6.9 ±1.3 7.0 ±1.6 

Jumping 7.1 ±1.6 6.5 ±2.2 6.6 ±1.5 6.4 ±1.6* 

Crawling 3.9 ±0.8 4.0 ±1.2 4.2 ±0.8 4.5 ±1.3* 

Scooter 5.0 ±1.5 4.6 ±1.9 4.8 ±1.0 4.4 ±1.3* 

Cycling 4.8 ±1.4 4.0 ±1.0* 4.6 ±0.8  4.4 ±0.9 
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or the RFEE (p < 0.05) (Table 4). Comparing the three methods of this study, RFEE predicted the 

EE of cycling, riding a scooter and jumping most accurately (bias: -0.18, -0.21 and -0.53 

MET), whereas the treeEE reached the most precise result for running with a bias of -0.17 MET.  

Mean RMSE ranged from 0.87 to 5.93 kJ/min for the ASR,from 2.18 to 5.06 kJ/min for the 

treeEE, and from 2.24 to 5.51 kJ/min and RFEE (Figure 5). 

Table 4. Mean bias and RMSE of all methods for all activities in MET and kJ/min. * differs significantly from 

the aspR bias (p<0.05), scooter =  riding a city scooter 

 

Activity 

Mean Bias RMSE 

ASR RF TreeReg ASR RF TreeReg 

kJ min-1 MET kJ min-1 MET kJ min-1 MET MET MET MET 

Sitting 0.11 ± 0.88 0.04 ± 0.41 1.72 ± 1.86* 0.49 ± 0.67* 2.16 ± 4.05* 0.52 ± 1.08* 0.41 0.83 1.20 

Standing 0.65 ± 1.50 0.17 ± 0.55 1.70 ± 1.48* 0.48 ± 0.66* 1.56 ± 1.56* 0.42 ± 0.79* 0.57 0.82 0.89 

Walking 0.32 ± 2.85 0.08 ± 1.57 1.67 ± 3.16* 0.47 ± 1.10* 2.41 ± 2.77* 0.65 ± 1.21* 1.57 1.19 1.38 

Running -1.15 ± 5.20 -0.33 ± 1.77 -1.04 ± 4.67 -0.29 ± 1.35 -0.60 ± 4.50 -0.17 ± 1.33 1.80 1.38 1.33 

Jumping -2.09 ± 5.62 -0.61 ± 2.32 -1.84 ± 5.14 -0.53 ± 1.59 -2.50 ± 4.45 -0.72 ± 1.50 2.40 1.67 1.66 

Crawling 0.33 ± 1.90 0.08 ± 1.13 0.85 ± 2.94 0.27 ± 0.87 1.90 ± 3.47 0.58 ± 1.20 1.13 0.91 1.33 

Scooter -1.59 ± 3.80 -0.41 ± 2.05 -0.82 ± 5.12 -0.21 ± 1.53 -2.08 ± 3.82 -0.57 ± 1.38 2.09 1.54 1.49 

Cycling -2.83 ± 4.99 -0.82 ± 1.67 -0.54 ± 5.55* -0.18 ± 1.57* -1.14 ± 4.83* -0.38 ± 1.35* 1.86 1.58 1.40 

 

Classification 

The treeClass achieved an overall recognition of 70.2%. RFClass achieved 73.5% and was 

significantly more accurate than the treeClass (p < 0.05). Sitting and standing were significantly 

better recognized by the treeClass (p < 0.05), whereas the RFClass better classified all other 

activities - jumping, crawling and cycling significantly better (p < 0.05) (table 5). The highest 

recognition was reached for the activity walking by both methods. Most of the 

misclassifications were found between similar activities such as cycling and riding a scooter, 

sitting and standing or running, walking and jumping. 

Figure 5. Mean RMSE of all methods for all activities in kJ/min. 
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Table 5. Confusions matrix of the classification results. * The methods differ significantly from each other (p < 

0.05). 

Observed 

Activity 

 

Method 

Predicted Activity 

Sitting 

(%) 

Standing 

(%) 

Walking 

(%) 

Running 

(%) 

Jumping 

(%) 

Crawling 

(%) 

Scooter 

(%) 

Cycling 

(%) 

Sitting * TreeClass 76 22 0 0 0 0 1 1 

RFClass 57 29 5 3 1 3 1 1 

Standing * 

 

TreeClass 15 76 0 0 0 4 3 2 

RFClass 24 69 0 0 2 1 2 1 

Walking TreeClass 1 0 85 0 2 0 9 1 

RFClass 1 0 87 1 1 0 6 3 

Running TreeClass 3 1 5 76 13 1 2 0 

RFClass 2 1 1 79 10 1 2 0 

Jumping * TreeClass 2 3 7 22 52 0 11 3 

RFClass 0 1 16 7 73 1 7 4 

Crawling * TreeClass 3 1 1 0 0 78 9 7 

RFClass 1 3 4 0 1 84 4 7 

Scooter TreeClass 0 1 29 0 3 4 54 9 

RFClass 3 0 4 0 4 5 58 17 

Cycling * TreeClass 3 0 12 0 0 7 26 51 

RFClass 3 0 6 0 1 9 20 60 

Discussion 

Energy Expenditure 

This study compared ASR, RFEE and treeEE as methods to determine the EE of children during 

several activities using raw accelerometer data. The ASR reached the most accurate results and 

therefore, using activity-specific information before applying regression equations to activity 

type, seems to be a promising approach for the future. Regarding EE estimations or activity 

type recognitions, the calculation of features from raw accelerometer data and feature selection 

methods showed great potential. 

The treeEE is a well-interpretable model but it predicted the EE of only two activities 

accurately. In contrast, the RFEE estimated the EE of more activities accurately than the treeEE 

probably due to the use of a multitude of trees. This procedure might have increased the 

accuracy in comparison to using only one tree, because it can better balance variations and 

noise in the data. However, as the mode of the results of the single trees is taken as the final 

result, RF is still based on regression trees and depends, in the end, on the strength of these 

trees and the correlation between them (Breiman, 2001). 

For the less intensive activities, the ASR showed significantly better results than the RFEE or 

the treeEE. The activity-specific regressions of the ASR might adapt more precisely to the 

intensity of single activities than treeEE or RFEE that are trained with the whole data set. For 

sitting and standing, the regressions of the ASR were only based on age and weight. The 

prediction of EE for these sedentary activities was more accurate than the estimations of RFEE 

and the treeEE that also included accelerometry in this estimation. Similarly to the ASR for 

sitting and standing, Schofield's (1984) REE equations for children only used body weight and 
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age and reached an R of 0.83 (boys) and 0.81 (girls) for children between 3 and 10 years of age 

and 0.93 (boys) and 0.80 (girls) for children from 10 to 18 years of age. The regressions of the 

ASR for sitting achieved slightly lower values (R = 0.75) and for standing, the regression 

achieved a similar result (R = 0.83). Therefore, the ASR for stationary activities were 

comparable to existing equations and they were more accurate in estimating the EE of single 

activities than other methods such as RFEE and treeEE.  

Brandes et al. (2012) calculated counts from raw accelerometer data and estimated the EE with 

ASR for walking, stair walking and cycling. With a lowest RSME of 2.15 kJ/min for walking 

or 6.44 kJ/min for cycling, the RMSE of Brandes et al. (2012) was a bit lower for walking and 

higher for cycling than that of the ASR, RFEE or the treeEE in the present study. Brandes et al. 

(2012) worked with only three activities, in comparison to the eight activities used in the 

present study and they didn’t use a prior classifier to determine the activity type from the 

measured data. In contrast, the model of Crouter et al. (2012) provides a method that first 

distinguishes between inactivity, continuous walking or running and intermittent lifestyle 

activities and estimates the EE using two regressions: one for continuous walking or running 

and one for intermittent lifestyle activities. They set the EE of the category inactive to 1 MET. 

Depending on the used thresholds to separate the categories, the biases of Crouter et al. (2012) 

were within 0.6 - 0.8 of measured MET values for nearly all activities and therefore 

comparable to the present study. However, the biases of some activities were larger, for 

example running with a bias of 1.1 MET. This indicates that an even more activity-specific 

discrimination as used in the present study before applying the ASR might lead to more 

accurate results in the single activities. 

Trost et al. (2012) used an ANN with features from accelerometer 1s counts over a window 

size of 10s to 60s and five activity categories to predicted EE. Trost et al. (2012) reached lower 

biases for running and walking than the ASR, treeEE and RFEE. For sedentary activities, the 

ASR showed better results than the ANN of Trost et al. (2012). The other activity categories of 

Trost et al. (2012) are difficult to compare, because they merged different activities into a few 

categories. The biases of the EE of these categories were in a range of 0.01 to 0.62 MET and, 

therefore, were comparable to or slightly lower than the results of this study. 

Overall, the results in the three studies are comparable; however, using ASR is an easy 

interpretable approach, whereas an ANN is limited in regard to its interpretation due to the 

complex algorithms. Furthermore, there is no foolproof method that determines the parameters 

that define ANN. Similarly, the RFEE calculated 1000 trees for every decision and the mode 

determines the final class. Although every single tree can be extracted from the algorithm, there 

is no final tree that can be interpreted. Therefore, the RF remains a black box similar to ANN. 

In contrast to the straightforward approaches of ANN and RF, the ASR needs two steps 

(activity type classification and subsequent EE estimation), which might be considered as time-

consuming. However, recognizing the activity type is an additional factor in describing 

children’s PA and therefore, the ASR might be the preferred approach for estimating EE in 

future studies with underlying activity-type classification, as it was recommended by Bonomi 

and Plasqui (2012).  

In contrast to most of the previous studies that used accelerometer counts for the EE estimation, 

a multitude of different features were calculated in the present study and methods to evaluate 

them according to their importance were presented. According to the decrease of the Gini 

index, the features extracted from the longitudinal axis were the most important. Only a few 

features extracted from the other axis were selected for the model according to the Gini index. 

Therefore, measuring the vertical axis seems to be most important for a correct EE estimation.  
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Trost et al. (2012) showed that a longer window size (increase from 10s to 60s) caused a 

decrease of the average RMSE and average bias of the EE predictions with ANN. Therefore, 

using a longer time-window than the 1s window that was used, to extract features as in the 

present study might lead to more accurate EE estimates. As it is of interest to estimate the EE 

over a longer period of time and not per second, it might be recommended to estimate EE with 

longer window sizes. However, as children's PA is highly intermitted (Bailey et al., 1995; 

Baquet, Stratton, Van Praagh, & Berthoin, 2007), shorter intervals might be necessary when 

measuring EE in a child’s natural environment. 

Concluding, comparing ASR with RFEE and treeEE, the ASR were most accurate in predicting 

EE. The results of the present study were comparable to previous studies (Brandes et al., 2012; 

Crouter et al., 2012; Trost et al., 2012); however, those studies did either not use a combined 

approach of a classification system and ASR (Brandes et al. 2012), they used only a two-

regression model which might not estimate the EE of single activities correctly (Crouter et al., 

2012), or they used a neural network which is difficult to interpret as it is laborious to extract 

its algorithms (Trost et al., 2012). With the more activity-specifically investigation of the EE 

than in previous studies and the easy interpretation of the algorithm, the ASR using extracted 

features from raw accelerometer data might be a promising approach for future studies. 

Classification 

This study showed that RF and decision trees could be used for an activity classification based 

on raw accelerometer data. A precise activity type recognition is essential for the subsequent 

application of the ASR. Errors in the classification will be transferred to the EE prediction. 

RFClass achieved higher recognition rates than the treeClass. As the latter was used to identify the 

activity type prior to the ASR, using RFClass instead as the prior activity recognition method 

might improve EE predictions of the ASR. However, the treeClass is easy to interpret in contrast 

to RFClass, where the decisions cannot be interpreted since no final tree is provided. The RFClass 

reached better results when using the 20 most useful—not all 42—features. This shows that 

good results are depending on informative features and not on the quantity of them, so a feature 

selection is needed prior to the pattern recognition. The integrated algorithm that determines 

the decrease of the Gini index and indicates the importance of the variables and flexibility of 

RFClass to adapt to complicated data by using bootstrap samples might be an advantage of a 

future use of this method. The used treeClass (Figure 2) is a simple approach and was based on 

only 10 features, which were selected within the development of the tree by reducing the Gini 

impurity for each split of the tree. The advantage of the treeClass is that the decision can easily 

be reconstructed and interpreted, but the price for it is a lower recognition rate and even if more 

branches are added, only a small improvement occurs. With a cost complexity of 0.001 (38 

branches), the treeClass achieved an overall recognition of 70.9%, compared to its 70.2% with 11 

branches (cost complexity of 0.01). Concluding, the RFClass reached the significantly better 

overall classification result than the treeClass, which had, for the most part, its strength in the 

easily interpretability of the approach.  

Similar classification studies, working with one hip-accelerometer, reached similar or slightly 

better results for different classification methods but for fewer activities. For example, a 

quadratic discriminate analysis recognized 70.9% and a hidden Markov model 80.8% of four 

activities correctly (Pober, Staudenmayer, Raphael, & Freedson, 2006). Recognition rates of 

72.4% to 80% were reached with an ANN in children (De Vries, Engels, & Garre, 2011;  Trost 

et al., 2012). De Vires et al. (2011) reached slightly better results than the treeClass or RFClass for 

all activities except for standing, where the treeClass achieved the better recognition rate. In 

comparison to de Vries et al. (2011), the present study didn’t include playing soccer but 
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additionally included crawling and riding a scooter. Specifically, the later was difficult to 

recognize correctly (treeClass 54%, RFClass: 58%). Trost et al. (2012) merged a multitude of 

activities into five classes. With longer feature window sizes (10s - 60s), they reached higher 

recognition rates for sedentary activities and walking, and similar or lower results for running 

than this study. A decision tree for a classification was also used by Ruch et al. (2011). They 

reported a recognition rate of 48% with one hip-accelerometer for nine categories. Collecting 

the data in free-living conditions probably explains the differences compared to the results in 

this study, which was performed in laboratory conditions. 

Concluding, the activity type recognition in this study reached comparable or slightly lower 

classification results than previous studies, which might be explained by the fact that more 

activities were included. De Vries et al., (2011) and Trost et al. (2012) worked with features of 

a window size of 10s, in comparison to window sizes of 1s in the present study. As children's 

activities are highly intermitted and, on average, the intensive activities last only a few seconds, 

methods that account for short periods are crucial to accurately describe children's PA (Bailey 

et al., 1995; Baquet et al., 2007). Hence, the 1s features might be the choice for a more accurate 

PA description in children. 

A limitation of the present study was that the sample of participants was not representative 

since some of the children were recruited from a voluntary sports week. However, the aim of 

the present study was not epidemiological but was to compare several methods on the same 

dataset. Therefore, the representativeness of the children was secondary. The number of 

participants in the study is lower than in other studies (Brandes et al., 2012; Crouter et al., 

2012; Trost et al., 2012). By using a leave-one-out cross-validation this limitation has been 

countered. The acceleration of intensive activities such as running or jumping outbid the 

measuring range of 3g of the used accelerometer. Raw acceleration data of these activities often 

reached 3g and might have been a lot higher in reality. Using accelerometers, being able to 

measure higher accelerations, might likely lead to more precise data. However, even with this 

low measurement range, the activities running and jumping reached comparable results in the 

estimated EE to measured values in the present study. Even if the sampling rate with 30 Hz was 

comparable to other mentioned studies (Crouter et al., 2012; De Vries et al., 2011; Trost et al., 

2012), a higher sampling rate of the accelerometer might lead to more precise measurements as 

well. In this study, linear accelerations in three axes were measured. As a lot of bodily 

movements contain rotations, results might be improved if additional sensors such as 

gyroscopes were added that are able to assess rotational acceleration. In this study, the ASR 

with its robust linear regressions achieved the best results but it has to be investigated if other, 

more sensitive models might be more precise when having additional data as basis. Despite all 

data processing still low correlation between the most important features for the ASR (CV1, 

sd1, VM) and oxygen uptake (VO2) or carbon dioxide production (VCO2) were measured for 

some activities, for example biking (Figure 1). Even with improvements there would rest a 

general difficulty in the correlation of mechanical to metabolic energy. In all methods, 

presented in this study, other measured data than acceleration could be integrated as well. It 

might be worth considering an addition to the acceleration data to achieve an improvement in 

EE estimation with these methods. This study was performed in laboratory conditions. The 

activity patterns of children in free-living conditions might differ from strict controlled lab 

conditions and the accuracy of EE estimation might decrease under field conditions (Gyllensten 

& Bonomi, 2011). Testing such algorithms in free-living conditions will be essential for their 

application in future monitoring or intervention studies. A limited amount of activities was 

included in this study. The performance of these methods has to be investigated in a broader 

variety of activities. This study was the first to investigate several approaches that provided a 

method to select the most important features extracted from accelerometer raw data in order to 
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estimate EE of different child-specific activities. Regarding the EE estimation, ASR with its 

more activity-specific approach than previous studies, its easily interpretable algorithm and, in 

general, the use of extracted features from raw accelerometer data might be promising for 

future studies. 

Conclusion 

This study compared the accuracy of the ASR, RFEE and treeEE for an EE prediction in children 

based on raw accelerometer data. The strength of the study was the use of raw accelerometer 

data and the extraction of a multitude of 1s features, which were evaluated according to their 

importance. The ASR was the most accurate method for predicting the EE of several activities. 

They were especially more precise for the less intensive activities. Therefore, using activity-

specific information before applying regressions to accelerometer data might be a promising 

approach for future studies. In comparison to pattern recognition approaches, the ASR might be 

preferred to assess EE in children, since it is an easily interpretable method and additionally 

provides information on the performed PA type in a first step. Testing and improving the 

proposed methods under free-living conditions will be crucial for their application in future 

monitoring or intervention studies. 
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Abstract 

Identifying strategy that helps increase the number of goals in soccer is paramount 

to success. Opportunities exist to increase success in set pieces such as free kicks 

and corner kicks. We examined all corner kicks attempted during the 2010 Major 

League Soccer season to assess whether goals scored off of corner kicks were 

randomly spatially distributed. We separated the 18-yard box into 66, three by 

four yard boxes.   A spatial scan statistic implemented in SaTScan, varied at-risk 

percentages to assess areas with higher than expected rates of goals scored. We 

examined data from 1859 corner kicks with an overall goal rate of 2.2%. A single 

box directly in the center of the box, 6-9 yards from goal was the only box with 

significantly higher rates of goals scored (5.0%) than expected. This result did not 

vary after adjusting for potential confounders’ home field, kick trajectory or time 

of game. Our results, which consider goal rates, are consistent with previous 

research that suggest the most aggregate goals are scored in an area 6-12 yards 

from goal. Future research is needed to account for player movement on corner 

kick attempts.  

KEY WORDS: CORNER KICKS, SPATIAL SCAN STATISTIC, GOAL RATES 

Introduction  

Goals are the most precious commodity in soccer.  During the 2010 World Cup national teams 

averaged 1.1 goals/game; 73.4% of the 64 games either finished in a tie or were decided by one 

goal (FIFA, 2010).  A single goal can be the difference between a loss and a tie or a tie and a 

win.  In a tournament such as the World Cup, where the top two point earners from eight 4-

team groups advance to a single elimination knockout phase, a single goal can be the difference 

between advancing in the tournament and being eliminated.   

Soccer clubs are always in search of ways to score goals.  Goals can be scored in numerous 

ways, but normally result from situations where the offensive team has an advantage over the 

defensive team.  Such situations are scarce in soccer; finding a way to increase the number of 

advantages per game may be critical to success.  Examples of such situations are set pieces, 

such as direct free kicks and corner kicks, which can result in higher quality shots on goal than 

during the run of play. 

During the three most recent high profile international tournaments – the 2006 and 2010 World 

Cups and 2008 European Championships – there were between 9.8 and 10.2 corner kicks a 

game (FIFA, 2010; FIFA, 2006; Dunn, 2009; Baranda, Lopez-Riquelme & Ortega, 2011) with 

a goal scoring rate from corner kicks between 1.3% and 2.0% (FIFA, 2010; FIFA, 2006; Dunn, 
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2009; Baranda et al., 2011).  The average number of corner kick attempts per game during 

these tournaments has been consistent in domestic leagues such as the English Premier League, 

the German Bundesliga, Italy’s Series A and Spain’s La Liga (Anderson, 2011a; Rudd, 2011; 

Lago-Penas, Lago-Ballesteros, Dellal & Gomez, 2010).  Anderson and Rudd (2011) also 

estimate that the goal rate from corners is consistent with the English Premier League (EPL).  

Anderson (2011b) concludes that one goal per every 10 games makes corner kicks “useless in 

terms of scoring goals,” a concept supported by the abandonment of long corner kicks in favor 

of short kicks by several teams, most notably FC Barcelona.  Previous research has shown that 

25%-40% of goals are scored off set pieces like corners (Taylor, James & Mellalieu, 2005; 

Dunn, 2009;Baranda & Lopez-Riquelme, 2012), suggesting that even though such 

opportunities may be inefficient, the magnitude of a single goal scored off a corner kick 

attempt can be of huge important. 

The majority of shots on goal directly from corner kicks are headers (Baranda et al., 2011). 

Because players cannot achieve the same amount of power and accuracy from a header as from 

a kick, corner kicks closer to the goal are generally preferred.  Previous literature has shown the 

greatest number of corner kicks are attempted in an area that is 6-12 yards directly in front of 

the goal box (Taylor et al., 2005), due mostly to the fact that corners kicks too close to the goal 

will get intercepted by the goalie. Because the location of goal kicks attempts vary spatially, it 

is possible that the highest goal rates may not be consistent with the highest number of goals. 

We are interested if there are particular characteristics of corner kicks that are more likely to 

result in a goal. These can include corner kick location, game situation, player characteristics or 

spatial movement. For this study, we aim to describe corner kick attempts and then to assess 

whether corner kicks goals are randomly distributed spatially. We hypothesize that goals from 

corner kick attempts are randomly distributed across space.  We use data from a single soccer 

league and do not account for player characteristics such as height, jumping ability or speed.  

We consider the spatial location of corner kick attempts as a snapshot in time. 

Methods 

Data 

Major League Soccer (MLS) is the premier professional soccer league in the United States. In 

2010, all 16 teams played each other twice - once at home and once on the road for a total of 

240 regular season games.  We used match reports from MLSsoccer.com to obtain the timing 

of all corner kick attempts for all 240 games.  Between June 2010 and August 2011, we used 

the MLS Video Match Live (recently renamed to MLS Live, 

http://live.mlssoccer.com/mlsmdl/) service to visually review every corner kick attempted in a 

game. Video recordings existed for 239 of the 240 games. 

The primary outcome was whether a goal was scored prior to change of possession.  A change 

of possession was recorded at the time when the team defending against the corner kick first 

touched the ball.  Our primary predictor was the location of the ball when initially touched by 

either team or the ground.  Without proper graphing software, determination of the precise 

location was inaccurate.  Using a technique pioneered by Hughes et al (1997), we divided  the 

18-yard box into several unique, non-overlapping boxes.  Our analysis is more granular than 

those of Taylor et al. (2005), Dunn (2009) and Ergesoy et al. (2007) in that we create 66 

distinct 3yard by 4yard boxes (Figure 1) compared to 5 unequal segments (Taylor et al, 2005).  

Each box was distinguishable through use of natural field markings like the 18 yard box, 

penalty spot and the 6 yard box.  
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Figure 1: The separation of the 18-yard box into 66 boxes 

In addition to spatial location, we recorded additional data on every corner kick: the team 

attempting the corner kick, the difference in score at the time of the corner, the minute epoch of 

the corner and the trajectory of the kick (those with an arc that curved towards the goalie – 

inswing; those with an arc that curved away from the goal - outswing).   

We conducted an intrarater reliability analysis on every goal scored and calculated the Cohen’s 

kappa coefficient.  The two reviews differed on 6 of the 40 goals, k=0.82. 

Statistical Methods 

We examined descriptive data on corner kicks and ran Chi-Square Goodness of Fit Tests to 

examine differences in corner kick goal rate across team, minute epoch and kick trajectories.  

The use of a Chi-Square Test to test whether goal rates differ by location would have two main 

drawbacks: 1) we would not be able to identify which box rejected the null hypothesis and 2) 

we would not be able to consider groups of boxes with higher than expected rates.  To identify 

geospatial clustering of goals within the 18-yard box we use a spatial scan statistic as 

implemented in  SaTScan™ (National Cancer Institute, Division of Cancer Control and 

Population Sciences, Statistical Research and Applications Branch Methods), whose methods 

have been discussed at length elsewhere. (Kuldorff, 1997; Kuldorff, 2006)  

In brief, we define smaller, non-overlapping areas of varying size within the larger population.  

For each smaller area, we calculate a centroid for which all the areas attributes are attached.  

Population and area specific injury rates are then calculated.   

At each centroid, SaTScan generates circular “windows” of increasing size until a pre-specified 

percentage of the total corner kick population (i.e., percent-at-risk) had been met.  Clusters are 

created when centroids representing other areas fall within the boundaries of a window.   

Cluster specific injury rates are calculated and a primary cluster for the entire population is 

determined based on the cluster that is most likely not due to chance.  

For the application to soccer corner kicks, we defined 66 distinct boxes within the 18 yard box.  

We generated centroids as the intersection of two diagonal lines within each box.   We 

calculated an overall goal rate within the 18-yard box as well as individual goal rates for each 

box.  Using a Poisson distribution, the null hypothesis is that the expected number of goals in 

each box is proportional to the population size.  We chose to use the Poisson distribution for 

three reasons.  First, we do not feel that the distribution of goals is inherently different than the 
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distribution of the population.  The cause of goals is not random - some goals may result from a 

deflection, but most long range shots from areas of low population will be blocked by one of 

the many bodies in the box.  Second, Poisson distributions are preferable when adjusting for 

confounders as we will do in our secondary analyses.  Finally, goal rates will be low, meaning 

that the Poisson distribution will be consistent with the Bernoulli.  (Kuldorff, 1997)  

For the Poisson model, the likelihood ratio is tested for significance using the Monte Carlo 

method. The likelihood ratio for a window constitutes the maximum likelihood ratio test 

statistic.  Its distribution under the null hypothesis is obtained by repeating the same analytic 

exercise on a large number of random replications of the data set generated under the null 

hypothesis, with a p value obtained through Monte Carlo hypothesis testing.  For this analysis, 

999 Monte Carlo replications were used.   

The likelihood function is maximized over all window locations and sizes, and the one with the 

maximum likelihood constitutes the most likely cluster.  Because SaTScan is sensitive to the 

percent-at-risk parameter setting, (Chen, Roth, Naito, Lengerich & MacEachern, 2008) we 

varied the population percent-at-risk by the following levels: 50, 40, 30 and 20 percent.  We did 

not consider 10 percent as two boxes would have been excluded due to their population 

exceeding 10% of the entire area.  “Core clusters” were then identified as clusters of boxes that 

existed in all iterations.   

Results 

During the 2010 MLS Season, teams averaged 1.2 goals per game; 65.8% of games ended in a 

tie or were decided by one goal (MLS, 2010).  Across the sample of 239 games, 2154 total 

corner kicks were assessed.  We excluded 295 corner kicks (233 – short corners not kicked in 

the air into the box, 41 - technical problems such as no video recording or poor video recording 

or poor camera angle, 17 – kicked in the air but outside the box, 4 - fouls called while the ball 

was in the air) resulting in a population of 1859 corner kicks.  

Forty (40) goals were scored off of corner kicks prior to possession change, resulting in an 

overall goal success rate of 2.2%.  Home teams attempted more corner kicks (1035) than away 

teams (824).  Corners that swung towards the goal accounted for 57% of all corner kicks 

attempted.  Half of all corner kicks were attempted when the score of the game was tied. (Table 

1) 
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Table 1: Corner Kick Characteristics 

Games 239 

Eligible Corner Kicks 1859 

Attempted by home 

team, n (%) 

1035 (55.7%) 

In-Swing, n (%) 1060 (57.0%) 

Score prior to corner  

   -2 or higher, n (%) 149 (8.0%) 

  -1, n (%) 437 (23.5%) 

  0, n (%) 936 (50.3%) 

  1, n (%) 256 (13.8%) 

  +2 or higher, n (%) 81 (4.4%) 

# Goals Scored 40 

 

The total number of corner kicks attempted varied by team with a median of 116.5 and a range 

of 81 – 150.  The median number of goals scored by team was 2.5 with a range from 0 to 6. 

Overall there was no significant difference in goal success rate across teams (p=0.14).  Home 

teams scored a significantly lower percentage of attempts than away teams (1.5% vs. 2.9%, p 

<0.001). (Table 2)  

Table 2: Goal Success Rates 

  MLS 

Home Corner Kicks 1035 

Home Goals 16 

Home Success Rate 1.5% 

Away Corner Kicks 824 

Away Goals 24 

Away Success Rate 2.9% 

Corner Kicks 1859 

Goals 40 

Success Rate 2.2% 

  

The number of corner kicks attempted in every 10 minute period was consistent from minute 

11 to minute 90.  Goal success rates varied slightly across the 10 minute periods with a high 

after the 90 minute mark. (Table 3)  



International Journal of Computer Science in Sport – Volume 12/2013/Edition 2              www.iacss.org 

   

 

75 

Table 3: Goal Success Rates, by Minute 

Minute Corner Kicks Goals Rate 

1-10 175 3 1.7% 

11-20 197 6 3.0% 

21-30 200 4 2.0% 

31-40 206 3 1.5% 

41-50 207 1 0.5% 

51-60 198 4 2.0% 

61-70 200 4 2.0% 

71-80 215 6 2.8% 

81-90 197 6 3.0% 

90+ 64 3 4.7% 

 

The majority (57%) of corner kicks were kicked with an in-swinging arc.  The goal rate for in-

swingers (2.0%) is slightly less than for out-swingers (2.4%).  Ten of the 16 teams had a single 

player attempt more than half of its team’s corner kicks.  The remaining six teams averaged 8.5 

corner kickers over the year.  Goal rates for the two groups were 2.5% and 1.4% respectively.  

Losing teams attempted more corner kicks with an in-swing trajectory (57%) and scored a 

significantly higher rate of goals (2.4% vs. 1.6%)  

Figure 2 displays the population and goal rate by Box. Boxes 27, 39, 40 and 62 had the highest 

goal rates.  There were no corner kick goals scored in 52 boxes; eight boxes had no corner 

kicks attempts.  Box 39 is the only core box with higher than expected rates of goals after 

varying the percentage at risk (0.5, 0.4, 0.3, 0.2).   A similar result was consistent within 

several subgroups: in-swing, out-swing, home, away (data not shown). 

 

Figure 2: Goal rates for all 66 boxes with core clusters shaded in gray 
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Discussion 

In our analysis, we examined the rate and location of goals scored off of corner kicks in a 

single domestic soccer league, Major League Soccer.  We conclude that location of goals 

scored off of corner kicks are not random within the 18-yard box.  In fact, one box(#39) located 

6 to 9 yards from the goal line and 20 to 24 yards from the side of the 18-yard box had a higher 

than expected rate of goals in each repetition of our SaTScan statistic.  This result is consistent 

with a previous analysis that showed that the highest number of goals is scored between the top 

of the 6-yard box and the penalty kick spot (12 yards from the goal).  However, this analysis 

differs from Taylor et al. (2005) in that it considers neighboring boxes and not just the rate of 

goals for each box without respect to space.  When individual rates are compared to the overall 

rate of the population, we were able to determine areas that have significantly higher rates of 

success than others.  This eliminates any confounding due to varying denominators in each 

box. 

Conventional wisdom suggests that the easiest way to score a goal is to be as close as possible 

to the goal.  This may not be true since on corner kicks as goalies have a sizable advantage, 

being able to catch any balls kicked in their immediate vicinity.  The fact that only 87 corner 

kicks (out of 1859) make first contact within 3 yards from the front of the goal is not surprising.  

Kicking a ball in an area where the goalie can catch it is simply an inefficient use of a corner 

kick.  It is therefore not surprising that the highest number of goals and corner kicks are located 

in the center of the 18-yard box about 6 to 12 yards from the goal.  Our analysis showed that a 

3x4 area has a higher rate than what is expected by chance alone, suggesting that teams may 

want to focus greater effort in both practice and games on corner kick attempts. 

Our analysis resulted in a few additional insights about corner kicks.  First, the data show a 

moderate difference in success rates of corner kicks between teams playing at home and those 

on the road.  Our data show that 56% of all corner kicks attempted were by the home team.  

However, this does not correspond to higher success rates, as home teams had a significantly 

lower (p <0.001) success rate of 1.5% compared to 2.9% by the away team.  We hypothesize 

that home teams are often more aggressive on offense than away teams because of the 

historical soccer strategy of playing to win games at home while playing for a tie on the road.  

We also hypothesize that away teams put more importance on the execution of their corner kick 

attempts since they often employ a more defensive strategy that results in limited offensive 

opportunities. 

Second, the data show higher rates of goals off of corner kicks later in the game.  The success 

rate for corner kicks attempted after the 70
th

 minute was 3.2% compared to 1.8% in minutes 0-

69.  This rate was brought up by the 4.6% success rate in corner kicks taken after the 90
th

 

minute (i.e. – stoppage time).  A large majority (81%) of goals scored off corner kick attempts 

after minute 70 were done so by teams either tied or trailing.  As such, we hypothesize that 

teams are more focused on execution of corner kicks late in the game.  However, it is also 

possible that their opponent is simply more tired at the end of the game and thus prone to poor 

defending, an idea presented by Dunn (2009), or that the random sequence of corner kick 

locations made it difficult to predict and thus prepare for. 

Third, the data show that the majority of corners kicks are attempted in a way that the arc of the 

ball has an in-swinging trajectory (57%).  The goal rate for in-swingers (2.0%) is slightly less 

than for out-swingers (2.4%).  Unlike Baranda et al. (2011) and Taylor et al. (2005), who found 

a significantly higher goal rate for out-swingers than in-swingers, our data do not suggest a 

higher goal rate.  Across MLS, 10 of 16 teams had 1 player attempt more than half of its team’s 

corner kicks, with a goal rate of 2.5%.  The other 6 teams, which averaged 8.5 corner kickers, 
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had a goal rate of 1.4%.  This latter group of teams primarily switched kickers to maximize in-

swing attempts, suggesting that in fact this strategy may not be optimal.  It is probable that the 

consistency of kicking method and ball trajectory achieved by a single player may be ideal.  

These data are in opposition to previous results on different leagues which suggest that in-

swingers are more effective (Dunn, 2009) 

When accounting for game status, losing teams attempted more corner kicks with an in-swing 

trajectory (57%) and scored a significantly higher rate of goals (2.4% vs. 1.6%) than for out-

swing attempts.  This is consistent with previous research that suggest teams alter the trajectory 

based on game status (Baranda et al., 2011).  We hypothesize these changes in trajectory are a 

result of coaches’ belief that the primary objective of in-swingers and out-swingers are 

different. Similarly, when winning, the rates of short corners are higher (Baranda & Lopez-

Riquelme, 2012).   

We feel that a strength of this analysis is the statistical method that examines the rate of goals 

rather than the aggregate goal count, which could simply be a function of the exposure to risk.  

In addition, categorizing the location of corner kick into 66 boxes provides a more robust 

analysis compared to previous attempts.  

An obvious limitation is the lack of precision in our location data.  We did not employ any 

graphing software but instead used natural line markings such as the 6 yard box, the penalty 

spot, the 18 yard box and the goal posts to estimate the location.  Television broadcasts of MLS 

games often placed their cameras at midfield to capture all of the live action with the 

occasional replay.  Our reliability analysis resulted in an intrarater reliability coefficient of 

0.82, suggesting that there was high agreement between the two reviews.  The data for the re-

review were not different enough to cause a change in core clusters.  While we only re-

reviewed data for the 40 goals, we assume that any errors made on non-goals will also be 

random as there was no systematic bias. 

The analyses preformed in SaTScan were dependent on the system used to divide the space into 

smaller regions.  We divided the 18-yard box into unique boxes of the same size, each 

represented in the SaTScan analysis by its centroid.  All centroids were equidistant from their 

neighbor centroid.  As circles increased in size around each centroid, a minimum of 4 boxes 

were added every time.  It was therefore possible to miss clusters of smaller size.  To test this, 

we ran a sensitivity analysis where we added random noise of the form N(0,1) to each 

coordinate.  In doing so, the results did not change – box 39 remains the core cluster.  Even 

though it is a moot point, future analysis may want to avoid having equidistant centroids. 

A final limitation is the absence of individual data such as height and vertical leap of the player 

making first contact, spatial movement within the box and flight characteristics of the ball.  Our 

assumption that all players are equal is likely incorrect in that some players are more skilled at 

heading the ball than others.  In ignoring spatial movement within the box, we are assuming 

that every corner attempted in the same box is exactly the same.  The reality is that players start 

at one location within the box and run to another location in an attempt to arrive at corner kick 

before their defender does.  Some players are not only more skilled at jumping and heading, but 

they are better at creating space between themselves and their defender.  Finally, in ignoring 

the flight path of the ball prior to being touched by the first player, we assume that all kicks are 

equal.  Two attempts that end in the same box can differ in height and trajectory such that the 

ball reacts differently in different situations. 

If the above data were available, we could account for any confounding due to differences in 

player attributes and movement.  We do not believe that taller players inherently move to the 

same location on all corner kick attempts.  However, it is probable that the majority of the goals 
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scored are not because of the location of the corner kick attempt but rather because of the 

mismatch between offensive and defensive player attributes. Data on potential confounders 

would aid in determining whether goals are due to location within the box or if they are simply 

due to player attribute.   

Even though this analysis was performed on data from a single soccer league within the United 

States, we believe its results are applicable for other leagues in the world. Skill level will vary 

across leagues, but we feel that within leagues the variability in skill level is comparable.  

Some teams will be efficient with their use of corner kicks while others will not.  However 

there is nothing to suggest that an analysis in any other league will yield different results.  

Goals off of corner kicks are not easy to come by.  If teams want to maximize their use of 

corner kicks, then they should kick the ball within a 6 yard zone directly outside the 6 yard box.   

Our results suggest a purely tactical observation which when combined with physical 

components may have a major effect on performance.  As such, future work should address 

players’ spatial movement within the box.  Previous research in both ice hockey (Thomas, 

2006) and soccer (Hirotsu, 2002; Rudd, 2011) have used a Markov process to examine the 

effect of starting state within a game on the number of goals.  Taylor et al. (2008) define 13 on 

the ball behaviors in modeling technical behaviors with game status.  If these methods can be 

adapted to this area of research this may aid in developing a method to assure that the player 

with the best skill at scoring goals off of corner kicks is in the best location is the next obvious 

step.  If coaches are able to develop tactics that result in a succinct advantage, it has the 

potential to lead to more goals and thus more wins.  At a current 2.0% success rate, there is 

great potential for improvement.  
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