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Editorial 
Arnold Baca 

Department of Biomechanics, Kinesiology and Applied Computer Science, 
ZSU, University of Vienna 

 
 

Dear readers: 
 

Welcome to the summer 2013 issue of the International Journal of Computer Science in 
Sport (IJCSS). 
 
The current issue is subdivided into 2 parts including six original papers.  
 
The first part contains two research papers and one project report.  
 
Nicolas Houel, Antoine Faury and Didier Seyfried illustrate a comparative study regarding 
the influence of the point of attachment of two different sensors on the assessment of squat 
jump performances. 
  
Stephen J. Robinson presents probalibilistic optimization routines for finding a perfect 
lineup having the highest number of runs per game in youth baseball. 
 
The project report by Jürgen Perl, Andreas Grunz and Daniel Memmert introduces a 
novel approach for evaluating the tactical performance in soccer. The method combines 
pattern-based tactics analysis with success-oriented statistical frequency analysis.  
 
Three additional articles are appended thereafter in the second part (“Special Edition”).  
 
In this “Special Edition” part of the IJCSS selected scientific papers presented at the 9th 
Symposium of the Section Computer Science in Sport (Sportinformatik) of the German 
Association of Sport Science (dvs) are included. The contributions underwent a further 
review process to ensure the quality of the scientific content. IACSS would like to thank the 
entire committee under the guidance of Prof. Dietmar Saupe for the organization of the 
conference and the support in the selection process of the papers. 
 
The investigation made by Oliver Hummel, Ulrich Fehr and Katja Ferger demonstrates 
the feasibility and potential of smartphones as a low-cost alternative for performance 
diagnostics.  
 
Heike Leutheuser and Bjoern M. Eskofier describe their examination on how different 
heart rate variability (HRV) parameters change during one hour of running involving datasets 
of 295 athletes. 
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The study by Josef Wiemeyer examines the influence of previous game experience and the 
presence of music and sound on game performance and game experience. 
  
 
If you have any questions, comments, suggestions and points of criticism, please send them 
to me.  
 

Enjoy the summer! 
 

Arnold Baca, Editor in Chief 
University of Vienna, arnold.baca@univie.ac.at 
 

mailto:arnold.baca@univie.ac.at�
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Influence of the Point of Attachment of two 
Accelerometers on the Assessment of Squat Jump 

Performances 
Nicolas Houel, Antoine Faury & Didier Seyfried 

Research Department, French National Institute of Sport, Expertise and Performance 
(INSEP), Paris, France 

 

Abstract 
The aims of this study were to compare the validity of two accelerometers with a 
force plate and to determine the influence of the sensor’s point of attachment on 
the assessment of squat jump performances. Nine male subjects performed a 
number of squat jumps (n = 38) on a force plate, either with a Myotest or 
Mensense system attached to their hips and backs. For evaluation purposes, two-
way ANOVA tests, correlation coefficients and Bland and Altman tests were used 
to compare the influence between each sensor and the force plate based on the 
flight time as well as maximal and take off velocities. The obtained results 
showed that each sensor, the point of attachment on the subject and their 
interaction significantly influenced the assessment and validity of the flight time 
as well as maximal and take off velocities. When attached to the subject’s back, 
the Mensense sensor estimated the flight time with the best validity in comparison 
to the force plate measurement. On the other hand, the Myotest sensor estimated 
the maximal velocity with the best validity when it was attached to the subject’s 
hip. The take off velocity was estimated by both sensors with very low accuracy. 
It was therefore inferred that the point of attachment of the sensors and the 
computational software have a direct influence on the assessment of squat jump 
performances. 

KEYWORDS: MYOTEST, ACCELEROMETER, SQUAT JUMP, VALIDITY 

Introduction 

Vertical jumps are widely used for testing the joint’s coordination (Bobbert et al., 2008; Nuzzo 
et al., 2011), physical activity and training level of sportsmen (Quagliarella et al., 2006; 
Dionyssiotis et al., 2009). Flight time (Nuzzo et al., 2008; Glatthorn et al., 2011; Castagna et 
al., 2012), maximal and take off velocities (Dionyssiotis et al., 2009; Casartelli et al., 2010; 
Houel et al., 2010 et al., 2011) and jump height (Dowling & Vamos, 1993; Hatze, 1998; 
Kibele, 1998; Garcia-Lopez et al., 2005; Picerno et al., 2011) are commonly taken as 
significant variables for the assessment of squat jump performances. Various devices and 
methodologies are applied to determine such parameters (Nuzzo et al., 2008; Crewther et al., 
2011; Castagna et al., 2012). Among them, the application of force plates is generally 
considered as one of the best methods for the assessment of these determinants (Hatze, 1998; 
Kibele, 1998; Bobbert et al., 2008; Nuzzo et al., 2008; Samozino et al., 2008; Crewther et al., 
2011; Casartelli et al., 2010). However, this kind of equipment requires performing the 
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measurement in laboratory or under very constraining conditions, which are not always in 
agreement with sport training or mobile applications (Quagliarella et al., 2006; Crewther et al., 
2011; Glatthorn et al., 2011). 

There are also a variety of portable instruments for the estimation of vertical jump 
performances. For example, contact mats and optical cells are used to estimate vertical jump 
performances in sport training (Castagna et al., 2012, Garcia-Lopez et al., 2005, Glatthorn 
etal., 2011, Hatze, 1998). The flight time values gathered from contact mats show a strong 
correlation with those from force plates. At the same time, contact mats appear to have 
different flight time values compared with force plates (Garcia-Lopez et al., 2005). In addition, 
they are not recommended for evaluating centre of mass variables of subjects during single 
vertical jumps (Hatze, 1998). Also optical cells show strong correlations estimating the vertical 
jump height and flight time in comparison with force plates (Glatthorn et al., 2011; Castagna et 
al., 2012). Systems like Optojump, though, demonstrate a lower jump height as well as flight 
time compared with force plates (Glatthorn et al., 2011; Castagna et al., 2012). Optical cells 
and contact mats are not to be used interchangeably with force plates when estimating single 
vertical jump performances and interpreting data of different devices (Garcia-Lopez et al. 
2005; Glatthorn et al., 2011; Castagna et al., 2012). One reason for this could be explained by 
the assumption that the subject’s take off and landing configurations are identical (Bosco et al., 
1983). However, this assumption rarely occurs (Hatze, 1998; Garcia-Lopez et al., 2005, 
Glatthorn et al., 2011). 

During the last ten years, small and convenient accelerometers have been increasingly used to 
measure human motion in sports (Jidovtseff et al., 2008; Innocenti et al., 2006; Houel et al., 
2010; Crewther et al., 2011; Houel et al., 2011; Picerno et al., 2011; Castagna et al., 2012). 
Systems like Myotest SA are applied to measure specific human motions in sport training (e.g. 
squat jump, bench press etc.) using a triaxial accelerometer (Jidovtseff et al., 2008; Crewther et 
al., 2011; Houel et al., 2011). The study by Crewther et al. (2011) focuses on the accuracy 
measurement of these devices during squat press motions. The accelerometer is fixed to a bar 
with different loads. The squat press motion is performed by sportsmen with the bar attached 
directly to the force plate. The obtained results show systematic bias and relatively large 
random errors when assessing the accelerometer’s peak forces for low loads. The authors 
discuss that the load could influence the bar’s velocity and could change the estimation of the 
centre of mass of the subject (human and bar) on the force plate, which is not measurable by an 
accelerometer fixed to the bar. In the presented method, the processing of the accelerometer 
signals considers only human movements with respect to the bar and therefore may neglect key 
parameters. Other studies compare the accuracy and reliability of the Myotest Pro system 
attached directly to the subject during squat jumps (Casartelli et al., 2010; Castagna et al., 
2012). The gathered results indicate that only the flight time values estimated by the Myotest 
Pro show large correlations with the Optojump system and a force plate. However, 
significantly low and systematic bias is observed for the flight time values between the 
Myotest Pro and Optojump systems or a force plate (Casartelli et al., 2010; Houel et al., 2011; 
Castagna et al., 2012). 

The flight time as well as maximal and take off velocities can be estimated with different level 
of accuracy with other commercial accelerometers (Houel et al., 2010). In general, the control 
of the validity and reliability of these devices is a fundamental step for accepting them as 
appropriate systems for the assessment of kinetic data during vertical jumps. In particular, 
differences regarding the assessment of the accuracy and reliability of the flight time and 
velocity variables may occur between the used accelerometer devices. Such differences could 
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be explained by the point of attachment of the sensor on the subject during the vertical jump 
motion. In addition, the sensor’s orientation has a direct impact on the measurement accuracy. 
When the sensor is attached to the trunk, the accuracy of the jump height estimation using 
inertial sensors can be improved if the measured acceleration is corrected for the trunk 
rotations (Innocenti et al., 2006; Picerno et al., 2011). Picerno et al. (2011) investigate this 
method to estimate the jump height and flight time. Since the authors compare the sensor’s 
jump height values with a stereophotogrammetric method, where light reflective markers are 
placed directly on the sensor, no relation between the jump height assessment of the sensor and 
the subject’s centre of mass performance is explored. The flight time of the centre of mass can 
be accurately estimated using high speed cameras or sensors compared with force plates 
(Garcia-Lopez et al., 2005; Picerno et al., 2011). Only little research can be found regarding 
the assessment of the centre of mass velocity on the basis of simple and portable devices. 
Procedures using vertical velocity at take off seem to be more efficient for jump height 
assessment (Hatze, 1998; Kibele, 1998). One difficulty could be the limitation to asses and 
compute similar velocity and flight time values from the force plate using only a single sensor. 
As an example, force plates evaluate the total human body motion with respect to the centre of 
mass method (Hatze, 2008; Samozino et al., 2008). Accelerometers measure only the motion at 
the point of attachment. Thus, it is not possible to estimate the motion of the human’s centre of 
mass, except if the point of attachment has similar motion characteristics and if special signal 
processing routines are applied. In the case of squat jumps, the accelerometers should be 
preferably attached to the hip and back bones since these segments might be the closest to the 
centre of mass. At the same time, the hip and back bones have the advantage to be close to the 
skin.  

The initial research aim of this study was to define the influence of the sensor’s point of 
attachment on the measurement accuracy. The second goal was to compare the validity of two 
commercial accelerometers commonly used in sport training (Myotest pro and Mensense) with 
the results obtained from a force plate. The measured flight time as well as maximal and take 
off velocities were compared in order to propose recommendations in the use of each device in 
respect to gait measurement standards and the equipment’s point of attachment. 

Methods 

Nine male subjects with mean (± standard deviation SD) height of 179.8 ± 5.2 cm and body 
mass of 76.02 ± 6.9 kg voluntarily participated in this study. The participants were physical 
education students. Each subject was informed about the procedure of the study and signed a 
written informed consent. Before the test session, each subject performed a standard warm up 
program consisting of a 5 minutes run at their preferred submaximal velocity, 5 minutes 
submaximal squat jump familiarization on the force plate with the Myotest Pro (MYO) and 
Mensense (MEN) sensors and, finally, stretching the lower extremity muscles. For each squat 
jump, the beginning of the subject’s motion was controlled with a bar placed under the legs 
with the aim to disallow a counter movement motion (Figure 1). The bar height was estimated 
for each subject before the first squat jump. The bar height was defined as the height where the 
subject initiates his squat jump impulse with a 90 degree knee angle. The knee angle was 
estimated using a Myotest goniometer (Acceltec SA). The subjects were asked to perform 
three squat jumps with both sensors (MYO and MEN) attached to their hips, and three 
additional squat jumps with both sensors attached to their backs. Thereby, the subjects were 
asked to keep their hands on their hips. The participants had a rest period of 3 minutes between 
each jump to limit the fatigue effect. The squat jumps were investigated with respect to the 
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total impulses and landing phases. Jumps were selected only if they respect two conditions: i) 
only the feet are allowed to touch the force plate, ii) a counter movement is not performed 
during the impulse phase. A range of two to three jumps were selected for each subject. At the 
end, nineteen jumps were selected for each point of configuration. In sum, thirty-eight jumps 
were studied. 

 
Figure 1. Experimental design. 

All squat jumps were performed on a force plate (Kistler type 9281B). The sample frequency 
of the force plate was 500 Hz. In order to compute the acceleration for each squat jump, the 
gravitational force was divided by the body mass and subtracted from the vertical component 
of the force. The flight time was estimated on the basis of the acceleration data, where the 
acceleration values were nearly constant and equal or lower than - 9.81m.s-2 (Figure 2). The 
velocity data was computed using numerical integration (trapezoidal rule) of the vertical 
acceleration data during the impulse phase of the squat jump (Dowling & Vamos, 1993; 
Kibele, 1998). The subject’s maximal velocity (Vmax in m.s-1) was estimated at the point 
where the acceleration data was equal to zero at the end of the impulse phase. The subject’s 
take off velocity (Vtoff, in m.s-1) was estimated at the moment when the acceleration data was 
almost equal to the constant g = -9.81 m.s-2 at the end of the impulse phase (before take off). 

The MYO system includes a triaxial accelerometer sensor as well as a software package 
developed by Myotest SA. It allows the recording of the vertical acceleration at a sampling 
frequency of 500 Hz. For the first three jumps, the light weight (58 grams) MYO sensor was 
fixed vertically to the side of the athlete’s hip on the left coxo-femoral joint in agreement with 
the Myotest SA recommendations. For the other jumps, the sensor was vertically attached to 
the athlete’s back at the level of the L5 lumbar. During the training mode, the Myotest Pro 
software was able to automatically compute the vertical acceleration, force and velocity curves 
as well as the maximal velocity (Vmax). The take off point was estimated during the impulse 
phase on the basis of the acceleration data, where the acceleration was equal or closer to - 9.75 
m.s-2 after the acceleration curve decreased under zero. The lift off was estimated during the 
landing phase on the basis of the acceleration data when the acceleration was equal or closer to 
- 9.81 m.s-2 before the acceleration curve increased to zero. The flight time was calculated by 
subtracting the lift off minus the take off values. The take off velocity data was computed at 
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the point of take off using the velocity data of the Myotest software. 

The MEN NanoIMU system (Mensense, USA) was linked to the MYO sensor. The MEN 
device includes a 20 gram triaxial accelerometer sensor, which allows three dimensional 
acceleration measurements at a sampling frequency of 150 Hz. The triaxial acceleration data 
was transmitted via USB to a portable computer. A software solution was developed in Matlab 
R2008a in order to diagnose the motion starting before the squat jump impulse using an 
acceleration threshold below 1.5 m.s-2. The sensor orientation was computed during a period of 
0.26 s when the subject was in the squat posture just before the impulse phase using rotation 
matrices. The vertical acceleration was estimated on the basis of the acceleration data and the 
sensor orientation. The signals were filtered using a second order Butterworth filter with 5 
degree and 25 Hz cut-off frequency. In addition, a 500 Hz interpolation was applied on the 
vertical acceleration data using inverse Fourier transformation. The flight time as well as 
maximal and take off velocities were computed by the same processing method as for the force 
plate. 

 
Figure 2. Acceleration (top) and velocity (bottom) data analysis during a squat jump when the sensors (MYO 

and MEN) were attached to the hip. The force plate data is illustrated in blue, the MYO data in 
red and the MEN data in green. The dotted black lines represent the relations between the 
acceleration and vertical data used to estimate Vmax, Vtoff and flight time. 
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The vertical acceleration data of the force plate (FP) and each sensor (MYO and MEN) were 
synchronized at the instant of Vmax – i.e. when the acceleration data was equal to zero before 
the subject took off (Figure 2). 

A two-way ANOVA test was used to compare the significant differences between both devices 
(MYO and MEN) when attached either to the hip (H) or back (B). The FP was utilized to 
estimate the relevant kinetic variables (Vmax, Vtoff, t). Correlation coefficients (r) were used 
to compare the relation between the FP values and the data acquired from the sensors (MYO 
and MEN) and to estimate the flight time and velocity variables (Atkinson & Nevill, 1998). A 
Bland and Altman test was applied to define the accuracy and reliability between the FP and 
each sensor (Bland & Altman, 1995). A Lilliefors test was used to confirm the normality of the 
data (Lilliefors, 1967). No heteroscedasticity was observed when plotting the absolute 
differences against the individual means and calculating the correlation coefficients (Atkinson 
& Nevill, 1998). 

Results 

The obtained results showed that the flight time as well as maximal and take off velocities 
were estimated with different accuracy and reliability depending on the sensor and its point of 
attachment. 

The two-way ANOVA test revealed that the MEN equipment was more influenced by the 
point of attachment to the subject and its interaction than the MYO device when considering 
kinetic variables. The point of attachment to the subject using the MEN system had, in 
comparison to the FP measurements, a significant effect on the estimation of Vmax (p = 
2.18*10-6), Vtoff (p = 6.73*10-7) and t (p = 0.0004). On the other hand, the point of attachment 
to the subject using the MYO device had, in comparison to FP measurements, no significant 
effect on the estimation of Vmax (p = 0.58). The point of attachment to the subject using the 
MYO system had, in comparison to FP measurements, a significant effect on the estimation of 
Vtoff (p = 0.007) and t (p = 0.007). The interaction between the MEN device and the point of 
attachment to the subject had, in comparison to FP measurements, a significant effect on the 
estimation of Vmax (p = 0.009) and Vtoff (p = 0.003). The interaction between the MEN 
system and the point of attachment to the subject had, in comparison to FP measurements, no 
significant effect on the estimation of t (p = 0.72). The interaction between the MYO system 
and the point of attachment on the subject had, in comparison to FP measurements, no 
significant effect on the estimation of Vmax (p = 0.71), Vtoff (p = 0.64) and t (p = 0.55). 

The estimated Vmax had the best validity compared to the FP measurements, when the MYO 
system was attached to the subject’s hip. The two-way ANOVA test showed no significant 
difference between the MYO and FP measurements for estimating Vmax (p = 0.52). No 
significant difference was observed between MEN and FP for estimating Vmax (p = 0.89) 
either. The best significant correlation for estimating Vmax (r = 0.92; p = 2.39*10-8) was 
observed between the MYO system (attached to the subject’s hip) and the FP (Table 1 and 2). 
The Bland and Altman test showed the best results when the MYO system was attached to the 
hip, demonstrating the best 95% limit of agreement for estimating Vmax in comparison to the 
FP (Figure 3). Low bias (> 0.06 m.s-1), low reliability (± 0.22 m.s-1) and good mean accuracy 
(< 0.1 m.s-1) between the MYO system – when attached to the hip and FP – was observed for 
estimating Vmax. 

When attached to the subject’s back, the MEN equipment showed the best validity in 
comparison to the FP measurements. The two-way ANOVA test illustrated no significant 
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difference between MEN and FP for estimating t (p = 0.32). A significant difference was 
observed between MYO and FP for estimating t (p = 0.006). The best significant correlation 
for estimating t was achieved (Table 1 and 2) between the MEN system when attached to the 
subject’s back and the FP (r = 0.97; p = 5.40*10-12). When attached to the back, the Bland and 
Altman plots of the MEN sensor presented the best 95% limit of agreement with the FP for 
estimating t (Figure 4). Low bias (< 0.018 s), similar mean accuracy (< 0.019 s) and very good 
reliability (± 0.028 s) between the MEN system attached to the back and the FP was observed 
when estimating t. 

 

 
Figure 3. Bland and Altman plots of Vmax estimated by the MEN (left) and MYO (right) systems when 

attached to the hip (top) and back (bottom) vs. the FP measurements. The green lines represent 
the limits of bias whereas the red lines represent the 95% limits of agreement. 

Table 1. Significant correlations between variables (Vmax, Vtoff, t) of the force plate and the MEN/MYO 
systems attached to the hip. * p < 0.001. 

Variable r value of MEN p value of MEN r value of MYO p value of MYO 

Vmax 0.776 9.36*10-5 * 0.92 2.39*10-8 * 

Vtoff 0.758 0.0001 * 0.76 0.0001 * 

t 0.858 2.6*10-6 * 0.81 2.55*10-5 * 
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Figure 4. Bland and Altman plots of t estimated by the MEN (left) and MYO (right) systems when attached to 

the hip (top) and back (bottom) vs. the FP measurements. The green lines represent the limits 
of bias whereas the red lines represent the 95% limits of agreement. 

Table 2. Significant correlations between variables (Vmax, Vtoff, t) of the force plate and the MEN and MYO 
systems attached to the back. * p < 0.001. 

Variable r value of MEN p value of MEN r value of MYO p value of MYO 

Vmax 0.774 9.8*10-5 * 0.822 1.57*10-5 * 

Vtoff 0.761 0.0001 * 0.82 1.68*10-5 * 

t 0.97 5.4*10-12 * 0.79 4.24*10-5 * 
 

The Vtoff values were estimated by both sensors with very low accuracy. The two-way 
ANOVA test showed no significant difference between the MEN and FP measurements for 
estimating Vtoff (p = 0.27). No significant difference was observed between MYO and FP for 
estimating Vtoff (p = 0.32) either. Significant correlations (0.75 < r < 0.86; p < 0.001) were 
observed for each point of configuration when estimating Vtoff using the MEN and MYO 
systems (Table 1 and 2). When attached to the back, the Bland and Altman plots of the MEN 
system presented the best 95% limit of agreement with the FP for estimating Vtoff (Figure 5). 
However, very low reliability (± 0.30 m.s-1), low mean accuracy (> 0.25 m.s-1) and significant 
bias (> 0.15 m.s-1) between the MEN sensor attached to the back and the FP could be observed. 
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Figure 5. Bland and Altman plots of the Vtoff values estimated by the MEN (left) and MYO (right) systems 

when attached to the hip (top) and back (bottom) vs. the FP measurements. The green lines 
represent the limits of bias whereas the red lines represent the 95% limits of agreement. 

Discussion 

The present study showed that the point of attachment of the MEN and MYO systems 
influenced differently the estimation of the Vmax, Vtoff and t parameters. When attached to 
the subject’s back, the MEN system estimated t with better accuracy than MYO in comparison 
to the FP. When attached to the subject’s hip the MYO equipment estimated Vmax with better 
accuracy than MEN in comparison to the FP. Furthermore, the gathered Vtoff values from 
both, the MEN and MYO systems, are neither accurate nor reliable.  

A limitation of this study was that the MEN system was fixed to the MYO equipment and not 
directly to the subject. This choice was made due to the assumption that when the MEN system 
is fixed to the MYO equipment, an exacter measurement of similar human motions can be 
achieved (since there is no movement between them). In this study, the MEN and MYO 
systems had similar noise risk assessment due to the same relative motion of the skin and the 
soft point of attachment. A second restriction of this research was the small number of jumps 
tested (n = 19 in each configuration). This can influence the outcome of the Bland and Altman 
plots and the statistical power of the study findings. However, the homogeneous population 
with homoscedasticity and normal distribution and the relative comparison of statistical results 
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between them was investigated with the aim to compare the relative sensor accuracy and the 
influence of the point of attachment. 

The obtained results showed that when attached to the hip, the MYO system was the most 
accurate and reliable for estimating Vmax of the subject’s centre of mass during a squat jump 
in comparison to the FP measurements. This result is in agreement with the recommendations 
by Myotest SA. The computational methods could explain the differences between the results 
of both systems (MEN and MYO). While the procedure by MEN estimates the angular 
position of the sensor before and during the subject’s motion, the computational method 
developed by Myotest SA seem to be more efficient to assess Vmax. 

The present study showed very low accuracy and reliability for the estimation of Vtoff when 
using the MYO system in comparison to the FP. This result is in agreement with those of 
Casartelli et al. (2010), illustrating that the MYO system estimates Vtoff neither accurately nor 
reliably in comparison to photoelectric cells (Optojump). The authors state that the MYO 
system estimates the Vtoff parameter neither accurate nor reliable when applying numerical 
integration on the impulse phase during the subject’s squat jump (Casartelli and al., 2010). In 
the present study, the MEN equipment showed better results in assessing Vtoff than the MYO 
sensors in comparison to the FP measurements. However, the MEN system was not accurate or 
reliable enough to assess Vtoff compared with the FP. The Vtoff results obtained from both 
sensors were influenced by the computational method. Another explanation might be also 
connected to the measurement techniques of the systems. There is evidence that if the centre of 
mass is used to evaluate squat jump performances (Kibele, 1998; Nagano et al., 2007; Bobbert 
et al., 2008; Samozino et al., 2008), accelerometers can only estimate the acceleration of the 
point to which it is attached. One possibility to reduce such problems is to choose a point that 
could better represent the centre of mass during squat jumps. 

In addition, large correlations between the MYO system – when attached to the back – and the 
FP could be observed when estimating t (r = 0.82, p = 1.68*10-5). This correlation is in 
agreement with the study of Casartelli et al. (2010). However, a significant difference (p = 
0.006) and systematic bias were observed between MYO and FP for estimating t. The results 
by Castagna et al. (2012) show similar correlations (r = 0.89) and bias (-0.036 s ± 0.021). In 
the present study, the MEN system showed more accurate and reliable results than the MYO 
system, when attached to the back. Future investigations on the MEN equipment could help to 
examine fundamental laws of dynamics during the aerial phase as well as the flight time, 
thereby possibly improving the accuracy and reliability for determining the subject’s take off 
velocity. 

Conclusion 

The current study suggested the use of commercial sensors for the purpose of assessing the 
flight time as well as take off and vertical velocities of squat jump performances. In 
comparison to the FP measurements, the used MYO equipment estimated Vmax with the best 
accuracy and reliability when attached to the hip. On the other hand, the MEN sensor assessed 
t with the best accuracy and reliability compared to the FP outcome when attached to the back. 
Both systems were inaccurate in estimating Vtoff and are therefore not interchangeable to the 
FP. As illustrated in the present research, the sensor’s point of attachment to the subject as well 
as the implemented computational software had a direct influence on the kinetic variables of 
the squat jump performances. Since, in general, it is not possible to place the accelerometers 
exactly at the subject’s centre of mass, further computational developments and detailed 
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investigations regarding the subject’s point of attachment have to be undertaken. 
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Abstract 
Batting order (i.e., lineup) optimization for professional baseball teams has been 
analyzed for decades using various models and assumptions. In general, while 
optimization is useful – even with minimal benefit – it yields only small fractions 
of a run per game in improvement, mainly due to the interchangeability of most 
professional baseball players. Youth baseball, on the other hand, is a prime 
candidate for lineup optimization as it addresses large talent disparities and 
creates substantial improvements. In addition, a typical youth lineup is comprised 
of the same batters throughout a season, while this is not even approximately true 
for most major league teams; thus, finding “a lineup” for a youth team is more 
meaningful and useful in that sense. Here, the optimal lineup is considered to be 
the one which produces the highest number of runs per game. A probabilistic 
algorithm finds this optimal lineup by simulating many games with each possible 
lineup, allowing for more detailed statistical analysis. In addition, we see how run 
limits affect game outcomes and how individual players contribute to a team’s 
performance. A study of a major league lineup is used for comparison. 

KEYWORDS: BASEBALL, YOUTH, LINEUP, OPTIMIZATION 

Introduction 

For academics and fans alike, baseball lends itself quite well to the use of statistics. This is 
attestable to the discrete, one-on-one interactions of offense and defense that make record-
keeping easy and quantifiable. For most of baseball’s history, batting average, home runs, and 
runs batted in were standard measures of a hitter’s prowess, while wins, strikeouts, and earned 
run average sufficed for pitchers. Recently, however, major league teams and fans have relied 
on computing power to quickly quantify a player’s ability with statistics such as wins above 
replacement and even defensive measures such as range factor. 

In addition to new statistics, computers are used increasingly to solve intractable predictive 
problems in sports. In baseball, one area that clearly lends itself to computational power is in 
determining the optimal batting lineup for a team. Lindsey (1963) was one of the first to 
propose calculating the average run value of different types of hits and using that to determine 
a player’s usefulness in a lineup. Later, Pankin (1991) formalized this process in the form of 
Markov chain matrices that rely on the probabilities of transitions from one state (e.g., one out, 
runner on third) to another. Several others (Bukiet, Harold, & Palacios, 1997; Osawa & Aida, 
2005; Sokol, 2006; Kakui & Arai, 2010; Graham, 2012) have expanded upon Pankin’s work, 
while some have taken different approaches entirely, including Monte Carlo strategies (Freeze, 
1973), graph theory (Sugrue & Mehrotra, 2007), and evolutionary computing (Chen, 2006). 
These methods assume the best lineups are found by maximizing the average number of runs 
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scored per game (RPG). Hirotsu (2011) pointed out, however, that accounting for the standard 
deviation of RPG can lead to lineups that outperform those that simply maximize the average, 
while still acknowledging that the achieved gain is usually not worth the extra computation 
required. 

Each of these studies has had as its goal the production of the best lineup for a professional 
baseball team. However, the vast majority of baseball teams are comprised of youth: in the 
United States alone, more than 11 million people play in a baseball league each year, and 
worldwide, more than two million youths play in the Little League organization in more than 
80 countries and many more play in other leagues. 

For these youth teams, there are generally many levels of stat-keeping, from zero to 
intermediate: 

• In some games, and especially for very young players, the actual score of the game may 
not be kept at all. 

• If the score is kept, it is often done by a volunteer parent who may only keep track of 
the runs for each team. 

• If the most basic stats are kept (i.e., hits, strikeouts, and runs; if allowed, also steals and 
walks), it is usually without regard to the nuances of accurate score-keeping. For 
example, in a game between five-year-olds, a large percentage of “hits” should actually 
be scored as errors on the defense, thereby lowering, not raising, a batter’s batting 
average. In addition, these stats are often simply left as raw data, as further regular 
computation of averages requires tedious manual calculations or knowledge of 
spreadsheets. 

• In secondary school, more advanced statistics are often kept, but are generally no more 
complex than keeping track of hitting into double plays, stolen bases, and getting hit by 
pitches. 

In addition to universally simpler statistics, youth teams, especially with children under ten 
years old, are different from professional teams in many other ways: 

• There is a much wider range (i.e., standard deviation of statistical measures) of 
abilities. 

• There are often run limits placed on a half-inning to keep games more competitive; 
when the limit is reaching, the half-inning is immediately over. This ensures that each 
team will get several chances to bat during a game. 

• Time and inning limits may keep games between only four and six innings long. 

• There may be more than 9 children (10-12 are common) batting in a given lineup. 

• Tagging up on fly balls to the outfield is rare because they aren’t generally caught. 

• Batters may have statistics that are unheard of at higher levels (e.g., .800 batting 
averages). 

• The hitters with high batting averages and the power hitters are usually one and the 
same. This makes the conventional major-league lineup – high-on-base-average hitters 
first, power hitters next, and weak hitters last – meaningless. 

• Pinch hitters are rarely used. 
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There are far too many variables and combinations to address every possible playing situation, 
so the main thrust of this work is to provide general guidelines for youth baseball coaches to 
optimize their teams’ lineups where statistical information is limited and where the 
conventional wisdom applied to major-league teams does not apply. It should be noted that the 
author has many years of experience coaching and playing for youth baseball teams, and the 
following assumptions arise from the most typical situations seen. It should also be noted that 
youth baseball can generally be divided into two categories. The first involves a coach pitching 
to his own team (coach-pitch); this is typically seen for players eight-years-old and under. The 
second involves players from the opposing team pitching to batters (player-pitch). Only in the 
player-pitch leagues do statistical categories such as the walk, hit-by-pitch, and stolen base 
come into play. To begin, we consider coach-pitch teams for the simplicity of explanation, and 
later consider older ages and more advanced statistics. 

Methods 

The runner advancement model created by D’Esopo and Lefkowitz (1977) is often used for 
determining how hitters and runners move around the bases. However, it is not fully applicable 
to youth teams, namely in the number of bases that runners advance on a given hit. Thus, the 
following assumptions apply to the calculations herein: 

• Only the following statistics are kept: plate appearances (PA), singles (1B), doubles 
(2B), triples (3B), home runs (HR), and strikeouts (K). The base on which a player 
stands when the next batter comes up to bat determines the type of hit acquired; this 
eliminates the need to determine how the player got to his base, a necessity for youth 
stat-keeping. 

• Runners already on base may move the number of bases given by a hit with a 50% 
chance of moving one extra base; runners do not tag up. 

• The lead runner already on base has a 20% chance of being forced or tagged out. 

• If a batter does not get a hit or a strikeout, he is out at first base; all other runners move 
up one base. 

• A player will bat the same regardless of his position in the lineup and who bats before 
and after him. 

Table 1. Statistics for a team of 4-6-year-olds over the course of 20 games. 

player PA 1B 2B 3B HR K 
GB 64 32 8 7 6 6 
CC 50 16 2 0 0 19 
BG 55 17 4 0 0 28 
LG 68 40 9 3 2 4 
AH 61 25 9 0 0 15 
JM 63 32 7 1 1 8 
XM 61 36 6 1 0 7 
HP 60 32 8 1 2 8 
JR 67 33 10 4 8 2 

XW 67 43 10 0 0 4 
NW 66 33 13 3 5 5 
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The method used to find the optimal lineup here is similar to the ones used by Chen (2006) and 
Hirotsu (2011) in that each batter, based on his statistics, is assigned a probability of a given 
result (e.g., to get a double). Then, a random number generator (“the pitch”) determines the 
result. Consider Table 1, which contains the statistics of the author’s latest team of 11 4-6-
year-olds through a 20-game season: the “Rays”. 

Consider JR, who has a probability of getting a single of 1B/PA = .493, and so on, as seen in 
Table 2. When JR comes “up to bat”, the random number generator outputs a number 0 ≤  x < 
1, giving a certain result as dictated by Table 2. If JR gets a hit, he becomes a runner, and his 
position is kept track of throughout an inning. The next batter then comes “up to bat”, and the 
process is repeated throughout a given lineup. Runs and outs are tabulated for each inning until 
three outs are accumulated (or the half-inning run limit is reached), and the total number of 
runs for each game is kept track of as well. One particular lineup then “plays” many games (at 
least 100) to determine an average number of RPG. Since the number of innings per game is 
variable (see above), a complete simulation allows for a user-determined distribution of 
innings per game. In this article, we assume there are the same number of 4-, 5-, and 6-inning 
games played for each lineup. 

Table 2. Using a random number generator, this table decides the outcome for player JR. 

result probability random number x 
1B .493 0 ≤ x < .493 
2B .149 .493 ≤ x < .642 
3B .060 .642 ≤ x < .702 
HR .119 .702 ≤ x < .821 
K .030 .821 ≤ x < .851 

out at first .149 .851 ≤ x < 1 
 

 
Figure 1. The method to determine the best lineup with n games per lineup. “3 outs” may also be reached with 

an inning run limit if applicable. 
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When a given lineup has completed its simulated number of games, we try the next possible 
lineup (using recursion in Java) and repeat. Note that the number of possible lineups for n 
players is n!: 9! ≈ 400 thousand, 10! ≈ 4 million, 11! ≈ 40 million, and 12! ≈ 500 million. Still, 
the computations are simple, and for a team of 11 players, a typical 400-game season taken 
over all possible lineups requires about 15 hours on a modern personal computer (which, if the 
algorithm were to be used by a coach with updated stats between games to find the best lineup, 
gives plenty of leeway). The optimal (or at least near-optimal) lineup is the one which 
produces the most RPG over the simulation period. This process is highlighted in Figure 1. 

Results 

One of the advantages of simulating games in this way instead of using Markov chains is the 
ability to calculate a standard deviation and median number of RPG to compare with real 
results. These are shown in for the Rays over 1000 games. With a 7-run limit per half-inning, 
the average lineup produced 12.4 RPG, while taking away this restriction brought the average 
up to 13.1 RPG. The best and worst lineups, as shown, performed substantially better and 
worse than this. In reality, over 20 games and with a 7-run half-inning limit, this team 
averaged 14.3 RPG with a median and standard deviation of 16 and 6.5 RPG respectively; 
their 2012 win-loss record was 15-5. 

Table 3. The best and worst lineups for the 4-6 Rays for games in which a run limit exists or not. OPS is the 
addition of on-base and slugging percentages, a common measure of a hitter’s performance. 

 7-run limit per half-inning no run limit 
 best lineup  worst lineup best lineup  worst lineup 
 player OPS  player OPS player OPS  player OPS 
 GB 2.281  BG .836 GB 2.281  BG .836 
 LG 1.897  JM 1.492 LG 1.897  XW 1.731 
 JR 2.269  AH 1.262 JM 1.492  CC .760 
 XW 1.731  XM 1.541 XM 1.541  AH 1.262 
 HP 1.700  CC .760 HP 1.700  JM 1.492 
 XM 1.541  JR 2.269 JR 2.269  GB 2.281 
 NW 2.152  LG 1.897 NW 2.152  XM 1.541 
 JM 1.492  HP 1.700 AH 1.262  JR 2.269 
 BG .836  NW 2.152 BG .836  HP 1.700 
 CC .760  GB 2.281 XW 1.731  NW 2.152 
 AH 1.262  XW 1.731 CC .760  LG 1.897 

mean 13.8  11.1 14.6  11.6 
median 14  11 14  11 
std dev 5.5  5.1 6.5  5.5 
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Table 4 shows similar results for a 7-8-year-old team: the “Braves.”. With a 7-run limit per 
half-inning, the average lineup produced 11.2 RPG, while taking away this restriction brought 
the average up to 11.6 RPG. In reality, over 18 games and with a 7-run half-inning limit, this 
team averaged 11.2 RPG with a median and standard deviation of 12 and 5.1 RPG 
respectively; their 2012 win-loss record was 11-7. 
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Table 4. The best and worst lineups for the 7-8 Braves for games in which a run limit exists or not. 

 7-run limit per half-inning  no run limit 
 best lineup  worst lineup  best lineup  worst lineup 
 player OPS  player OPS  player OPS  player OPS 
 KG 3.019  JB .700  MR 1.857  TE 1.409 
 MR 1.857  EH .946  JW 1.648  KN 1.373 
 JW 1.648  TE 1.409  KG 3.019  JB .700 
 HS 2.130  GD 1.438  TE 1.409  JW 1.648 
 AT 1.627  KN 1.373  BP 1.962  GD 1.438 
 KN 1.373  JW 1.648  HS 2.130  EH .946 
 GD 1.438  KG 3.019  AT 1.627  BP 1.962 
 BP 1.962  BP 1.962  EH .946  AT 1.627 
 JB .700  AT 1.627  KN 1.373  MR 1.857 
 EH .946  HS 2.130  GD 1.438  HS 2.130 
 TE 1.409  MR 1.857  JB .700  KG 3.019 

mean 12.5  9.9  13.0  10.3 
median 12  10  12  10 
std dev 5.2  4.6  5.9  5.1 

 
The large disparity in RPG between the best and worst lineups is something not seen in 
previous work (referenced above) with major-league teams. This is because the difference in 
abilities at the major league level is relatively minor, and switching players around produces 
minimal gain. At the youth level, however, the differences between players are much greater, 
and batting order becomes much more important. 

In professional baseball, there is an unwritten rule of placing the worst batter at the bottom of 
the lineup so that he bats the least possible number of times in the game. At the youth level, 
however, because of the wide variability of player talent, it is beneficial, as shown in Table 3 
and 
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Table 4, to place a decent hitter in the bottom spot so that he may be on base when the top of 
the lineup comes up again. Simulations show that the worst hitter often ends up a few spots 
higher – behind a power hitter – instead. It is our belief that this is because, with a half-inning 
run limit, the best hitters often bring runners home near the limit. Then the worst batter can get 
the last out of the inning, and the game can resume with a better hitter the next inning with the 
potential for more runs, the run limit having started over at zero. This theory is supported by 
the change of both the Rays’ and Braves’ lineups to place the worst hitter at the bottom when 
the run limit is removed. 

In addition to the placement of the worst hitter, we see that conventional wisdom does not 
apply regarding power hitters either. Namely, at the higher levels of baseball, the 3-4-5 hitters 
generally have the highest slugging percentages. However, notice the placement of the three 
highest slugging percentages on the Rays: GB hits first, JR third, and NW seventh. On the 
Braves: KG hits first, HS fourth, and BP eighth. (GB and KG also have the highest on-base 
percentages on their teams.) From these results, it seems most effective to spread power out 
through the lineup, not concentrate it in a few spots together. Again, this makes sense given the 
stats of youth players. At the major league level, where teams average only about half a run an 
inning, it is always unlikely for a player to reach base, so runs should be scored when possible 
by putting the best hitters together. For youth teams, however, where run production per inning 
is around 2-3, it is usually more likely than not that a player will reach base, and a significant 
advantage is gained by loading the bases with players before letting the power hitters drive 
them in. 

By examining the rate of occurrence of runs scored in each game the model simulates, we can 
see a predicted normal distribution as shown for the Rays in Figure 2. Given the relatively 
small number of games actually played, it is difficult to compare this to the real Rays, but a 
better comparison is shown later for a major league team. 

One may ask whether youth teams have sufficient batting data over a short season to allow the 
model to be effective and/or accurate. Our experience in using this model for real teams has 
shown the answer to be yes. Mainly, youth players tend to show their above- or below-average 
abilities very early in the season and remain more consistent than professional players. This is 
most likely due to (1) the same pitcher pitching to all batters through the season and (2) work 
ethic generally not being a big part of a five-year-old’s life; very young players tend to rely on 
natural ability much more than practice. Thus, relatively consistent lineups – not necessarily by 
name, but by general ability – are seen within just 3-4 games. After about a dozen games, the 
lineup will generally do no more than switch a couple of players with similar abilities. 
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Figure 2. The distribution of runs scored in a game for the 4–6 Rays considering both the actual results and the 

model’s predictions. 

It is also interesting to see how the run limit per half-inning affects a team‘s RPG. As shown 
above, removing the seven-run limit only increases the RPG by between 0.5 and 0.8, so the 
average game length (or, more appropriately for youth, the number of innings played in a set 
time period) should not change drastically in doing so. Figure 3 shows that the run limit has the 
most impact on the game score – at least for the Rays and Braves – when it is less than seven. 
Interestingly, considering the improbability of a league commissioner performing the same 
simulation as seen in Figure 3 (or, for that matter, analyzing scorebooks to see the likelihood of 
a certain number of runs being scored in an inning), it is coincidental (and fortunate) that seven 
was chosen as the half-inning limit; it has a relatively small effect on the total runs scored 
while protecting less-capable teams. 

 
Figure 3. RPG for the Braves and Rays considering the maximum number of runs allowed per inning. 



International Journal of Computer Science in Sport – Volume 12/2013/Edition 1              www.iacss.org 

   

 

27 

In terms of winning a baseball game, defensive statistics are clearly important, but holding 
them constant, we can easily find the increase in expected wins per season using this model 
by calculating the chances of beating an average opponent assuming a normal distribution of 
runs for both teams. Similar work was performed by Stern (1991) to predict a football team’s 
seasonal wins. Specifically, the chances of winning are found by finding the cumulative 
probability of a normal distribution for x > 0 with a mean equal to the difference of the two 
teams’ RPG means and a variance equal to the sum of the teams’ RPG variance. The Rays’ 
opponents averaged 9.6 RPG with a standard deviation of 5.9. For the Braves, it was 8.1 and 
6.3. Using this method, the worst and best Rays’ lineups will beat their opponents 58% and 
70% of the time. For a 20-game season, this is a difference of 2.4 wins. For the Braves, 
probabilities range from 59% to 70% for 2.2 wins. For a 162-game season, this would equate 
to about 19 wins. Previous work has shown that professional baseball lineup optimization 
may only increase win expectations by about one game per 162-game season. (Tango, 
Lichtman, & Dolphin, 2007). 

Individual Contributions 

A coach may be interested in how an individual player contributes to his team’s overall 
success. As mentioned above, OPS is widely considered to be a good measure of a hitter’s 
ability. To see how youth OPS is correlated with run production, each player was removed 
from the lineup and a new optimal lineup and expected RPG were calculated. Then, the 
player’s relative OPS was compared to the team’s improvement in run production when he is 
in the lineup (assuming only optimal lineups). Figure 4 shows the results. As an example, 
consider BP. His OPS is 17.7% higher than the team average excluding BP. When he is in the 
lineup, the team’s RPG increases by 3.3%. (Note that this is only possible for youth teams, as 
they typically play with more than nine players and one can be removed from a lineup without 
being replaced.) In terms of RPG, this can be significant – for the Rays, the changes in run 
production vary from a decrease of 1.5 RPG to an increase of 1.1 RPG for an individual player, 
and between -1.4 to 1.8 RPG for the Braves. Again, at the major league level, the players are 
more evenly talented and the RPG is so few that the contributions of a single player are far less 
noticeable. But for a youth coach who might have to make a decision to sit a player because of 
defensive restrictions, this information is quite valuable. On average, a player’s OPS 
percentage difference (positive or negative) yields about one-fifth of that in run-production 
percentage change, as shown in the linear regression. The offset of 0.01 indicates an average 
RPG increase of about 1% if any player is removed the lineup and is indicative of the fact that 
55% of the players on the Rays and Braves had an OPS below their team’s average. 
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Figure 4. The correlation between each 4-6 Rays and 7-8 Braves hitter and his contribution to his team’s RPG. 

“Player OPS Difference” is the percentage that a player’s OPS is above or below the rest of 
the team’s combined OPS. “Player Run Addition” is the percentage increase or decrease of a 
team’s runs when the player is in the optimized lineup vs. when he is not. 

 
The effect of individual player performance can also be translated into increasing the effective 
number of wins for his team. In professional baseball, wins above replacement (WAR) is most 
often used for this purpose (Goldman, 2012), but it includes defensive and other statistics that 
are not available at the youth level. Using the same method described above to calculate a 
team’s expected increase in wins, we can find how many wins a player is expected to earn for 
his team based on his OPS difference alone. The result is that, on average, 0.104 wins (for a 
20-game season) are generated by each player for each percentage point of run addition added 
in Figure 4. For example, the 7-8 Braves’ KG would earn 1.60 wins, which, when translated to 
a 162-game season, becomes 13. WAR compares players with other players, while this statistic 
compares a single team with or without a given player in the lineup. The highest ever offensive 
WAR (oWAR) in the major leagues belonged to Barry Bonds in 2001 at 12.2. Given the wild 
disparity between youth and major league statistics, the number of expected wins generated 
seems one of the most reasonable ways to compare individuals at different levels. 

Advanced Statistics 

As mentioned earlier, younger teams either do not or cannot keep track of more advanced 
statistics. If the method discussed thus far were to be used at higher levels of play, we could 
take advantage of other probabilities: the number of times stealing a base (SB), getting caught 
stealing (CS), and grounding into a double play (GDP) take a player’s speed into account, 
while walking (BB) and getting hit by a pitch (HBP) quantify a player’s ability to simply get 
on base. 

We must use these more advanced statistics in conjunction with different assumptions than we 
made for youth teams. The following are different: 

• The lead runner already on base has a 5% chance of being forced or tagged out if the 
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batter gets a hit. 

• Runners have only a 50% chance of reaching the next base when the batter is “out at 
first,” which includes both having a fly ball caught and being forced out at first base. 
Sacrifice hits are not accounted for because they are highly dependent on other hitters 
being on base, which would nullify the assumption that batters are independent of each 
other. 

• During another player’s at-bat, a runner will attempt a steal of an open second or third 
base with probability (SB + CS)/ (1B + BB + HBP + SB + 2B). The denominator is an 
estimate of the number of times a runner stands on first or second base in a season. 
Adding SB overestimates the number of times on second (since there are steals of third 
as well), but the model does not take into account other methods of reaching first base 
(e.g. errors, fielder’s choices, etc.), which provides a complementary underestimation. 
Since runners are on first base much more than second base, there will be far fewer 
steals of third base, which mimics real baseball. Note also that (SB + CS) automatically 
accounts for the real-life probabilities of the next base being occupied, thereby 
forbidding a steal. 

To test our model’s ability to predict an optimal lineup at the major league level, we tried it on 
the 2012 Chicago White Sox; their statistics are shown in Table 5. 

Table 5. Batting statistics for the 2012 Chicago White Sox. 

name PA 1B 2B 3B HR K BB HBP GDP SB CS 
Beckham 582 83 24 0 16 89 40 7 10 5 4 
De Aza 585 103 29 6 9 109 47 9 1 26 12 
Dunn 649 50 19 0 41 222 105 1 8 2 1 

Konerko 598 111 22 0 26 83 56 7 16 0 0 
Pierzynski 520 84 18 4 27 78 28 8 8 0 0 
Ramirez 621 120 24 4 9 77 16 4 15 20 7 

Rios 640 114 37 8 25 92 26 4 18 23 6 
Viciedo 543 85 18 1 25 120 28 6 18 0 2 
Youkilis 509 67 15 2 19 108 51 17 10 0 0 

 
The 5000-game model predicted the optimal lineup in  

Table 6. Only nine-inning games were simulated, because even though a substantial portion of 
a team’s games allow them only eight innings to bat (i.e., they are winning in the ninth inning 
at home), there are also a number of games that go extra innings (potentially forever); a 
reasonable compromise is nine innings. 

 

Table 6. The most frequent actual lineup for the Chicago White Sox in 2012, along with the best and worst 
predicted lineups. 
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position real order OPS  best  worst 
CF De Aza .760  Youkilis  Ramirez 
3B Youkilis .745  Viciedo  Rios 

DH Dunn .797  Pierzynski  Viciedo 
1B Konerko .857  Beckham  Youkilis 
RF Rios .850  Konerko  Beckham 

C Pierzynski .827  Dunn  De Aza 
LF Viciedo .744  Rios  Konerko 
SS Ramirez .651  De Aza  Pierzynski 
2B Beckham .668  Ramirez  Dunn 

mean 4.6  4.6  4.1 
median 4  4  4 
std dev 3.2  3.0  2.8 

 

Note that the best predicted lineup is quite different than the actual most frequently used 
lineup, but the seasonal RPG and run distribution (seen in Figure 5) are very similar – for 0-8 
runs in a game, the model gives χ2 = 5.65 and p = 0.77. (Including the outlier of 9 runs in a 
game increases χ2 to 10.2, giving p = 0.42.) This is a prime example of the interchangeability 
of most major league players – in 2012, 74% of major league hitters had WAR (wins above 
replacement) values between -1.0 and 1.0 (fangraphs.com). Note also that the continuity of the 
2012 White Sox lineup is rare, in that eight of these nine players were eligible (i.e., had enough 
plate appearances) for a batting title using only their White Sox stats; in the vast majority of 
cases, finding a consistent optimal lineup for professional players is futile. 

 
Figure 5. The distribution of runs scored in a game for the Chicago White Sox considering both the actual 

results and the model’s predictions. 
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Conclusion 

It is often meaningless to speak of “a lineup” for a professional baseball team since so many 
players are traded or injured during a regular season. That is, the players available in the 
beginning, middle, and end of a season would almost certainly be quite different, requiring 
game-by-game optimization. It remains a good strategy, but given the small benefit coupled 
with the major league egos that might resist change, one might question the work required to 
generate each lineup. 

Youth baseball lineups – which far outnumber professional lineups – are much better suited for 
optimization for several reasons. (1) The net gain in RPG is far greater, making the advantage 
much clearer. (2) The same players play every game, allowing for consistency and removing 
the need to continually rotate players in and out of the lineup. (3) Youth coaches are generally 
less knowledgeable about baseball than professional managers so that computer-assisted 
optimization can create a substantial advantage over one’s opponent. (4) The time between 
games allows for plenty of computation. (5) The necessary statistics for good results are simple 
and easy to understand. 

This paper has detailed the use of probabilistic at-bats to determine basic guidelines for youth 
baseball lineups. The most intriguing (i.e., those which contradict conventional wisdom) are: 

• If a half-inning run limit is in place, the last batter should be an average hitter, not the 
worst hitter. The benefit added by a good last-batter/first-batter interaction overcomes 
the fewer at-bats this batter receives. 

• Power hitters should not be bunched together; but rather spread out over the lineup to 
drive runs in. 

In addition, the following information was verified: 

• The run contribution of a player is directly proportional to his OPS contribution; it does 
not seem to level off at either end of performance. 

• The half-inning run limit seems optimized for game play at around seven runs. 

• Fairly accurate modeling of professional teams can be done with a small set of simple 
statistics. 

These general principles should prove useful to coaches and parents interested in youth 
baseball. 

References 

Bukiet, B., Harold, E.R. & Palacios, J.L. (1997). A Markov Chain Approach to Baseball. 
Operations Research, 45, 14–23. 

Chen, Y.-Y. (2006). Batting Order Optimization Using Evolutionary Computation. 
Proceedings of the fourteenth International Conference on Genetic and Evolutionary 
Computation Conference Companion (pp. 599–602), Montreal, Canada. 

D’Esopo, D.A. & Lefkowitz, B. (1977). The Distribution of Runs in the Game of Baseball. 
Optimal Strategies in Sports (edited by S. P. Ladany and R. E. Machol, Eds., North-
Holland Publishing Co., Amsterdam), 55–62. 

Freeze, R.A. (1973). An Analysis of Baseball Batting Order by Monte Carlo Simulation. 
Operations Research, 22, 728–735. 



International Journal of Computer Science in Sport – Volume 12/2013/Edition 1              www.iacss.org 

   

 

32 

Graham, C.J. (2012). Baseball Enigma: The Optimal Batting Order. MIT Sloan Sports 
Analytics Conference, Boston, USA. 

Goldman, S. (2012). Extra Innings: More Baseball Between the Numbers from the Team at 
Baseball Prospectus. New York: Basic Books. 

Hirotsu, N. (2011). Reconsideration of the Best Batting Order in Baseball: Is the Order to 
Maximize the Expected Number of Runs Really the Best? Journal of Quantitative 
Analysis in Sports, 7 (2), 13. 

Kakui, Y. & Arai, S. (2010). Scene Evaluation of a Ball Game for Solving Batting Order 
Optimization. SICE Annual Conference 2010 (pp. 3250–3257), Taipei, Taiwan. 

Lindsey, G.R. (1963). An Investigation of Strategies in Baseball. Operations Research, 11, 
477–501. 

Osawa, K. & Aida, K. (2005). Speed-up Techniques for Computation of Markov Chain 
Model to Find an Optimal Batting Order. Proceedings of the Eighth International 
Conference on High-Performance Computing in Asia-Pacific Region (pp. 315–322), 
Beijing, China. 

Pankin, M.D. (1991). Finding Better Batting Orders. New York: SABR XXI. 
Sokol, J.S. (2003). A Robust Heuristic for Batting Order Optimization Under Uncertainty. 

Journal of Heuristics, 9, 353–370. 
Stern, H. (1991). On the Probability of Winning a Football Game. The American Statistician, 

45 (3), 179–183. 
Sugrue, P. K. & Mehrotra, A. (2007). An optimisation model to determine batting order in 

baseball. International Journal of Operations Research, 2 (1), 39–46. 
Tango, T.M., Lichtman, M.G., & Dolphin, A.E. (2007). The Book: Playing the Percentages 

in Baseball. Washington, D.C.: Potomac Books. 



International Journal of Computer Science in Sport – Volume 12/2013/Edition 1              www.iacss.org 

   

 

33 

Tactics Analysis in Soccer – An Advanced Approach 
Jürgen Perl2, Andreas Grunz1 & Daniel Memmert1  

1German Sport University, Cologne, Germany 
2Johannes Gutenberg-University, Mainz, Germany 

 

Abstract 
In order to run a game tactically, high level knowledge is required from and by 
coaches and analysis experts. Assessing tactical performance through statistic 
indicators has some drawbacks, however, it is not only difficult to prove 
reliability on the defined indicators, but those static indicators often hide the 
game's dynamics. New network-based approaches offer a promising way to 
improve future evaluation of tactical performance and recognition of game 
dynamics. The aim of this article is to introduce a new approach where pattern-
based tactics analysis is combined with success-oriented statistical frequency 
analysis. Therefore, the neural network-based pattern analysis of the SOCCER-
approach (Perl & Memmert, 2011) has been completed by an event-oriented 
statistical analysis, which is mainly based on an automatic recognition of ball 
possession as an indicator of success. After a short introduction into basic aspects 
of game analysis, automatic position tracking and net-based pattern analysis, the 
new concept of SOCCER is presented in two steps: The first part deals with net-
based analysis of dynamic processes, oriented in constellations of tactical groups 
of players. The second part deals with rule based semantics analysis, which 
allows automatic recognition and evaluation of individual activities and 
embedding them into the tactical patterns - thus enabling both, evaluation of 
tactical processes based on individual success as well as evaluation of individual 
activities in the context of tactical processes.  

KEYWORDS: COMPUTER SCIENCE, GAME ANALYSIS, SOCCER, PATTERN 
RECOGNITION, NEURAL NETWORKS 

Introduction 

In the quarterfinal of the FIFA World Cup 2006, Germany versus Argentina, the goalkeeper of 
the German national squad, Jens Lehmann, paved the way into the semi-final. Information 
about shooting preferences of his opponents, gained by the analysis of their penalty striking 
habits, helped Lehmann in the decisive shootout to choose the right corner and to perform 
saves (Buschmann & Nopp, 2006). At the FIFA World Cup 2010 it was determined that the 
opponents of the English squad operated with an increasing number of long passes, which 
revealed deficits in the English defense (Buschmann & Nopp, 2010). In the round of sixteen in 
the match against England, the German squad took advantage of these findings. The 
goalkeeper Manuel Neuer made an assist by passing a goal-kick over the English defense line 
to forward Miroslav Klose who scored the lead. The examples highlight how performance 
analysis in soccer can be a key factor in effective game preparation, in addition to the 
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monitoring and evaluation of training (for a review, Nopp, 2012). 

On the one hand, spectacular cases like those are impressive. They simplify how important it is 
to get key information out of the game. On the other hand, they demonstrate the large gap 
between isolated key information and the knowledge on complex tactical behaviour. In order 
to recognize tactical plans and their success, it is necessary, based on recordable data, to 
recognize and analyse the behavioural patterns of the players and in particular of the tactical 
groups. Only if it is understood, in which interaction what constellation or move of a tactical 
group is successful and opens ways for individual tactical maneuvers, the tactical orientation of 
the team and the individual players can be improved. 

Since the early 1970s, computerized notational analysis has been playing an important part as a 
scientific basis for developing concepts of recording and analyzing data from games. There are 
some scientific studies that improved the understanding of soccer by underpinning soccer 
performances analysis with theoretical findings (Memmert & Perl, 2009b, for a review). 
Hughes & Franks (2005), for example, clarified the need for normalization of data – the latter 
research group counted the number of passes per possession and linked that to resulting goals; 
due to unequal occurrences of each possession length (according to passes) a normalization of 
the data was inevitable. Therefore, Hughes & Franks (2005) divided “the number of goals 
scored in each team possession by the frequency of the sequence length” (p. 511), multiplied 
the results by 1000 in order to avoid small ratios – and by doing so, highlighted differences 
between successful and unsuccessful teams considering the style of play (possession play or 
direct play) and resulting conversion ratios to shots on the goal. This was based on another far-
reaching study conducted in 1968 by Reep & Benjamin. This study coined the British and 
Norwegian soccer team’s style of play by arguing that direct play – implying few passes and a 
high frequency of shots on the goal; thus playing highly penetrative – results in successful 
outcomes.  

Obviously, such data is important to receive information about a lot of performance indicators 
reaching  from technical skills over physical condition to most relevant skills like the ability of 
scoring goals. 

However, most of those distributional and frequency oriented results, although doubtlessly 
helpful in practice, are primarily useful for classification and ranking, but neglect the dynamic 
aspects of processes like interaction and context. They "freeze" the ninety-minutes-game to 
just some handful of numbers, helping to understand "what" but not "why". The key for a 
better understanding of the game is to analyze what the coach is doing: He "reads" the game, 
i.e. he does not record numbers but recognizes patterns.   

Therefore, the aim of this article is to give an introduction into methods and first results of 
pattern-based tactic analysis, which has been successfully run by means of artificial neural 
networks approximately during the last 4 years. Although it is not perfect at all, it shows that 
those networks can help to map the complex game to a sequence of patterns. Moreover, those 
patterns can be combined in a fruitful way with statistical results and/or the patterns 
themselves can be used for statistical analyses. 

In the following, the emphasis is put on three main aspects: 

The best fitting data for description and analysis of spatio-temporal processes like those in 
soccer is given by the positions of the players and the ball. Therefore, the first part deals with 
automatic position data recording. A brief overview introduces the most interesting up-to-date 
approaches. 
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In order to analyse the game processes in a qualitative way, the focus is laid on patterns of 
actions and interactions. Some main aspects of pattern analysis, in particular by means of 
artificial neural networks, are briefly introduced in the second part. 

The third part introduces a net-based software-tool "SOCCER", which combines net-based 
pattern analysis with rule-based semantics, statistical analyses and expert knowledge to gain 
greater insights into the game dynamics. Moreover, it is very important to make data easily 
understand considering the data output. SOCCER, like most of the analysis software systems 
available, has integrated graphics, which help in terms of data interpretation. Whether the 
performance is coded in-event or post-event, the data is reinterpreted based on edited 
videotapes or graphical illustrations calculated by the software. Modern systems make it 
possible to refine actions in different areas of the pitch or at certain intervals of the game, e.g. 
during a certain match status. Finally, data can be used to compile statistics that can help to 
identify performance profiles of players and/or teams as well as the strengths and weaknesses. 

Position Tracking in Soccer 

In computerized notational analysis, distances covered during a game are of interest to quantify 
the intensity of motion. The amount of walked, jogged and sprinted meters as well as the 
velocity and acceleration of each player during a game are indicators for the condition of the 
team. In order to analyze actions and interactions, first of all the constellations of the players 
and the types of moves are of interest in computer-based tactics analysis. At any case, the 
positions of players and the ball play the important role and therefore have to be recorded from 
the game. 

Given that video tracking is available in the majority of competitive games, research has 
focused on methods to extract position data of the players from recorded videos.  In 1990, 
Herzog & Retz-Schmidt proposed a tracking system using image processing. They used a fixed 
camera that covers the entire pitch to record image data. This is a software programme that 
simply instructs the computer to take the current position, in (x, y)-pixels on the screen at any 
frame, and to calculate the distance travelled since the (x, y)-pixels at the previous frame. A 
first commercial prototype, the computer vision system AMISCO, was released in 1998 by 
Videosports Ltd. to obtain position data. Since then, the method of image processing made a 
big jump ahead, however, it still needs a supervisor to control and correct data. Impellizzeri, 
Sassi & Rampinini (2006) showed that the variation of different supervisors is below 2% in 
one tracked game.  

More recent systems are based on frequency modulated continuous wave (FMCW) technology 
to track positions. The most common representative of this technology is the GPS system. 
Players have to carry a transmitting unit while playing, to be detected by the system. A 
comparison of accuracy of GPS and video based systems showed an overestimation of 4.8% 
for GPS and 5.8% for video examining distances during games (Edgecomb & Nortona, 2006). 
At present, the LPM system produced by ABATEC has the lowest distinction of just 1.6% 
underestimation of real and measured distance (Stelzer, 2004). It uses FMCW sensors that 
send a permanent signal to a certain number of receivers around the pitch. A central processing 
unit collects these data and is able to present it in real time. Although FMCW systems a more 
accurate and faster in presenting the data, they can just be used in training due to FIFA 
regulations at this time.  

The position data collected with the different approaches in particular can be used to fulfill net-
based tactics analysis, presented in the following. 
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Pattern Recognition 

Pattern recognition based on position data can result in different kinds of patterns (Memmert & 
Perl, 2009a):  

The formations of (tactical) groups of players – i.e. the positions of the group members in 
relation to each other – build spatial patterns. The time-depending movements of such groups 
build temporal patterns. Both types of patterns help to recognize tactical concepts. In 
combination, these patterns build spatio-temporal patterns of the game processes. And the 
combination of respective patterns of both teams result in interaction patterns, which are 
helpful in order to measure the success of tactical actions in the context of tactical interaction.  

The patterns, if once obtained, can be used to calculate several statistics like frequency or 
rareness of action or interaction patterns. In combination with additional semantic information 
like success/failure, this can already give deeper insights into the game dynamics. In our 
research we could identify several rare patterns which also had a high probability of success. 
The terms "success" and "failure" can be defined in several ways depending on the research 
question (compare the section "Rule based semantics analysis").  

To obtain such patterns, a lot of methods are available, stretching from simple similarity 
analysis over statistical clustering methods to neural network approaches. Basing on a lot of 
positive experiences with sports as well as with technical applications, we decided to use 
neural networks – in particular because in the case of self-organizing maps (see explanations 
below), no pre-information about number and types of clusters is necessary. 

The applied methods can be divided in supervised and unsupervised methods. The term 
supervised/unsupervised has its origin in the scientific field of machine learning. Supervised 
methods learn patterns by examples. For instance the group tactic wing play in soccer can be 
learned by feeding the net with examples of wing plays. In contrast, unsupervised methods are 
characterized by the lack of labeled data. A similarity measure is used to group the data and to 
construct distinct prototypes. While in supervised learning a predetermined pattern is learned 
by examples, in unsupervised learning there are no predefined patterns. Therefore, the patterns 
gained by unsupervised methods do not necessarily correspond to conventional standard 
patterns like wing play, but surprisingly often do: If a pattern is sufficiently represented by the 
data and distinct from other ones, the net will normally recognize it by its own. 

The self-organizing map (SOM) developed by Kohonen (2000) is an artificial neural network 
of the unsupervised type. A SOM consists of a set of artificial neurons that are connected to 
each other through edges usually arranged in a rectangular grid. During the training phase the 
network adapts itself to the distribution of the data used for training. After training each neuron 
encodes a different pattern. In an additional step, the neurons encoding similar patterns are 
grouped into clusters, representing a pattern-prototype.  

The kind of patterns represented by the network is determined through the data that is used for 
training. If the network is trained with movements of one group of players, the resulting 
patterns will encode typical movements of that group. If the network is trained with 
interactions, consisting of movement data from 2 interacting groups and the ball, the resulting 
patterns will encode typical interactions.  

The Dynamical Controlled Network (DyCoN; Perl, 2004), which is derived from SOM and 
overcomes several technical limitations of the original SOM-concept, has successfully been 
used to detect tactical patterns in soccer games (Memmert & Perl, 2009a, 2009b; Grunz, 
Memmert & Perl, 2012). 
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An example for supervised learning of specific tactical patterns in soccer like game initiations 
is given in Grunz et al. (2012). A hierarchy of neural networks was developed to learn these 
patterns. As the hierarchy is trained with labeled data gained by an expert watching and 
categorizing the game, the hierarchy belongs to the supervised methods. Several sets of 
example data extracted from the categorization were used to learn the corresponding patterns. 
For instance, the expert categorized a set of sequences that showed short game initiations. The 
position data corresponding to these sequences was extracted by a program to train the 
hierarchy of networks. After training the hierarchy, it was used to classify tactical patterns in 
new games. While an expert needs at least 5 hours to manually categorize a game, the 
developed approach can reduce the required time to a few minutes. 

Combination of Pattern Recognition with Rule-Based Semantics and Statistical 
Analysis 

This net-based game analysis approach in soccer is mainly based on the ideas of data reduction 
(Perl, 2008), pattern recognition (Grunz, Memmert & Perl, 2009; Memmert & Perl, 2009a, 
2009b; Grunz, Endler, Memmert & Perl, 2011), the network DyCoN (Perl, 2004; McGarry & 
Perl, 2004), and the special game analysis software SOCCER (Perl & Memmert, 2011), which 
all work together as it is briefly described below. 

The process starts with position data preparation and pre-processing, which is done by means 
of the software tool SOCCER, followed by three steps of analysis: 

(1) The position data of the players of a team are reduced to those of tactical groups like 
offense or defense, followed by normalization to standard patterns, as it is shown in Figure 1. 

(2) The net is trained with those formations, resulting in a collection of formation clusters, 
each containing a collection of variants of the corresponding formation type. 

(3a) Along the time-axis, position data of interacting tactical groups are fed to the net, which 
recognizes the time-dependent corresponding formation types as well as in particular striking 
features.  

(3b) Additionally quantitative analysis of frequency distributions of formation types is done by 
means of the statistics tool of SOCCER. 

(3c) The trajectory analysis component of DyCoN enables tactical analyses of the game, 
including interaction and phase analyses. In particular long term interaction patterns as well as 
hidden or creative tactical activities can be recognized and analyzed regarding success.  

 

Figure 1. Departing a constellation into its position (centroid) and its characteristic formation (taken from Perl & 
Memmert, 2011). 
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Those time-series of formation types together with positions and statistical information allow a 
wide range of analyses from space- or time-oriented distributions over success in interactions 
up to tactical aspects. Not least, the condensed game information from above can be used for 
generating a game protocol, where time, formation type and position data can be completed by 
semantic information. Such a protocol then builds the basis for the actual game analysis, as it 
will be discussed in the following. 

SOCCER-Based Game Analysis  

The basic concept of SOCCER is to handle two types of data: On the one hand syntactic and 
semantic items taken from video and automatic position recording as well as from expert 
evaluation, and on the other hand patterns of formations and formation sequences taken from 
net-based analysis. Recorded data as well as recognized patterns can be anlyzed statistically 
under the aspects of frequencies and spatio-temporal distributions. The central idea of the 
approach is that both groups of information can be combined in a compound analysis: The 
formations and formation sequences build the basis for the understanding of interaction and 
tactical patterns. They are also useful as a background and/or context for the evaluation of 
statistical items. In turn, syntactic and semantic items are helpful for understanding and 
evaluating pattern constructs.  

Original data, patterns and results from analyses are organized in a data base. They can be 
presented in interactive tables, graphics and animations. This allows an arbitrary combination 
as well as a stepwise resolution of the presented information. 

 
Figure 2. Basic concept of the SOCCER analysis tool (list of items is only a selection). 

In the following, three examples of SOCCER-based analyses are presented, followed by a 
closing section on rule-based semantics analysis: 
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(1) Distribution analyses. The distribution analysis presented in Figure 3 demonstrates a 
typical situation: Team A attacks in the formation of type 4, team B reacts with a defense 
formation of type 3. The distribution matrix shows that this particular interaction happened 523 
times (i.e. at 523 seconds) in the corresponding half-time.  

In general, the matrix provides the distributions of formations of the teams as well as those of 
the respective interactions. 

Statistical analysis is helpful for a first recognition of normal and of seldom or striking 
situations. In order to recognize the role they play in the game process, statistical analysis can 
be combined with animated process analysis. 

 
Figure 3. Distribution matrix of formation types and interactions (taken from Perl & Memmert, 2011). 

(2) Combined quantitative and qualitative process analysis. As mentioned above, the formation 
data can be completed by semantic ones like technical or tactical aspects and success. The 
following example deals with evaluating the success of a team in a given formation interaction. 
Figure 4 shows from left to right the number of evaluated interactions of a team, followed by 
the negative ones in absolute numbers and as percentages. Concentrating on the right graphic, 
it seems that team A has serious problems in the interaction of formation 3 vs. formation 3. 
However, the absolute numbers are very small, reducing the importance significantly. Also '5 
vs. 5' is negative but does not seem very important, whereas '5 vs. 2' seems to be a significant 
weakness, although the percentage of negative results is only 16. Note, that the presented 
analyses are only examples, which can be completed arbitrarily if the valuation data is once 
available. 

 
Figure 4. Matrices of valuated team success in the context of formation interaction (taken from Perl & 

Memmert, 2011). 

(3) Net-based tactic analysis. Tactic analysis is done by net-based trajectory analysis. The idea 
is that at each point in time the formations of tactical groups are identified and can therefore be 
encoded by a corresponding number and/or color. After training, the network can recognize the 
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formation and the formation type contained in each data set of the original position data, and is 
therefore able to map the original process to a trajectory, as it is demonstrated in Figure 5. 

The graphic shows a net of neurons, i.e. the small white or colored squares, where each color 
stands for a formation type like the one in Figure 1. Different neurons of the same color 
represent variant formations of the same type. Representing those variants by just one 
characteristic type reduces the number of significantly different items to only about 10, which 
has two important advantages: On the one hand, it enables statistical analyses on reasonable 
distributions. On the other hand, the formation trajectories are smoothed and therefore allow 
easier comparisons between each other. (Note that all specific information is saved and can 
easily be used for special analyses if needed.) 

 
Figure 5. A trajectory of formations on the net and its reduction to a formation type trajectory. 

In the presented example from Figure 5 it works as follows: The position data sets of the game 
process activate corresponding neurons of the network, starting with the one with the red mark. 
The process then runs through some light green neurons followed by some orange and some 
red ones and so on. Reduced to the significant types represented by the corresponding colors, 
the trajectories become much simpler and therefore represent the specific behavior of the 
corresponding tactical group (see the small embedded graphic on top left).   

Such tactical phase patterns can be put in, clustered and finally recognized using neural 
networks on a second level. In the following, an example of a striking feature analysis is given 
which demonstrates the way, how a complex analysis of combining quantitative and 
qualitative aspects works: Figure 6 presents a sequence of corresponding formations of team A 
and team B. A first glance on the formation phases shows that team B has frequent changes 
from 2 to 4 and back, while A has analogous changes between 5 and 3. These correspondences 
can be systematic or arbitrary. A second level analysis may help to answers questions like this 
and lead to a better understanding of such tactical interactions. 



International Journal of Computer Science in Sport – Volume 12/2013/Edition 1              www.iacss.org 

   

 

41 

 
Figure 6. Distribution of a typical pair of formations between minutes 21 and 30. 

Rule-Based Semantics Analysis 

A last and most challenging task is the one of automatically recognizing semantic information 
from the game data: Although formations and tactical interactions play an important role for 
the understanding of the processes in the large scale, the practice of players and coaches 
demands information on the ball win and loss, ball possessions, starts of attacks and success of 
offense or defense activities in general. In turn, that particular information on actions improves 
its value and importance by far, if embedded in the context of the behavior of the involved 
tactical groups. 

The problem, however, is how to get the semantic information from the position information 
only. The basic idea of one of the authors (Perl) is that the position data of the players and the 
ball give information about the probability that the player closest to the ball is in contact with 
it, if the distance between that player and the ball is smaller than a sufficiently small distance. 
Of course, this assumption is not correct every time, but from the statistical point of view, it 
helps to deduce the following information: (a) Ball win / loss: The ball contact changes from a 
player of one team to the other team; (b) Ball possession: Over a certain time interval, players 
of the same team have ball contact; and (c) Making / receiving a pass: The ball contact changes 
from a player of a team to a (normally) distant one of the same team. To evaluate single 
activities, "win", "making", "receiving" and "possessing" can be taken for "successful", while 
"loss" or "without ball contact" can be taken for "unsuccessful".  

Based on this elementary information, processes and their evaluations can be defined.  Starting 
and running an attack, for instance, can start with the ball win, followed by a ball possession, 
and followed by a pass and so on, normally ending with a ball loss. The final loss, however, 
naturally does not mean that the whole process was unsuccessful, i.e. only the steps are 
counted. Finally, positions and contact measuring help to evaluate the tactical behavior of 
groups or the whole team: One example is the compactness of a team relatively to the ball, 
which gives important information on the players' positioning and ball orientation. 

A second example is the speed of a defense process in getting the ball under control and 
leading it back to start an attack. A third example is the speed of an offensive process in getting 
the ball into the opponents half. The SOCCER data preparation and management offers a 
complex handling of all information about players, their positions, formations, ball contacts 
and success. This is organized by means of time depending on data vectors which are – based 
on the integrated data base concept – reflected in interactive tables on the interface. Figure 7 
shows how it works. 

Every combination of players, groups, formations, ball contact situations, areas on the soccer 
pitch, and success can be activated just by clicking the regarding input tables, resulting in 
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information about when, where, how successful and how often (absolute, in percentages, 
compared to the opponent team)  the selected situation was. In the example in Figure 7, the 
analysis focused on the ball possession activities of the offense of team A in the area close to 
the goal on the right hand side. The result was that formation 3 was 50% dominant in the 
corresponding points in time t and the formation sequences over the respective last 6 seconds 
were rather constant (see table on right hand side). 

 
Figure 7. Example of a database inquiry and result interpretation. 

Figure 8 demonstrates a specific analysis dealing with ball losses in the context of formation 
and areas. The result of the presented example is that team A has a symmetric right-left 
distribution of losses over all formations with a minimum of only 2 losses in the context of 
formation 4. It should be mentioned, however, that the absolute number of formation 4 is also 
rather small, i.e. the percentages, which can also be retrieved from the database are an 
important measure for the ball possession value of formations. 

Finally, speed and compactness analyses are special features of SOCCER: The subject to the 
analysis is the process where the defence stops the opponent attack and passes the ball as far as 
possible to the own offence in the opponent's half. The process stretches over four points in 
time, t0, t1, t2, t3, beginning with the ball win and ending with the offence's attack, and is 
analysed regarding the contexts of formation, tactical groups and specifically involved players. 
This way, two main questions can be answered: 

(1) What is the speed of the process along t0, t1, t2, t3 – i.e. how fast can the team or tactical 
group react and start counter-attacks? 
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(2) How does the centroid of the team or tactical group moves related to the ball, and how does 
its compactness change? 

 
Figure 8. Distribution of ball losses, depending on formation and area. 

Experiences from the analysis of more than 40 games shows that only the combination of 
position-based analysis and semantic analysis in the context of tactical group formations is 
able to make complex playing processes transparent and understandable, helping to improve 
tactical behaviour. 

Conclusion and Outlook 

Over the past years, progress of computer science made it possible to track the players‘ 
movements and thus to provide position data. Neural network approaches have become a 
frequently studied and commonly recognized possibility for data analysis and data simulation 
in sports (Memmert & Perl, 2009b). These studies have demonstrated that additional research 
questions linked with pattern learning, game analysis and simulation processes can profit by 
using neural networks. All in all, the role and development of neural networks is now a topic 
of current discussions in computer sport science and also in performance analysis in soccer. 

In the field of game analysis, SOCCER became  a tool for automatic analyses and assessments 
of tactical behavior based on position data for the first time. If validity can be ensured, the 
planned assessment system will be an important step towards objectification of tactical 
performance components in team sports. Furthermore, there will be a dramatic speed 
advantage concerning the evaluation of the position data (from 6-8 hours to 2 minutes). The 
small effort for data acquisition will enable the accumulation of a vast amount of data and will 
thus bring new chances for theory construction and practice in soccer. 
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Abstract 
In recent years, modern technology significantly improved the possibilities for 
performance diagnostics in sports. However, the technical equipment used for this 
purpose is usually still complicated to transport, to set-up as well as to operate 
and to top it all rather expensive. Off-the-Shelf smartphones on the other hand are 
relatively cheap, independent of power outlets and familiar to a large range of 
users. As smartphones nowadays contain sophisticated sensor technology, it 
seems promising to investigate their potential to cheapen performance diagnostics 
in sports and thereby make it available to a larger target audience. This article 
presents the results of an explorative study that demonstrate how a current 
Android-based smartphone is able to deliver results in the analysis of “bouncing” 
jumps that are comparable to common force-platforms. Hence it seems 
worthwhile to create an app able to deliver this service automatically on mobile 
devices in the near future. 

KEYWORDS: PERFORMANCE DIAGNOSTICS, SPORTS, JUMP ANALYSIS, 
SMARTPHONES, SENSORS 

Introduction 

Modern technology has been supporting trainers and athletes in performance diagnostics for 
numerous years (Liebermann et al., 2002; Miah, 2002; Wagner, 2009) and is thus helping to 
increase success (Haake, 2009) in competition and training as well as to decrease the risk of 
injury (Zatsiorsky, 2000). Especially the analysis of contact times of diverse jump variations is 
frequently used as an indicator for the training condition of athletes in disciplines requiring 
explosive strength (Hennessy & Kilty 2001; Mattes et al., 2010). Approaches to measure such 
contact times are manifold on the one hand: force platforms (e.g. by Kistler, Switzerland) or 
systems based on near-ground light-barriers (such as Optojump by Microgate in Italy) are just 
a few examples. On the other hand, however, all these systems share two central weaknesses. 
First, they are custom-built and thus expensive and second, they are laborious to set up and 
operate so that their usage is often limited to financially powerful organizations such as 
Olympic Centers or larger Clubs and Colleges. Even worse, most of these devices require a 
power supply and additional measurement equipment like an A/D converter and a recording 
device (such as a laptop) to operate properly, which constraints their applicability even further.  
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In order to overcome these constraints, it is obvious that future performance diagnostic devices 
should be rather based on mobile devices of a reasonable price than on expensive custom-built 
products. The electronic mass market is indeed offering an interesting, though perhaps not 
fully obvious solution for this problem: recent mobile phones, so-called smartphones, such as 
the iPhone or various Android-based models, are lightweight, independent of power outlets, 
have built-in network connectivity (Bluetooth, WiFi or 3G), and are usually equipped with 
sensors that make their usage for movement analysis and performance diagnostics a serious 
possibility. However, beyond various fun apps such as iBeer (cf. http://www.hottrix.com), 
scientific reports on the use of mobile phone sensors barely exist so far. The few publications 
that we are aware of, are mainly focusing on innovative applications in the area of assisted 
living where smartphones have been used for logging the daily activities of subjects (Troiano 
et al., 2008), or for detecting downfalls of elderly people (Sposaro & Tyson, 2009). The only 
publication proposing the usage of the sensors in mobile phones in a sports context is the work 
of McNab et al. (2011) who propose to use an iPhone’s acceleration sensors for recording the 
throws of cricket players. Further recent works have also discovered the mentioned advantages 
of smartphones though, but have been merely using them as a base unit for the recording of 
motion data captured with dedicated sensors (cf. e.g. Strohrmann et al., 2012).  

Nevertheless, recent smartphones seem to impose themselves as a simple and affordable 
alternative to traditional performance diagnostics systems that are easily usable on an daily 
basis in the field so that a clear improvement in training quality could be expected (cf. e.g. 
Bauersfeld & Voss, 1992). However, it is not yet clear whether their built-in sensors will be 
able to fulfil such high hopes? After all, smartphones are still mainly intended as fun product 
or perhaps as “mobile offices” for business people, but not as serious measurement equipment 
in motion analysis. Unfortunately, phone manufacturers are thus not routinely publishing the 
technical performance data of the sensors they use so that their real potential for performance 
diagnostics or motion analysis in sports still needs to be investigated.  

The first contribution of our article is thus a coarse comparison of sampling rate and 
measurement range of various current smartphone models. Furthermore, we present and 
discuss the result of a series of calibration jumps used to determine the acceleration pattern of 
two-legged bouncing jumps in comparison with a force platform. Based on the characteristics 
found for these jumps we have carried out a validation experiment with a group of six physical 
education students showing promising results for a potential development of an automated 
smartphone jump analysis app. Considering the facts of the experience collected from these 
jumps, we also present some ongoing work and preliminary results from automating the 
recognition of such jumps on the smartphone. We finally round off our article with a summary 
of our findings. 

Background 

In numerous sports, the jumping power is a performance-determining parameter and thus often 
represents a performance-limiting factor at the same time. Hence, in the context of training 
management, discipline specific jumping performance is crucial. In order to review and 
analyse the jumping performance typically three jump types are used: counter movement jump, 
squat jump and drop jump (Wank & Heger, 2009). Multiple jumps with flexing only in the 
ankle joint (sometimes also called bunny or bouncing jumps) also provide valuable 
information on the onset of fatigue and are therefore often used for the determination of 
strength-endurance (e.g. by a Bosco test – Bosco et al., 1983). Since the latter allow carrying 
out a large number of jumps with similar characteristics and relatively little disturbing 
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movement effects, they form a particularly interesting target for the analysis of novel 
measurement equipment and hence have been used in the explorative study we present in this 
article. 

Currently, force platforms and contact mats are the primary means used for diagnosis and 
analysis of sport specific jumping power in order to capture both dynamic and kinematic 
parameters as accurately as possible. Parameters such as maximum force and maximum power 
increase can be determined by means of the force-time curves (Frick, Schmidtbleicher & 
Wörn, 1991). In doing so, the current training skill of an athlete can be detected. However, it is 
extremely important to measure, document and analyse the performance history systematically 
on a regular basis. As mentioned before, the available measurement equipment is rather 
stationary, requires accuracy in use and often a dedicated analysis of delivered data so that it 
significantly complicates training planning and management. At this point we aim on 
developing a simple smartphone app for providing relevant information and feedback on 
performance data quickly and efficiently during a training session. 

Sensor Data Capturing on Android Devices 
According to Google (2012), Android devices may provide various built-in sensors for 
collecting information on motion, environment and position of a device. This does not only 
include GPS sensors that have been regularly used in the sports and outdoor industry for more 
than a decade (see e.g. Bouten et al., 1994), but also orientation as well as acceleration sensors 
and sometimes even gyroscopes. Perl et al. (2011) have summarized various uses of these 
sensor types (independent of mobile phones) and respective analysis techniques for sports 
science in an recent overview article. In order to obtain such data from mobile phone sensors, 
the Android operating system is offering a simple API for determining which sensors are 
available on a device as well as for finally retrieving the raw data.  

The mobile phone we have used for the experiments described in this article is an Xperia Ray 
produced by Sony Ericsson (2011) that costs about 200 Euros. Compared to other recent 
phones of competitors, the Xperia Ray, containing a 1 GHz single-core Snapdragon CPU, is 
relatively small and lightweight, as it measures merely 111 x 53 x 9.4 mm and weighs about 
100 g. For our experiments we were mainly interested in the built-in three-axis accelerometer 
of the phone, although it also offers a three-axis orientation sensor as well as a GPS. As 
described in the next subsection, sensor values can be captured via a simple Java program for 
the Android operating system used in the phone, which we have updated to version 4.0.3. 

Software 
Programmatically, reading the sensor data on an Android phone is a relatively simple 
undertaking as the following two Java snippets illustrate. It requires only two basic actions, 
namely registering a listener for the desired sensor type and processing sensor events whenever 
the listener is called back. As visible in the first snippet, it is necessary to select the desired 
sensor type and the desired sensor delay (we chose the “fastest” for obvious reasons). 
Unfortunately, it is not possible to directly select a desired sampling rate, most likely due to the 
numerous different types of phones and tablets that need to be supported by the Android 
operating system. Therefore, it merely used to be possible to choose from four so-called sensor 
delay constants (FASTEST = 0 ms, GAME = 20 ms, UI = 60 ms und NORMAL = 200 ms) 
before Android 3.0. Since then it is also possible to specify the sensor delay directly as a 
numerical value, however, to quote the Android documentation, “The delay that you specify is 
only a suggested delay (… and) There is no public method for determining the rate at which 
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the sensor framework is sending sensor events to your application”. In other words, every 
device delivers sensor events only according to its capabilities and depending on the actual 
change rate of the physical sensor.  

The following code snippet distills the four lines of code that are required to select and 
initialize a sensor (the accelerometer in this case) in an Android app.  
// initialize motion detection 

sensorDelay = SensorManager.SENSOR_DELAY_FASTEST; 

sensorMgr = (SensorManager) getSystemService(SENSOR_SERVICE); 

Sensor sensor =  
       sensorMgr.getDefaultSensor(Sensor.TYPE_ACCELEROMETER); 

sensorMgr.registerListener(this, sensor, sensorDelay); 

Once a SensorListener is registered like this, the listener method shown in the next snippet is 
called back whenever a sensor event, i.e. a change in the sensor values, occurs. In other words, 
a sensor usually creates sensor events only when its measured values have changed, which in 
turn implies that a phone moved with quickly changing motions, such as through shaking it, 
should deliver more sampling data per time unit than a phone in a static position. The snippet 
also illustrates how acceleration values for the three axes and a timestamp can be extracted 
from the submitted SensorEvent data object. 
// process sensor event 

public void onSensorChanged(SensorEvent se) { 

 long time = se.timestamp; 

 float ax = se.values[0]; 

 float ay = se.values[1]; 

 float az = se.values[2]; 

 ... 

} 

Once the acceleration values have been obtained as described it is easy to calculate the 
absolute acceleration (that ignores the phone’s concrete orientation) from this vector through 
taking the root of the three squared values, as follows: 

float aa = FloatMath.sqrt(x*x + y*y + z*z); 

For analysis purposes it also makes sense to store captured data on the phone’s SD card or 
internal memory from where it could be transferred via USB or Bluetooth to any arbitrary PC 
or laptop. 

AccelLogger App 
Based on the above data collection code, we have created a simple app that is able to measure 
acceleration values and to store them as CSV files on the phone’s permanent memory. We 
called the app AccelLogger and have made it freely available in Google’s PlayStore 
(https://play.google.com/store/apps/details?id=net.zehnkampf.accellogger) in order to allow an 
easy reproduction of our experiments. Beyond the plain recording of data values it is also able 
to display them as acceleration-time curve on the phone as shown in the following screenshot 
of seven “bunny jumps”. It also gives a first impression of the characteristics of these jumps 

https://play.google.com/store/apps/details?id=net.zehnkampf.accellogger�
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that we will analyze in more detail later. 

 
Figure 1. Screenshot of seven “bunny jumps” taken from the AccelLogger smartphone app.  

As this diagram view allows an immediate visual examination of the recorded values, it can 
also be used as a first plausibility check to uncover problems during data capturing. Moreover, 
the AccelLogger app is able to fundamentally analyze the recorded data in order to determine 
the actually achieved sampling rate as well as the measuring range for all three axes as shown 
in the following screenshot. 

 
Figure 2. Screenshot of AccelLogger’s main view after a series of jumps. 

Finally, the app also allows selecting one of the four sensor delay constants mentioned before 
so that it is easy to determine the achievable sampling rates for each setting as we will present 
in the following section. 

Sensor Testing and Calibration 

In order to avoid influencing our measurements through background tasks on the phone and to 
influence the phone’s processor as little as possible during data recording, we ended all 
available tasks and put the phone into flight mode prior to executing the measuring 
experiments. Furthermore, we did not do any additional data processing during the recording; 
we simply stored the data as received from the sensor on the phone’s SD card as described 
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before. The subsequent data analysis was carried out with Microsoft Excel on a Windows 
laptop to which we transferred the files later. Initially, we were most interested in finding the 
effective sampling rates possible with the Sony Xperia Ray based on the predefined sensor 
delay constants of the Android operating system mentioned before. For that purpose, we 
carried out two simple experiments, first we recorded the acceleration values delivered by the 
phone while it was lying still on the ground for 30 seconds and second we recorded them while 
a subject was jumping around with it for around 30 seconds. The following table presents the 
approximate sampling rates obtained. 

Table 1. Overview of sampling rates achieved with various sensor delays on the Xperia Ray. 

Movement FASTEST GAME UI NORMAL 

None 86.7 Hz       46.6 Hz 13.3 Hz 13.3 Hz 

Jumping 100.0 Hz 50.0 Hz 14.4 Hz 14.4 Hz 

 

Although the values fluctuate slightly in repeated runs, probably due to noise and light buil-
ding vibrations, we spared ourselves a more detailed analysis, since this experiment was 
merely intended to basically show that the Xperia Ray is capable of capturing acceleration data 
with a useful sampling rate of 100 Hz. As also visible in Table 1, the measured values for 
NORMAL and UI sensor delay are identical for some reason so that the Xperia Ray is 
obviously not able to support sensor delays larger than roughly 60 milliseconds. 

Phone Comparison 
We have been able to briefly run our acceleration logger app on two other Android-based 
phone types so far (Samsung Galaxy S II (Samsung, 2010) and Motorola Razor) and found 
surprisingly large differences in their measuring ranges as detailed in the following table. 

Table 2. Comparison of sensor performance of three current Android phone models contrasted with iPhone 4 
data taken from the literature. 

Phone Type Highest Sampling Rate Measuring Range per Axis Maximum Absolute 
Acceleration 

Sony Xperia Ray 100 Hz ± 40 m/s2 ~ 70 m/s2 

Samsung Galaxy S II 100 Hz ± 20 m/s2 ~ 35 m/s2  

Motorola Razor 100 Hz ± 80 m/s2 ~ 139 m/s2 

iPhone 41 unknown  ±  20 m/s2 ~ 35 m/s2 

 

                                                 
1 As reported by McNab et al. (2011). 
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We have obtained the reported values by shaking the phone as hard as we could for a few 
seconds and analysing the measured values afterwards. The Xperia Ray and the Razor have 
shown a good performance during these tests and thus should both be readily usable for motion 
analysis in sports. The measuring range of the Galaxy S II, however, seems to be too small to 
analyse jumps in a useful way as its compressed acceleration-time curves are not expressive 
enough. This brings us to the conclusion that motion analysis with smartphones is currently 
highly dependent on the product used. This assumption is also backed up by a personal 
conversation with one of the authors of Strohrmann et al. (2012) who confirmed that their 
attempts to use a Sony Xperia Active for this purpose failed due to the limited measurement 
range so that they were forced using dedicated Shimmer sensors for their experiments.  

The following remainder of this section is describing our efforts to obtain a basic under-
standing for the capabilities of the Xperia Ray in performance diagnostics. We describe the 
analysis of some initial jumps on a force platform that we performed in order to understand the 
acceleration-time curves captured by the phone and for being able to identify the jumps in the 
data delivered by the phone. 

Understanding Sensor Values 
In this subsection we explain how we compared the acceleration-time curves of the Xperia Ray 
with the force-time curves of the force platform we have used for our initial experiments. The 
latter was a model by Kistler (Switzerland) operated at 125 Hz with a threshold of 10 N. As 
shown in the following photograph, the smartphone was placed in a cell phone case that was 
attached to the lower back of our subjects.  

 
Figure 3. The Xperia Ray as attached to the subjects during our experiments. 

For illustration purposes, the axes of the phone’s accelerometer have been added to the figure 
in order to simplify the understanding of the following figure, showing an excerpt (basically 
the landing of one jump) from the recording of a series of bouncing jumps. 
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Figure 4. Analysis of one bunny jump as measured on the smartphone. 

Figure 4 illustrates how the curve for the absolute acceleration is composed from the 
acceleration vectors for the three axes, as described before, through taking the root of the 
squared sum of the acceleration vector. As visible, the x-axis is depicting the up and down 
movement of the jumper, thus having the biggest influence on the absolute acceleration in this 
case. The y-axis captures potential sidewise movements while the z-axis represents the forward 
or backward movements caused by slight hip movements during the jump.  

Through our analysis and comparisons with the force platform data we figured that take-off 
and landing times can be determined with reasonable reliability in the absolute acceleration as 
follows – a take-off can be recognized as the small local peak (caused by the superimposition 
of the three axes) after the large landing acceleration; the first ground contact of the landing 
can be determined as the last value before the significant increase in acceleration caused by the 
landing. 

Figure 5 exemplarily contrasts two jumps and the two measurement approaches with each 
other. As to be expected, the force platform delivers smooth force-time curves where the 
beginning and the end of the jumper’s ground contact is detectable in the upper diagram. 
Fortunately, as also visible in the lower diagram of the figure, the curve of the smartphone’s 
absolute acceleration as described before also turned out to be highly characteristic. 
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Figure 5. Comparison of two jumps measured on the force platform (upper diagram) and the smartphone (lower 

diagram). Offset caused by slight delay until impulses reach the smartphone. 

Assuming that every value above the threshold of 10 N on the force platform is a ground 
contact of the jumper, the analysis yields two ground contacts of 176 ms and 160 ms. The 
phone sensor looks very similar although it is roughly 20 ms delayed in comparison with the 
force platform. However, this can be easily explained with the delay that is needed until the 
ground contact is “propagated” through the jumper’s body. Fortunately, for detecting the 
absolute ground contact and flying times in the field this minimal shift is irrelevant anyway. 
Please note that we have subtracted earth gravity from the acceleration values in this figure in 
order to better illustrate the flight phase between two ground contacts. Applying the detection 
rules for the smartphone as defined before yields one ground contact of also 176 ms and one of 
170 ms. The deviation of 10 ms to the reference value of the force platform seems to be mainly 
caused by an unfortunate occurrence of sampling events in this case.  

Evaluation 

To verify the accuracy of the Xperia Ray (Sony Ericson, 2010) for measuring flight- and 
ground contact times in a more generalized setting, the data of 48 two-feet bunny jumps from 6 
male physical education students was recorded on the smartphone that was placed in a tight-
fitting softcase and fixed with a belt at the hip as shown in Figure 4. The collected data was 
compared with data recorded simultaneously by a force platform (Kistler, Switzerland, model 
9253A11), this time operated at 1,000 Hz with a threshold of 25 N. Based on the detection 
rules presented in the last subsection, we derived ground contact and flight times in 
milliseconds manually from the acceleration-time curves of the mobile phone (with the help of 
Microsoft Excel diagrams), since the data of the force platform was easier to interpret, a small 
VBA script simplified this task for us. 
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The test instruction for the subjects was: ”Starting from a standing position, feet slightly apart, 
please jump off with both feet, during the flight prepare for a landing with a short ground 
contact and a quick rebound. Leave your hands on the hips – no arm swing is allowed to 
support the jumps!”. Thus, the subjects started from a standing position on the force platform. 
We evaluated eight continuous two-feet ankle hops as described from every subject.  

Results 
The following table summarizes the flight times we have measured for our subjects and the 
cumulated deviations between the force platform’s reference values and the smartphone 
measurements. 

Table 3. Summarized flight times from our evaluation experiments. 

Subject Flight Times 1 2 3 4 5 6 7 8
Cumulated
Deviation

1 Smartphone 310 310 309 340 310 270 260 260

Force Platform 325 309 320 343 310 271 253 261 39

2 Smartphone 70 110 90 90 100 120 110 100

Force Platform 78 97 87 81 84 109 100 101 71

3 Smartphone 159 141 110 110 100 90 90 110

Force Platform 160 141 105 103 98 89 76 101 39

4 Smartphone 170 170 180 180 170 180 170 200

Force Platform 160 179 184 173 161 165 169 180 75

5 Smartphone 140 100 100 90 90 90 100 110

Force Platform 124 94 84 88 86 80 88 81 95

6 Smartphone 100 140 110 130 130 110 120 110

Force Platform 101 128 126 135 136 118 135 119 72  
Based on the numbers presented in Table 3, the average deviation over all 48 jumps is 8.15 ms 
with a standard deviation of 6.22 ms. Based on the average flight time measured with the force 
platform, which is 147.83 ms, this yields a relative error of about 5.5 percent. The maximum 
deviation from the force platform’s reference is 29 ms in the last jump of subject five; all other 
values are not larger than 20 ms. It also seems interesting to mention that the first two subjects 
reached extremely different flight times although their ground contact times presented in the 
following table are very similar.  

Overall, the results measured for the ground contact times of the subjects with the help of the 
smartphone look also quite encouraging; however, subject number 5 stands out with a 
deviation from the force platforms reference values that is almost twice as large as the second 
highest deviation. 



International Journal of Computer Science in Sport – Volume 12/2013/Edition 1              www.iacss.org 

   

 

56 

Table 4. Summarized contact times from our evaluation experiments. 

Subject Contact Times 1 2 3 4 5 6 7 8
Cumulated
Deviation

1 Smartphone 190 170 181 160 140 150 150 149

Force Platform 182 162 177 151 148 152 150 159 49

2 Smartphone 160 170 160 160 160 160 150 170

Force Platform 179 174 169 182 167 178 168 175 102

3 Smartphone 161 160 150 140 139 140 150 140

Force Platform 167 155 159 145 144 143 158 154 55

4 Smartphone 140 150 130 140 130 140 130 120

Force Platform 140 142 142 145 143 146 139 141 74

5 Smartphone 170 160 160 170 170 170 160 160

Force Platform 192 185 190 187 185 195 188 193 195

6 Smartphone 170 170 170 180 180 180 190 170

Force Platform 164 158 172 165 175 172 174 157 77  
The average deviation of the ground contact times calculates to 11.5 ms with a standard 
deviation of 8.09 ms, the relative error based on the average ground contact time of the force 
platform, which is 164.3 ms, is 6.9 percent. The largest individual deviation here is again from 
subject number five (33 ms in his last jump) with maximum values around 20 ms for the other 
subjects. 

Discussion  
Overall, the results of this first larger evaluation are quite encouraging: Except for one series of 
values in the ground contact times, practically all other measured values are in the range of the 
theoretically possible measurement accuracy of the smartphone. An inbuilt inaccuracy of up to 
9 milliseconds results from its sampling rate of 100 Hz, namely if the mobile phone just cannot 
measure an acceleration at the time of t = 0 that happens exactly one millisecond later (at t = 1) 
and is detected by the force platform at this very moment. In this case, the smartphone will 
detect this acceleration only during the next sampling sequence 9 milliseconds later. Another 
unpleasant effect detected is the slight deviation in the timestamps of the smartphone’s 
sampling data that are not always 10 milliseconds apart of each other (this is also the reason 
why we rounded the timestamps originally delivered in nanoseconds to milliseconds). 
However, not only the capabilities of the smartphone’s sensors influence the validity of our 
study, but the measurement of the force platform as well. Also it was operated at 1000 Hz, the 
threshold of 25 N is quite high and an analysis of the raw data reveals some delay time caused 
by the inertia of the mechanics in these measurements as well. Hence, to obtain even better 
ground truth data for calibrating the smartphone data, it seems helpful to analyse a series of 
jumps with high speed video to detect the exact moment of ground contact and final take-off in 
the future. Furthermore, pre-processing the smartphone data in order to achieve equidistant 
sampling times should also improve data quality. 

This explorative study was also interesting from another perspective as it yielded two more 
important results. The first one is that it is indeed possible to analyse bouncing jumps of 
different subjects with the same method as the absolute acceleration-time curves of their jumps 
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look very similar and have the same characteristic inflection points. However, it also 
demonstrated that there are still subtle cases in which the analysis of the absolute acceleration 
is not sufficient. From this perspective, subject five is of particular interest– while we found a 
few jumps where the inflection points in the absolute acceleration curve started to blur, it was 
most often the case with this subject. Analysing the acceleration axes of his measurements 
separately revealed a relatively large movement in the z-axis. In other words, he was moving 
his hip forward and backward during the jumps significantly more than all other subjects so 
that the absolute acceleration was influenced negatively. Based on this insight, we believe the 
first step for improving our approach should be the individual analysis of the three acceleration 
axes (especially the x-axis) since this might deliver better results for an upcoming automated 
jump analysis app. Moreover, additional movements as detected for this subject might become 
a good indicator for judging the proper execution of a jump, which in turn could become an 
additional indicator for an increasing fatigue of an athlete. 

Outlook 

Although the results presented so far are very promising, it is obviously necessary to automate 
the recognition of relevant parameters (i.e. at least flight and contact times) on the phone in 
order to provide a practically usable training support system. Hence, we have started some 
work in this direction which we want to describe in this section. At a first glance, the 
automation of jump detection seems to be a relatively simple undertaking that can be based on 
the passing of simple threshold values. However, the measurement ranges of different phones 
and the cleanliness of the jumps are crucial aspects in this context that unfortunately make 
automated detection more complicated. It gets even worse, as not only thresholds, but also 
prior maxima need to be recognized automatically for properly detecting the correct phase of a 
jump, which is also influenced by the sampling rate of the used device. Hence, we are currently 
only working on a prototypical automation of this challenge through a simple algorithm that is 
optimized for the measurement range and sampling rate of the Xperia Ray and not yet 
generalized for other phone types. Obviously, the next goal should be to integrate a generalized 
version of this algorithm into the AccelLogger app so that it is able to present analysis results 
directly after a series of jumps was executed. 

The detection algorithm we have implemented so far is relatively primitive as it is aiming on 
the detection of the inflection points described in the context of Figure 4 by a simple 
comparison with previous and subsequent values. Moreover, we have implemented some 
sanity checks intended to guarantee that the inflection points are found in a meaningful range 
of acceleration values only. In other words, not every movement of the phone should be 
detected as a jump. A version of the AccelLoger app enhanced with this algorithm is able to 
present the detected values in a simple tabular view and also marks them in the acceleration-
time diagram with blue (take-off) and red dots (landing) as shown in the following screenshot. 
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Figure 6. Graphical representation of recognized jumps in the Jumpalyza app.  

The algorithm works reasonably fast on the Xperia Ray so that no delay is recognizable for 
series of around ten jumps and even longer series can easily be analyzed in under one second. 
However, as indicated before, the algorithm is still adapted on the sampling rate and the 
measuring range of the Xperia Ray and thus it is not yet possible to execute it on other 
smartphone types with different sensor characteristics without adaptations. 

Conclusion 

In this article, we have investigated the applicability of modern off-the-shelf smartphones for 
performance diagnostics in sports. This idea has been motivated by the high price and 
relatively complex handling of existing systems for this purpose (such as force platforms). 
Moreover, most existing systems are not mobile in the sense that they would easily fit into a 
small bag or could be used in the field without continuous power supply. Hence we have 
identified multiple two-legged jumps with flexing in the ankle points only (also known as 
bouncing or bunny jumps) and their regular movement pattern as the ideal candidates to 
investigate the potential of modern smartphones in jump analysis. We have used an Android 
based Sony Xperia Ray (Sony Ericsson, 2011) to capture acceleration-time curves of such 
jumps and analyzed them in comparison to force-time curves as delivered by common force 
platforms. 

The main findings of our work – that goes far beyond the only other publication in this 
direction that we are aware of (McNab et al., 2011) – are as follows. First, we have found that 
the Xperia Ray (as well as a Motorola Razor) provides acceleration sensors with a reasonable – 
though still improvable – sampling rate of 100 Hz and measuring range (± 40 m/s2 resp. ± 80 
m/s2) that make them interesting for more serious use cases than just the iBeer fun app, for 
instance. Moreover, we have presented an explanation of the acceleration-time curves 
measured by smartphone sensors in the context of bouncing jumps and identified clear 
indicators for take-offs and landing. In order to evaluate the generalizability of this approach 
we have tested a simple data recording app with six student subjects in comparison to a force 
platform. This experiment has revealed that even the absolute acceleration values of the 
smartphone sensors are able to detect ground contact and flight times of bouncing jumps with 
precision similar to a force platform. The relative error is already below seven percent and 
even the average absolute error from this investigation is with 11.5 ms near the range  
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determined by the sampling rate of the current smartphone generation (± 10 ms). Based on 
some outlying results detected for one subject, our study has also revealed various starting 
points (such as analyzing the three individual accelerometer axes) that might help increasing 
the precision and the generalizability of our approach in the future. 
Based on our preliminary experience with implementing an automated recognition of flight 
and contact times on the Xperia Ray, we are convinced that a full automated smartphone based 
jump analysis system should be possible in the not too distant future. Since temporary results 
from the analysis of drop jumps also delivered promising results, we envision the development 
of an Android app that is able to automatically analyze various types of jumps in the field in 
real-time. Furthermore it also seems feasible that even the ground contact times of take-offs in 
long, high or triple jump or even in sprints can be recognized with such an app in the medium 
term future. The availability of such a relatively cheap and ultra-mobile performance 
diagnostics system would certainly make this important technique of training science available 
to a much larger range of trainers and athletes as this is the case today. 
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Abstract 
The normal oscillation of the heart rate is called Heart Rate Variability (HRV). 
HRV parameters change under different conditions like rest, physical exercise, 
mental stress, and body posture changes. However, results how HRV parameters 
adapt to physical exercise have been inconsistent. This study investigated how 
different HRV parameters changed during one hour of running. We used datasets 
of 295 athletes where each dataset had a total length of about 65 minutes. Data 
was divided in segments of five minutes and three HRV parameters and one 
kinematic parameter were calculated for each segment. We applied two different 
analysis of variance (ANOVA) models to analyze the differences in the means of 
each segment for every parameter. The two ANOVA models were univariate 
ANOVA with repeated measures and multivariate ANOVA with repeated 
measures. The obligatory post-hoc procedure consisted of multiple dependent 
t tests with Bonferroni correction. We investigated the last three segments of the 
parameters in more detail and detected a delay of one minute between varying 
running speed and measured heart rate. Hence, the circulatory system of our 
population needed one minute to adapt to a change in running speed. The method 
we provided can be used to further investigate more HRV parameters.  

KEYWORDS: ADAPTION OF HRV PARAMETERS, RUNNING, UNIVARIATE 
ANOVA WITH REPEATED-MEASURES, MULTIVARIATE ANOVA WITH 
REPEATED MEASURES 

Introduction 

The normal oscillation of the heart rate is called Heart Rate Variability (HRV). HRV is a 
measure which describes the parasympathetic and sympathetic influence of the autonomic 
nervous system. The interest in HRV has increased in the last few decades (Kaikkonen, 
Nummela, & Rusko, 2007). It is known that its influence changes under different conditions 
such as rest, physical exercise, mental stress, and body posture changes (supine, sitting, 
standing). Results how its influence changes during exercise have been inconsistent (Boettger, 
Puta, Yeragani, Donath, Müller, Gabriel, & Bär, 2010; Tulppo, Mäkikallio, Takala, Seppänen, 
& Huikuri, 1996).  

The calculation of HRV parameters can be done in the time- or frequency-domain. In the time-
domain, the heart rate at any point in time or the intervals between successive QRS complexes 
are determined (Task Force of The European Society of Cardiology and The North American 
Society of Pacing and Electrophysiology, 1996). The intervals between two consecutive R 
peaks are called RR intervals. This equals the time between two heartbeats. Recommended 
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time-domain parameters are the standard deviation of the RR intervals (SDRR), the integral of 
the density distribution (i.e. the number of all RR intervals) divided by the maximum of the 
density distribution (the HRV triangular index), the standard deviation of the average RR 
interval calculated over short periods (SDARR), and the square root of the mean squared 
differences of successive RR intervals (RMSSD) (Task Force, 1996).  

In the frequency-domain, methods like the power spectral density (PSD) are used to obtain 
information of how power distributes as a function of frequency. Recommended frequency-
domain parameters are the power within the very low frequency band (≤  0.04 Hz), the power 
within the low frequency (LF) band (0.04 Hz to 0.15 Hz), the power within the high frequency 
(HF) band (0.15 Hz to 0.4 Hz), and the LF/HF ratio (Task Force, 1996). 

The purpose of this study was to examine if and how three HRV parameters of the time- and 
frequency-domain (average heart rate, RMSSD, and LF/HF ratio) and one kinematic parameter 
(average running speed) are changing during one hour of running. We used datasets of 295 
athletes where each dataset had a total length of about 65 minutes. Data was divided in 
segments of five minutes and the parameters were calculated for each segment. We applied 
two different analysis of variance (ANOVA) models to analyse the differences in the means of 
each segment for every parameter. The two ANOVA models were univariate ANOVA with 
repeated measures and multivariate ANOVA with repeated measures. The obligatory post-hoc 
procedure consisted of multiple dependent t tests with Bonferroni correction. 

Methods 

Hardware 
We used the Polar RS800 Running Computer with an S3 stride sensor and a chest strap (Polar 
Electro Oy ("Polar"), Kempele, Finland). With this system, the running speed, the stride 
frequency, the barometric height, the heart rate, and the RR intervals were measured. The 
resolution of the RR intervals was 1 ms. The sampling frequency of the other four parameters 
was set to 0.2 Hz.  

The complete measurement equipment consisted of three different sensor systems (Eskofier, 
Hoenig, & Kuehner, 2008, Eskofier, Kugler, Melzer, & Kuehner, 2012). The first sensor 
system was the Running Computer with the stride sensor and the chest strap. The second 
sensor system was an adidas_1 running shoe (adidas AG, Herzogenaurach, Germany). The 
third sensor system was the Nokia 6110 Navigator cell phone (Nokia, Espoo, Finland). In the 
current study, only data from the first sensor system (the Running Computer) was used.  

Data 
The study consisted of 431 runners whose running experience varied within the subjects. In the 
current study, we used a subset of only 295 subjects (98 female and 176 male*

The subjects got the task to complete a run in one hour in a self-determined fashion, without 
distance or speed requirements. Hence, the subjects could choose their own speed and 

, age 43 ± 11 
years*, BMI: 23.1 ± 2.4 kg/m2*, mean ± SD (standard deviation)). For the current study, only 
the running speed, the heart rate, and the RR intervals were used. In the subset of 295 subjects, 
all three variables were available.  

                                                 
*27 subjects did not answer the questionnaire with respect to gender, age, and BMI. 
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therefore the intensity of the running exercise varied amongst subjects. The subjects ran for 
60 minutes and data were acquired for 65 minutes. The subjects were free to run or to rest in 
the last 5 minutes of data acquisition (after the one-hour run), just as they preferred. 

Analysis 
Several parameters were calculated to obtain different HRV measures. All physiological 
parameters for HRV analysis were calculated from the tachogram (Figure 1), in which 
consecutive RR intervals are plotted (Task Force, 1996). The RR intervals were divided in 
segments of five minutes. In the time-domain, the average heart rate and the square root of the 
mean squared differences of successive RR intervals (RMSSD) were calculated (Task Force, 
1996):  

   , (1) 

where N is the number of RR intervals in one segment, RRi (RRi+1) is the i-th ((i+1)-th) RR 
interval in the specific segment and i ranges from 1 to N. 

 
Figure 1. Exemplary tachogram of RR intervals in ms over time. 

The RMSSD measure is known to be an adequate parameter for the analysis of measurements 
under uncontrolled conditions such as ‘free-running’ conditions (Penttilä, Helminen, Jartti, 
Kuusela, Huikuiri, Tulppo, Coffeng, & Scheinin, 2001, Plews, Laursen, Kilding, & Buchheit, 
2012). 

In the frequency-domain, the PSD of RR intervals was determined. After eliminating the DC 
component by subtracting the mean of the five minute segment, the Fourier transform (FT) of 
the signal was obtained. Then, the squared magnitude values of the FT were calculated. This 
resulted in the PSD. The calculation of the FT required equidistant values of RR intervals. 
Therefore the RR intervals were linearly interpolated with a sampling frequency of 8 Hz 
(Singh, Vinod, & Saxena, 2004). The PSD was normalized with the total power minus the 
power of the very low frequencies (≤  0.04 Hz) (Task Force, 1996). The LF component of this 
PSD reached from 0.04 Hz to 0.15 Hz, and the HF component from 0.15 Hz to 0.40 Hz. The 
results of the parameter in the frequency-domain are based on the LF/HF ratio.  

The dataset of the running speed was divided in segments of five minutes each likewise the 
tachogram. The average running speed within each segment was calculated as fourth 
parameter. 
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Statistics 
All parameters were evaluated using a univariate analysis of variance (ANOVA) with repeated 
measures and a multivariate ANOVA with repeated measures (Stevens, 1996). In an ANOVA 
model, it is tested if the null hypothesis is accepted at the significance level α. Our null 
hypothesis was the assumption that there is no difference in the means (for each parameter 
over all subjects) of all segments. The alternative hypothesis is that at least two means differ 
significantly. If the null hypothesis was rejected, multiple dependent t tests with Bonferroni 
correction as post-hoc procedure were used. The Bonferroni correction was necessary to keep 
the overall α under control. 

The basic requirements in applying one of these ANOVA models were independence of 
observations and multivariate normality. The independency was given due to the problem. 
When parameters after visualization in a histogram did not resemble a normal distribution, the 
natural logarithm of these parameters over the data set was used. The Lilliefors test (Lilliefors, 
1967), which is a specialized version of the Kolmogorow-Smirnow test, was used at the 
significance level α for testing normal distribution. The method of univariate ANOVA with 
repeated measures assumes the sphericity or circularity assumption. If the sphericity 
assumption is violated, the Greenhouse & Geisser correction (Stevens, 1996) was applied to 
decrease the degrees of freedom.  

Each analysis was performed using the Matlab package (MathWorks Inc., USA). 

Results 

The results section has been divided into two parts. The first part deals with the experiments 
described in the methods above. Due to these results, a further experiment with only the last 
three segments was performed. The results of this experiment are described in the second part.  

Table 1. Results of the Lilliefors test and both ANOVA models. Abbr.: seg. = segment; uni. = univariate; multi. 
= multivariate; *The numbers in the brackets indicate segments in which the Lilliefors test was 
rejected. 

 Lilliefors test  
(α = 0.10) 

uni. ANOVA  
(α = 0.05) 

multi. ANOVA  
(α = 0.05) 

Heart rate accepted (2)* F(1,294) = 1334.8,  
p < 0.001 

F(12,283) = 480.2, 
p < 0.001 

ln(RMSSD) rejected n.a. n.a. 

ln(LF/HF) accepted (1,13)* F(1,294) = 294.7,  
p < 0.001 

F(12,283) = 126.5, 
p < 0.001 

Speed accepted (1,9,11)* F(1,294) = 2194.3,  
p < 0.001 

F(12,283) = 338.3, 
p < 0.001 

 
Table 1 states the results of the experiments over the complete data set. The three physiological 
parameters heart rate, ln(RMSSD), and ln(LF/HF) and the kinematic parameter speed were 
tested for the requirements of both ANOVA models. Although the Lilliefors test was not 
satisfied for every segment, both ANOVA models with repeated measures were applied to the 
parameters (McDonald, 2009) except for ln(RMSSD). Here no single segment fulfilled the 
requirement of multivariate normality. The sphericity assumption, necessary for the univariate 
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ANOVA model, was rejected for the three remaining parameters. Hence, the degrees of 
freedom for the univariate ANOVA were decreased with the Greenhouse & Geisser correction 
in these cases. In our case, both degrees of freedom were divided by the factor 12. Both 
ANOVA models revealed the same result. The null hypothesis of equal means within all 13 
segments was rejected for every parameter.  

Hence, the post-hoc procedure of multiple dependent t tests with Bonferroni correction was 
applied. The post-hoc procedure, presented in Figure 2, revealed that each parameter had 
adjacent segments with no significant differences. 

 
Figure 2. Results of the post-hoc procedure (multiple dependent t test with Bonferroni correction) for all three 

parameters. The blue bar indicates adjacent segments with no significant differences.  

Because of the results, further investigations were done with the last three segments (segments 
11 to 13). As each segment consisted of 5 minutes, the segments were divided in minutes. This 
resulted in a considered time of 15 minutes in total. Table 2 shows the results of the Lilliefors 
test and both ANOVA models. The parameter ln(RMSSD) was again tested for the 
requirements of the ANOVA models and, as neither the multivariate normality nor the 
sphericity assumption was fulfilled, not considered in further analysis. The three remaining 
parameters accepted mostly the normality assumption. The sphericity assumption was rejected 
for the three parameters, wherefore the Greenhouse & Geisser correction was used in the 
univariate case, too. Both ANOVA models revealed the result that the means of each 
parameter considering these 15 minutes were not equal. The post-hoc procedure is shown in 
Figure 3. 

Table 2.  Results of the Lilliefors test and both ANOVA models for the last three segments (last 15 minutes). 
Abbr.: seg. = segment; uni. = univariate; multi. = multivariate; *The numbers in the brackets 
indicate segments in which the Lilliefors test was rejected. 

 Lilliefors test  
(α = 0.10) 

uni. ANOVA  
(α = 0.05) 

multi. ANOVA  
(α = 0.05) 

Heart rate accepted (5)* F(1,294) = 213.4,  
p < 0.001 

F(14,281) = 75.6,  
p < 0.001 

ln(RMSSD) rejected n.a. n.a. 

ln(LF/HF) accepted (4,6,12,13)* F(1,294) = 70.1,  
p < 0.001 

F(14,281) = 26.7,  
p < 0.001 

Speed accepted (1,2,8,12)* F(1,294) = 450.7,  
p < 0.001 

F(14,281) = 65.4,  
p < 0.001 
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Figure 3. Results of the post-hoc procedure (multiple dependent t test with Bonferroni correction) for the last 
three segments (last 15 minutes) for three parameters. The blue bar indicates adjacent 
segments resp. minutes with no significant differences. 

Discussion 

The post-hoc procedure of multiple dependent t tests demonstrated that no different means for 
the segments 8 to 12 were present in all four parameters. As each of the three parameters 
changed from the 12th to the 13th segment, these segments were further investigated. The 13th 
segment is the last segment in which data was recorded and all volunteers were free to run or 
to rest, just as they preferred.  

Partitioning the last three segments into five sub-segments of one minute length allowed a 
closer investigation of the end of the training session. Considering the three longest bars in 
Figure 3, the speed changed between the second and the third minute of the 13th segment. The 
heart rate and the ln(LF/HF) changed one minute later: between the third and the forth minute 
of the last segment. Here a delay of one minute was obvious. 

The cardiovascular system has to deal with an increased demand during physical exercise 
(Aubert, Seps, & Beckers, 2003). As soon as the physical activity is finished, the 
cardiovascular system adapts to the current physiological demand. We found a delay of one 
minute between the physiological parameters and the kinematic parameter after decreasing the 
running speed. One minute is the time that our running population needed to adapt the 
circulatory system to a change in running speed. 

Looking at the start of the training, the speed did not change between the 2nd to the 5th segment 
and then between the 5th to the 12th segment. The parameter ln(LF/HF) did not change between 
the 3rd to the 5th segment and between the 6th and the 7th segment. If a connection between 
these two parameters was existent, is uncertain.  

The heart rate did not change between the 6th and the 7th segment. As the heart rate changed 
from the start of the exercise until the 6th segment, this is another evidence that the circulatory 
system needs time to adapt to physiological changes.  

One drawback of this study is that neither a resting phase at the beginning nor the end had been 
included. Therefore, it is not possible to compare the physical exercise part with rest data or 
with recovery data. Another disadvantage is that the datasets were divided in segments of five 
minutes. Whether this length of the segments reflects well on the autonomous nervous system 
has to be further evaluated. Moreover, we only examined three HRV parameters and one 
kinematic parameter. One of the HRV parameters (RMSSD resp. ln(RMSSD)) had to be 
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excluded as the requirements for the ANOVA models were not fulfilled. In further analysis, it 
is suggested to compare more recommended HRV parameters of the time- and frequency-
domain (Task Force, 1996). 

Conclusion and Outlook 

We presented an analysis of the variation of heart rate and the ln(LF/HF) as well as the 
kinematic parameter running speed during a free one hour outdoor run. The ln(RMSSD) as a 
parameter for the chosen ANOVA models had to be excluded as the requirements for the 
ANOVA models were not fulfilled. Our analysis was based on two different ANOVA models 
with repeated measures. The used post-hoc procedure consisted of multiple dependent t tests 
with Bonferroni correction.  

During this one hour of running, all three parameters reached a process in which the means did 
not alter significantly. We detected a delay of one minute between varying running speed and 
measured heart rate.  

In further analysis, subgroups of athletes like female and male runners, or experienced and 
unexperienced runners will be examined. With these further investigations more information 
regarding HRV and fatigue could be gained.  
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Abstract 
Music plays in important role in human culture. This is also the case for exercise, 
games and exergames. In this study we examine the influence of previous game 
experience and the presence of music and sound on game performance and game 
experience. Sixteen students (12 males, 4 females; age: M = 24.8 years, SD = 3.4) 
played two exergames with and without sound and music. Game performance, 
game experience and the perception of sound and music were assessed as 
dependent variables. Whereas music and sound had no impact on game 
performance, selected dimensions of game experience (tension, positive affects) 
were significantly influenced. The game-specific significance of music and sound 
was confirmed by the participants. 

KEYWORDS: MUSIC, SOUND, EXERGAMES, GAME EXPERIENCE, SERIOUS 
GAMES 

Introduction 

Music – as an “integral – and often inescapable phenomenon of … culture” (Bishop, 2010, 
p.35) – is an important part of human lives. In Germany, for example, about 90 per cent of 
young people (age: 12 to 19 years) are interested in music. After “love & friendship”, “music” 
is the second important interest of young people (MPFS, 2011). Not only children and youth, 
but also adults spend a considerable amount of time to listening to music (Statistisches 
Bundesamt, 2004). 

Music has important influences on human cognitive, emotional and perceptual-motor functions 
(for a critical review, see Hunter & Schellenberg, 2010):  

Music captures attention, raises spirits, triggers a range of emotions, alters or regulates 
mood, evokes memories, increases work output, heightens arousal, induces states of 
higher functioning, reduces inhibitions and encourages rhythmic movement  
(Karagheorgis & Priest, 2012a, p.35).  

Table 1 illustrates the various general impacts of sound and music on different levels of the 
human system. 

Music has been applied in sport and exercise to enhance performance, for example when 
learning and performing perceptual-motor skills (e.g., Beisman, 1967; Bishop, 2010) or 
exercising (Karageorghis & Priest, 2012a and b). For instance, stimulating music may increase 
strength and endurance performance. 
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Table 1. Impact of music on different organizational levels of humans (synopsis from literature; references: see 
text). 

Level Impact 

Cognitive Attention (focus, distraction), perception, memory 

Emotional Mood, emotion, motivation, adhesion, volition 

Physiological Arousal (stimulation), relaxation (sedation), disinhibition; heart 
rate, skin conductance, EMG 

Behavioral Work output, rhythmic movement (timing), precision, movement 
speed 

 

Music can be applied asynchronously, i.e. pre-task or post-task, or synchronously, i.e., in-task. 
The following sport-specific effects are ascribed to the asynchronous use of music: 

− Transitional benefits: arousal control, reduced rating of perceived exertion (RPE), 
improved mood, ergogenic effects, reduced muscle tension 

− Chronic benefits: Increased exercise adherence, effective preparation routine 
The synchronous application of music refers to “an innate human predisposition to synchronize 
movement with musical rhythms” (Karageorghis & Priest, 2010, p.49). Although this 
explanation is mainly a phenomenal description, research in neuroscience has revealed some 
interesting phenomena of afferent-efferent synchronization. These effects can be used to 
enhance timing and precision of movements. 

Generally, the impact of music on humans is subject to numerous moderators including 
characteristics of the music (e.g., beat, melody, tempo, volume) and the listener (e.g., 
personality, mood, music preference, performance level) as well as the type of task to be 
completed (e.g., strength, endurance, precision, speed, intensity) and the mode of application 
(e.g., pre-task, in-task, schedule). In Figure 1 the complex interaction of various factors and 
moderators is illustrated. 

 
Figure 1. The impact of music as a complex interaction of various factors. 

Music and sound are also important features in digital games. In two experiments, Nacke 
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(2009) confirmed significant effects of diegetic sound and non-diegetic music on Game 
Experience (GX) and physiological measures when playing first-person shooter (FPS) games. 
GX was measured by the Game Experience Questionnaire, whereas physiological reactions 
were assessed by electro-dermal activity (skin conductance) and the EMG of facial muscles 
(Mm. orbicularis oculi, corrugator supercilii, zygomaticus major). The presence of diegetic 
sound had the strongest impact on GX. Furthermore, besides general effects of music on GX 
and EMG, Nacke (2009) found specific gender effects: Female players experienced 
significantly less negative affects, greater challenge (only younger women) and less arousal, 
when music was present. Diegetic sound and nondiegetic music show a complex interaction: 
When diegetic sound is present in FPS games, music does not play a significant role. 

No studies are known to the author analyzing specific effects of music and sound on 
performance in exergames, i.e., digital games including whole-body movements and exercises. 
Therefore, the purpose of this study was to confirm the generic (nondiegetic) and explore the 
specific (diegetic) effects of music and sound on game performance in exergames. This 
generalization is on the one hand supported by Mueller et al. (2011), who address the impact of 
external rhythm (music) on exergame performance. Evidence also comes from movement 
science, where the use of acoustic support like (rhythmic) sonification has been proved to 
enhance both perception and performance of movements (e.g., Effenberg, 2005). 

Methods 

Hypotheses 
Based on existing evidence the following hypotheses were derived: 

− Music and sound have a differential impact on game performance and experience 
depending on its guiding, i.e. diegetic versus nondiegetic function. Analogous to the 
results reported by Nacke (2009) and due to the guiding function of diegetic music and 
sound (e.g., Effenberg, 2005) we expect a stronger effect of diegetic music and sound 
compared to a weaker effect of nondiegetic music and sound both on game 
performance and game experience.  

− Previous experience on digital games modifies music perception in exergames. Due to 
the novelty effect we expect music perception to be more pronounced in participants 
without previous game experience. 

Sample 
Based on the results of Nacke (2009) yielding effect sizes of music and sound versus no 
music/sound ranging from 0.22 (experiment 1: N = 36) to 0.60 (experiment 2: N = 36), a mean 
effect size of 0.41 was calculated. Optimal sample size was calculated using the program 
GPOWER 3.1 (Faul et al., 2007). Considering an α error of 0.05, an β error of 0.20 (power = 
0.80) and an effect size of 0.41 an optimal sample size of 14 resulted for a within-subjects 
design with two repeated measures (correlation between the two measurements = 0.5).  

Sixteen students (12 males, 4 females; age: M = 24.8 years, SD = 3.4) volunteered to 
participate in the study. 68.8% (8 males) are experienced videogamers (criteria: playing digital 
games for more than five years), 31.3% have played the Nintendo Wii and 18.8% have played 
the Balance Board.  
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Design and Dependent Measures 
The study was based on a between-subjects design with repeated measures. Previous game 
experience (cutoff point: 5 years of game experience) and game played (Wii fit Step-up versus 
Hula Hoop) were the two between-subjects factors. 

Dependent measures were game score, game experience, general and game-specific perception 
of music and sound. 

Game experience was assessed using a modified 35-item version of the Game Experience 
Questionnaire (Poels et al., 2008; German translation: Nacke, 2009). To offer a uniform 
response format for all questionnaires, the items were estimated using a 7-point Likert scale (1 
– “fully applies”; 7 – “does not apply at all”). With one exception (negative affects) reliability 
was acceptable, i.e., above .7 (see Table 2). 

Table 2. Reliability of the 6 GEQ dimensions (Cronbach’s alpha). 

Condition GEQ dimension 

Flow Competence Tension Challenge Positive  
affect 

Negative  
affect 

Music .791 .938 .865 .792 .787 .421 

No music .724 .935 .825 .772 .879 .162 

 

The general significance and experience of music and sound was assessed based on the Brunel 
Music Rating Inventory-2 (BMRI-2; Karageorghis et al., 2006). We applied a modified 13-
item questionnaire with a 7-point Likert scale (1 – “fully applies”; 7 – “does not apply at all”). 
Six items addressed the impact of music (BMRI-2) and seven items were dedicated to sound. 

Game-specific perception of music and sound was assessed using a self-developed 
questionnaire comprising 4 items per game with a 7-point Likert scale (1 – “fully applies”; 7 – 
“does not apply at all”; see Appendix).  

Procedure 
The participants were randomly (i.e., by lot) assigned to a Step-up group (n=8; 5 males, 3 
females) or a Hula Hoop group (n=8; 7 males, 1 female) with each group consisting of an 
equal number (n=4) of experienced and less experienced videogamers, respectively. After 
completing a questionnaire to collect basic data like age and previous game experience the 
participants played either the Wii game ‘Step-up’ or the Wii game ‘Hula Hoop’. Loudness of 
sound and music was at a convenient level. No physical measurements were performed. 

The two games were chosen as the most appropriate games from the Wii fit exergame 
collection because they demand dynamic whole-body activities and because music and sound 
have different functions. The ‘Step-up’ game (see Figure 2a) is a kind of step-aerobic where 
the players have to step on and off the balance board according to a prescribed rhythm. In this 
game music and sound exert strong and permanent diegetic functions. Music supports 
feedforward control of timing, whereas sound conveys feedback about correct timing. In 
addition, timing is indicated by visual cues presented synchronously to the music. In the ‘Hula 
Hoop’ game (see Figure 2b) the task is to rotate as many hoops as possible within a certain 
time. Music is nondiegetic, whereas sound indicates flight of the hoops thrown at irregular 
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intervals by the two avatars in the background, thus exerting a weaker and transitory diegetic 
function compared to the ‘Step-up’ game. The hoops must be caught by the player by leaning 
to the side. 

      

 
Figure 2. Illustration of the Wii games ‘Step-up’ (left side) and ‘Hula Hoop’ (right side). 

Table 3 illustrates the significance of music and sound in the two games. 

Table 3. Significance of music and sound in the two Wii games. 

Game Music Sound 

Step-up Diegetic: timing, feedforward  
(strong; permanent) 

Diegetic: timing, feedback  
(strong; permanent) 

Hula Hoop Nondiegetic Diegetic: flight  
(weak; transitory) 

 

The participants had to play the games once (Step-up) or twice (Hula Hoop) with and without 
music and sound. After playing, GX, game performance, and the significance of music and 
sound were assessed as dependent variables.  

Data Analysis 
Statistical analysis was performed using the SPSS 20.0 package. Two or three factor ANOVAs 
were used with repeated measures (music) and one or two between-subjects factors (game 
experience, game). Follow-up analyses were performed using either Wilcoxon tests or Mann-
Whitney U tests. 

Results 

Concerning game score (Figure 3) a 2 (previous game experience) x 2 (game) x 2 (music) 
ANOVA with repeated measures on the last factor revealed a significant main effect of the 
game factor (F 1,12 = 7.79, p<0.05, η2

part = 0.39). Furthermore, neither main effects nor 
interactions were significant. 
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Figure 3. Game scores with and without music (Mean, Standard Deviation). 

 
Figure 4. GEQ scores with and without music (Mean, Standard Deviation). 

The GEQ items generally showed intermediate levels of GX ranging from 2.8 to 5.3 (music) 
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and 3.3 to 5.2 (no music), respectively (Figure 4). A 2 (previous game experience) x 2 (game) 
x 2 (music) x 6 (GEQ dimensions) ANOVA with repeated measures on the last two factors 
revealed a significant main effect of GEQ dimension (F 2,24 = 16.15; p<.001, η2

part = 0.57; after 
correction with εGreenhouse-Geisser) and an interaction of music and GEQ dimension (F 3,32 = 3.45; 
p<.01, η2

part = 0.22; after correction with εGreenhouse-Geisser; Figure 4). Follow-up analyses 
(Wilcoxon tests) revealed significant differences both in favor of and against music and sound 
(music and sound: higher tension, higher positive affect). 

All other main effects and interactions were not significant. 

Concerning subjective experience of music and sound a  2 (previous game experience) x 2 
(game) x 13 (items) ANOVA with repeated measures on the last factor revealed neither 
significant effects of game nor previous game experience. However, a significant effect of 
items was found (F 4,47 = 10.35; p<.001, η2

part = 0.46; after correction with εGreenhouse-Geisser; 
Figure 5). In general, the impact of sound was more agreed upon than the influence of music. 
Agreement for cognitive and motivational effects of sound was highest. The strongest 
performance effect of music was perceived for the beat, followed by rhythm, tempo, and 
melody. 

 

Figure 5. General significance of sound and music (Mean, Standard Deviation). 

Two 2 (previous game experience) x 4 (items) ANOVAs did not reveal any main effects nor 
interactions for the game-specific effects of sound and music. In the ‘Step-up’ game two items 
displayed agreement (support of resumption and feedback of timing; Figure 6) whereas the 
other two items were only moderately in agreement (guidance function in general and in case 
of errors). 
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Figure 6. Game-specific significance of sound and music (Mean, Standard Deviation) –  

HH – Hula Hoop; SU – Step-up. 

In the ‘Hula Hoop’ game a moderate general influence of music was experienced (2 items), 
whereas no particular ergogenic or guidance effect was reported. 

Discussion 

We were not able to show differential effects of music and sound in the two games on 
performance. The participants scored equally well with and without music and sound. The 
missing performance effects of music and sound may be due to the fact that the participants 
had only one or two trials with the respective game. Playing time is always a compromise of 
getting accustomed to and engaged in the game and losing interest. We expected that the first 
one or two attempts would be most important for the impact of music and sound. 

Second, overall game score is a comparatively superficial indicator of performance. More 
sophisticated measures like Absolute and Variable Errors might have yielded more 
differentiated results. Another reason may be that the missing information conveyed by sound 
and music could be compensated or substituted by visual sources in both games. A different 
result may have been obtained when the participant would have played blindfolded in the 
sound/music condition, but this was not the research question of the present experiment. The 
present study was performed to investigate the additional effect of sound and music in 
exergames. 

The significantly higher score found in the Hula Hoop game is due to the specific scoring 
systems of the games. 

However, we found positive and negative effects of music and sound on GX. Regardless of the 
game and game experience music and sound enhanced tension and positive affects. This result 
corresponds to the findings reported by Nacke (2009). However, Nacke also found significant 
effects on competence, flow, negative affects, and challenge. Again, the lower impact of 
missing acoustics may be due to the fact that visual sources of information could be used by 
the players.  
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Actual power of this study – based on the GEQ items (mean effect size = -0.14; mean 
correlation = 0.65) – was poor (1-β = 0.24). Therefore, a total sample size of 74 participants 
would have been required to confirm the impact of music and sound. 

Furthermore, despite the absence of behavioral effects, the participants confirmed specific 
support for continuous exercising (music) and feedback (sound) in the Step-up game and a 
moderate influence of sound on timing in the Hula Hoop game. Specific cognitive effects were 
more approved than global performance effects. Thus, there is only limited support for 
hypothesis 1. 

Due to different scales the GEQ results of our study cannot directly be compared to the results 
of Nacke (2009). Nacke (2009) applied a five-point scale (0 – not at all; 4 – extremely) 
whereas our study included a seven-point scale (1 – fully applies; 7 – does not apply at all) in 
order to establish uniform scales in all questionnaires. Reliability of the GEQ items 
competence, tension, and challenge was higher in our study with lower reliability of flow, 
positive and negative affects. Overall the moderate effects of gaming on GX correspond to the 
results proposed by Nacke (2009), who found low to moderate levels of GX when playing a 
first person shooter video game on the Wii console. However, there are also particular 
differences: Nacke (2009) found higher levels of flow, competence, and challenge. Further 
studies must show whether the genre of exergames generally elicits lower degrees of GX as 
compared to other game genres. Problems with long-term motivation in exergames may be 
considered another indicator that moderate GX may be a specific problem of exergames 
(Wiemeyer, 2010). 

One shortcoming of this study was the fact that the influence of music and sound could not be 
separated. Therefore, only the combined influence of ‘sound and music’ (both diegetic in the 
‘Step-up’ game; sound diegetic in the ‘Hula Hoop’ game) could be studied. 

Hypothesis 2 could not be confirmed. Experience with games seems not to have a general 
impact on new gaming activities. Either the cutoff point (5 years of game experience) was not 
appropriate or quality rather than quantity of game experience plays the more important role. It 
is reasonable but remains an open question whether domain-specific transfer is possible as has 
been found in balance training (Kliem & Wiemeyer, 2010). 

Further research should use more game trials, a separation of music and sound, more 
sophisticated performance parameters, and more detailed measures of game experience. 

Conclusion 

The study confirms significant effects of sound and music on selective aspects of game 
experience in exergames. With music and sound tension and positive affects are higher and 
specific diegetic functions are perceived more pronounced than global functions. Although 
performance effects could not be found, these results suggest that developers of (exer)games 
should deliberately choose music and sound that has diegetic functions supporting players in a 
more specific way compared to nondiegetic function which seems to be less significant when 
diegetic music and sound are present. For players of (exer)games the results imply that by 
turning music and sound on and off they can change the difficulty of the game and add another 
source of variable gaming. 
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Appendix: Self-developed questionnaire (German version) 

 

Questions concerning “Hula Hoop” 
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1. Der Sound beim Spiel "Hula Hoop" hatte auf 
mich keinen Einfluss. 

       

2. Die Musik hilft mir beim Spiel "Hula Hoop" 
die Reifen länger zu drehen. 

       

3. Beim "Hula Hoop" ohne Sound wusste ich 
nicht wann ich die Reifen fangen sollte.  

       

4. Die Musik beim "Hula Hoop" hatte auf mich 
keinen Einfluss. 

       

 
Questions concerning "Step-up" 
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1. Beim "Step Up" mit Musik weiß ich genauer 
wann ich auf das Board auftreten soll. 

       

2. Beim "Step Up" ohne Sound komm ich schnell 
aus der vorgegebenen Schrittreihe raus. 

       

3. Wenn ich beim "Step Up" einen Fehler mache, 
komme ich mit Musik wieder schneller rein.  

       

4. Der Sound beim Spiel "Step Up" gibt mir ein 
Feedback wie gut ich auf dem Balanceboard 
aufgetreten bin. 
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